CAR T-cell therapy

CAR T-cell Therapy in Pediatric Leukemia:

Current Status and Future Directions

Nirali N. Shah, MD

NIH Lasker Clinical Research Scholar
NIH Distinguished Scholar
Hematologic Malignancies Section
Pediatric Oncology Branch
National Cancer Institute
October 3, 2022

Objectives

Objectives

- Basic overview of the CAR T-cell program in children and young adults
- Current status of CAR T-cell therapy in pediatric ALL
- Review limitations and active efforts to address these challenges
- Discuss future directions

Adoptive cell therapy

CAR T-cell therapy

- Adoptive cell therapy
 - Mechanism to overcome the inherent inhibition of endogenous T cells to target and eliminate cancer cells
 - Engineered T cells provide enhanced specificity and efficacy to target cancer
- MHC independent recognition of cell surface antigens
 - CD19/CD22
- Built in co-stimulatory signaling domains
 - 4-1BB or CD28 with CD3z
- T-cell functionality coupled to antibody based antigen recognition

Schema

General trial schema

It takes a village

It takes a village...

July 2012: CD19 CAR December 2014: CD22 CAR May 2018: CD19/22 CAR March 2020: CD33 CAR (AML)

Novel immunothreapy

Extensive correlative studies are embedded in the infrastructure of these novel immunotherapies

- Cytokine profiling
- CAR T-cell trafficking, persistence and expansion
 - · Blood, bone marrow and CSF
- Toxicity and response monitoring
 - Routine clinical laboratory evaluations
 - · Anti-cytokine directed therapy
 - Prospective neurotoxicity evaluations
 - Patient reported outcomes
 - Adverse event monitoring
 - Imaging

- Leukemia biology
 - Evaluation of CD19/22 expression
 - · Lineage switch
 - Immunophenotypic evaluations
 - Genomics
- Optimization Strategies
 - Manufacturing
 - CAR T-cell product analysis
 - · Toxicity mitigation
 - Immunogenicity
- Highly collaborative network

Pediatric ALL

CAR T-cells in Pediatric ALL

Pediatric ALL

Pediatric ALL: Outcomes for relapsed/refractory disease

- Acute lymphoblastic leukemia (ALL) is the most common childhood cancer
- "Poster-child" for success in cancer therapy due to cooperative group efforts
- 85-90% cure rates
- Those with relapsed/refractory disease have poor outcomes

Table 4 Comparison of unadjusted CR rates of patients with medallary relapsed/refractory ALL between two sequential TACL studies

Number of salvage attempt	CR rate (SE) [95% confidence interval]		Difference (Sun-Ko) (SE)
	1995-2004 (Ko et al.) [5]	2005-2013 (Sun et al.)	(testing proportion)
Second salvage attempt	44.44 % (4.78) [34.88, 54.32]	50.91 % (3.89) [43.02, 58.76]	0.0647 (0.0616) (-0.0561, 0.1855) p = 0.2955
Third salvage attempt	26.78 % (5.92) [15.83, 40.30]	36.99 % (5.65) [25.97, 49.09]	0.1021 (0.0818) (-0.0583, 0.2624) p = 0.2200
Fourth through eighth salvage attempt	12.31 % (4.07) [5.47, 22.82]	30.77 % (6.40) [18.72, 45.10]	0.1846 (0.0759) (0.0358, 0.3333) p = 0.0140

Fig. 2 Estimated 2 year event-free survival for patients who achieved complete remission after ≥2nd salvage attempt. CR complete remission, EFS event-free survival

Targeting CD19

Targeting CD19

 CD19 ubiquitously found on B-cells

CD19 CAR

CD19 CAR (Pediatric Oncology Branch)

- July 2012
 - CD19-28ζ (now Yescarta)
- Lessons learned:
 - Cytokine release syndrome
 - CAR T-cell persistence
 - Importance of fludarabine/cyclophosphamide
 - · Treatment of active CNS disease
 - · Role of stem cell transplant
- Changed the paradigm for phase 1 trials re: response

Shah NN et al., J Clin Oncol, In Press

Clinical updates

CD19 CAR clinical updates (Kymriah)

- 81% Complete remission rate
 - Children with relapsed/refractory B-cell ALL
 - CD19/4-1BB (Children's Hospital of Philadelphia)
 - Tisagenlecleucel
- Event Free Survival:
 - 6 months: 73%
 - 12 months: 50%

FDA approvals

FDA approvals: CD19 CAR T-cells

- Kymriah® (tisagenlecleucel):
 - Pediatric B-ALL (up to age 25)
 - Adults with Large B-Cell lymphoma
- Yescarta® (axicabtagene ciloleucel):
 - Adults with Large B-cell lymphoma
- Tecartus™ (brexucabtagene autoleucel):
 - Mantle Cell lymphoma

CURE

Will CD19 CAR T-cells be the CURE?

