Immune checkpoint blockade

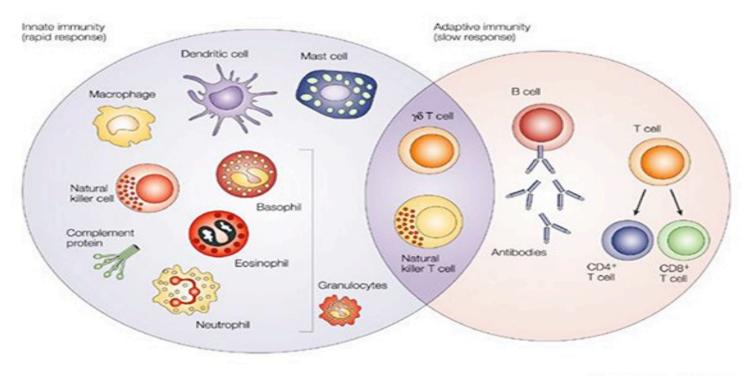
Immune Checkpoint Blockade

NCI CCR TRACO Stephanie L. Goff, MD, FACS

Objectives

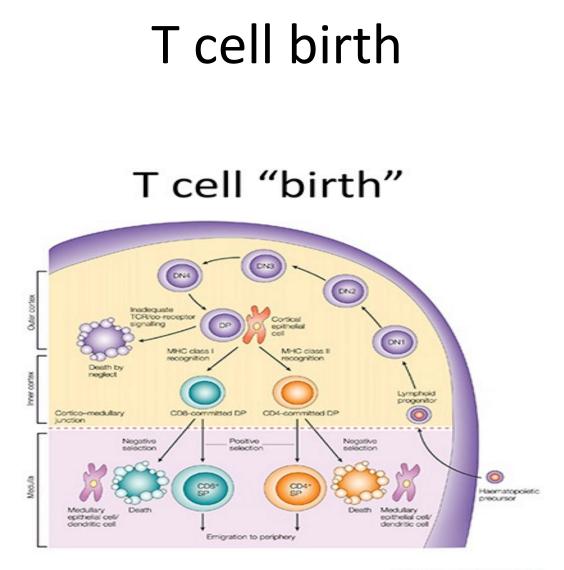
- The basics of immunotherapy
- Mechanism of action of checkpoint blockade
- Early clinical experience and the discovery of immune related adverse events
- Checkpoint blockade in melanoma
 - Ipilimumab
 - Nivolumab
 - Pembrolizumab
- Experimental Questions

Oncology



Cancer Immunotherapy

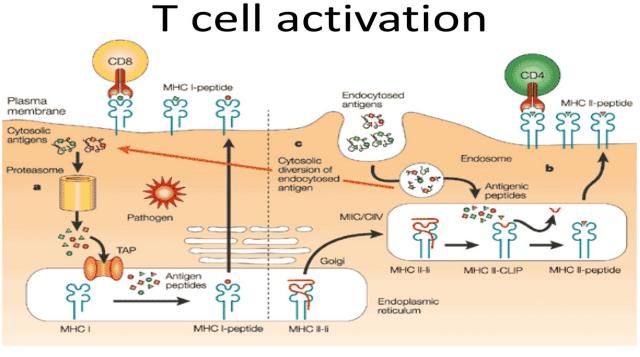
- 1. Nonspecific stimulation of immune reactions
 - a) Stimulate effector cells
 - b) Inhibit regulatory factors (checkpoint blockade)
- 2. Active immunization to enhance anti-tumor reactions (cancer vaccines)
- 3. Passively transfer activated immune cells with antitumor activity (<u>adoptive immunotherapy</u>)


Immune system

Cells of the Immune System

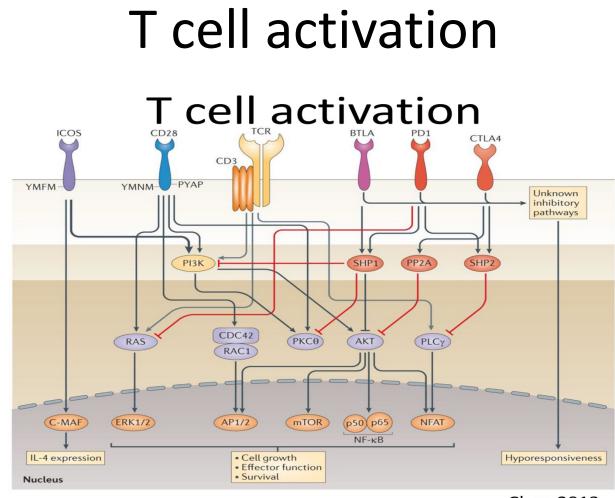
Nature Reviews | Cancer Dranoff 2004

Checkpoint blockade primarily affects T cells



Nature Reviews | Immunology