Current challenges

Current challenges

Current limitations

Current limitations

- Relapse: With or without the surface antigen (CD19)
 - Problem 1 (CD19+): Second CAR infusions generally don't work as well
 - Problem 2 (CD19 neg): If you don't see it, you can't treat it
- Manufacturing: If you can't make it, you can't use it
- <u>Toxicity</u>: Need to survive it
- Disease: Going beyond ALL

CD19 loss

Catch me if you can!!!

 CD19 loss or down regulation represents the primary form of treatment failure

Outcomes

Outcomes for post CD19 CAR relapse are poor

- Retrospective, multicenter study of 420 children and young adults receiving CD19 CAR T-cells
 - 166 (39.5%) with relapse
- Median overall survival (OS):
 - 11.9 months (95% CI: 9.0-17.9 mo)
- 12 month OS: 49.4%
- Salvage options, limited
 - Particularly for CD19^{neg} relapse

Etiology

Etiology for relapse differs across the various phenotypic presentations

- · Lack of persistence
- Immune rejection
- Exhaustion

- . Diagona batawa manaita
- Disease heterogeneity
- Splice variant
- Antigen modulation

CD19^{reg}

Relapse

CD19^{pos} Relapse

- Disease heterogeneity
- Disease plasticity

Relapse

The nitty-gritty of relapse phenotype

Relapse phenotype

Relapse phenotype impacts outcomes

Alternative antigen

Targeting an alternative antigen may help circumvent CD19 loss

CD22 CAR T-cells

CD22 CAR T-Cells

- CD22 CAR:
 - m971 scFV
 - 4-1BB co-stimulatory domain
- CD22 CAR T-cells (NCI) highly active
 - Phase I, 3+3 dose escalation trial
 - NCI construct (m971/4-1BB)
 - CD22+ ALL or NHL
 - Ages 3-30 years
 - Lymphodepletion:
 - Fludarabine 75 mg/m² + Cyclophosphamide 900 mg/m²
 - First patient infused December 2014
 - Now: 80 patients enrolled to date

Anti-CD22 CAR T-Cell

CD22 CAR T-cells are highly active

CD22 CAR T-cells are highly active in patients with relapsed/refractory disease

- 70% complete remission (CR) rate
 - 40 of 58 patients
 - 87.5% minimal residual disease (MRD) negative
- 76% CR at expansion dose
 - 19 of 25; MRD neg CR: 94.7%
- Effective also in those who did not respond to prior CD19-targeted strategies

- Toxicity:
 - Cytokine release syndrome grades 3/4: 10%
 - Neurotoxicity: mild

Remission reduction

Remission induction used as a bridge to HSCT to prevent antigen modulation as cause of relapse

- Antigen modulation a frequent cause of relapse
 - CD22 site density lower than CD19
- AlloHSCT acceptable practice for curative intent in patients with r/r ALL
 - Increased number of patients who have relapsed after CD19 CAR and not had a prior HSCT

Breakthrough therapy

Breakthrough therapy designation

For the treatment of pediatric and young adult patients, 3-30 years of age with CD22 positive B-cell ALL that is refractory or in second or later relapse, and either CD19 negative or relapsed/refractory to CD19 targeting

Antigen targeting strategies

Combinatorial/simultaneous antigen targeting strategies will be needed to prevent antigen escape

Combinatorial treatment strategies

The foundation of ALL therapy is based in combinatorial treatment strategies

So... why would immunotherapy be any different?

Highly-active

Highly-active in r/r pre B-ALL

- 20 patients
 - 16 (80%) with eradication of marrow disease
 - 12 (60%) with complete CR
 - · Discrepant responses in EMD
- · Response was dose-dependent:
 - 14/16 (87.5%) at ≥ 1 x 10⁶ transduced CAR T-cells
- CAR-naïve patients had improved response: 10/14
 - But CAR pre-treated patients also skewed towards the first (? Ineffective DL)
- CRS severity was generally low
 - 1 patient with ICANS (grade 3)
- Limited efficacy in extramedullary disease
- With limited CD22 targeting, a novel bicistronic construct will be forthcoming this summer

Stem cell transplantation

What is the role for allogeneic hematopoietic stem cell transplantation in CAR T-cell therapy?

HSCT

What is the role of HSCT following CD19 CAR T-cell therapy?

- CD19 targeted CAR T-cell therapy can lead to a long-term durable remission in a fraction of pediatric patients with B-ALL
- HSCT has an important role for consolidation and long-term cure in patients with high-risk or relapsed B-ALL
- HSCT is associated with both short-term and long-term risks
- Salvage options for patients relapsing after CD19 CAR T-cell therapy are limited

Prospective studies

Prospective studies are needed to define the role for post-CAR consolidative HSCT

Benefit of HSCT

NCI: CD19/28ζ

Seattle: CD19/41BB

MSK (peds): CD19/28ζ

No Benefit or Unknown

Novartis/CHOP: CD19/41BB

MSK (adult): CD19/28ζ

Secondary inflammatory phases

Secondary inflammatory phases seen in select patients treated with CD22 CAR T-cells

- · Clinical manifestations
 - Cytopenias
 - Hepatic dysfunction
 - Elevated inflammatory markers (ferritin, sCD25),
 - Coagulopathy (hypofibrinogenemia)
- Symptoms often occur after clinical resolution from CRS
- Indications for tocilizumab administration often were not met during 2° symptoms

Cytokine release syndrome

Cytokine Release Syndrome

- Supraphysiologic inflammatory process seen with CAR T-cell expansion
- Range from mild to severe (lifethreatening)
- Neurotoxicity particularly worrisome
- Tocilizumab (anti-IL6 receptor Ab) FDA approved for the treatment of CRS

Secondary phases

Secondary inflammatory phases seen in select patients treated with CD22 CAR T-cells

- Clinical manifestations
 - Cytopenias
 - Hepatic dysfunction
 - Elevated inflammatory markers (ferritin, sCD25),
 - Coagulopathy (hypofibrinogenemia)
- Symptoms often occur after clinical resolution from CRS
- Indications for tocilizumab administration often were not met during 2° symptoms

Novel toxicities

Pre-CAR

1 month

post-CAR

2 months

post-CAR

Novel toxicities necessitate unique approaches: Anakinra targeting of IL-1 signaling reduced carHLH symptoms

Shah et al., Journal of Clinical Oncology, 2020

Beyond ALL

Going beyond ALL...

- 60% of children and young adults with AML will not achieve long-term durable remission
- CD33 is an established target for AML
 - CD33 CAR construct developed in the POB (Qin/Fry)
- Phase I dose escalation study of CD33 CAR T-cells in children and young adults with r/r AML
 - Bridge to HSCT given concern for CD33 expression on hematopoietic precursors
- Trial updates:
 - First multicenter phase 1 CAR T-cell trial where manufacturing was done at NCI Frederick
 - Dose level 1 completed, 3 patients treated to date

Acute effects

What do we know about subacute or other long-term effects?

Beyond the storm

CAR T-cell Therapy: Beyond the Storm

Consortium

Beyond the Storm consortium

- Multi-center, multi-disciplinary group of care providers who are all well-versed in early implementation of CAR T-cell therapy
- Retrospective/prospective protocols to study subacute/late effects of CAR T-cell toxicities in children and young adults

Future directions

Areas of active research and future directions

- CAR T-cell highly effective in B-cell malignancies, however opportunities to further optimize this strategy remain
 - Relapse treatment and prevention
 - · Antigen modulation
 - Toxicity management (acute and late effects)
 - Extending this therapy to other diseases
 - CAR T-cell manufacturing and design
 - Timing

Acknowledgements

Elizabeth Holland

Acknowledgements

Pediatric Oncology Branch

Brigitte Widemann Lori Wiener Naomi Taylor Jack Shern John Glod Pam Wolters Joanne Derdak Staci Martin

Hematologic Malignancies Section

Haneen Shalabi
Bonnie Yates
John Ligon
John Molina
Sara Silbert

Monica Epstein
Toni Foley
Terri Moore
Dan Lichtenstein
Jennifer Jess

NCI Flow Cytometry

Lauren Little

Maryalice Stetler-Stevenson Constance Yuan Hao-Wei Wang

NIH CCE

David Stroncek Steve Highfill Sandhya Panch Minh Tran Jianjian Jin Ping Jin

Naoza Collins-Johnson

Nasheda Sapp

NIH Collaborators

Amanda Ombrello (NHGRI) Mark Ahlman (Radiology) Lekha Mikkilineni (NCI, SB) Veronique Nussenblatt (NIAID)

NCI DCTD

James Doroshow Anthony Welch CD33 CAR Team

NCI CDSL

Eytan Ruppin Fiorella Schischlik

NCI OSRO/Protocol Support

Kelly Bryant Rita Misra Shy Shorer A special thanks to all our patients, particularly those who are no longer with us, their families and referring teams. Their memory lives on in our work.

CC DTM, Apheresis Team

Cathy Cantilena Kamille West Dinora Garcia Monica Ford

Frederick National Lab

Jon Inglefield Yanyu Wang

Biopharmaceutical Development Program (BDP)

NCI Tech Transfer

Jim Knabb Laurie Whitney

Mentorship committee

POB: Brigitte Widemann, Naomi Taylor NCI: James Gulley, James Kochenderfer

DSP: John Tisdale U. Colorado: Terry Fry

Extramural Collaborators

Crystal Mackall (Stanford)
Terry Fry (U. Colorado)
Daniel (Trey) Lee (UVA)
Sneha Ramakrishna (Stanford)

NIH Distinguished Scholars Program

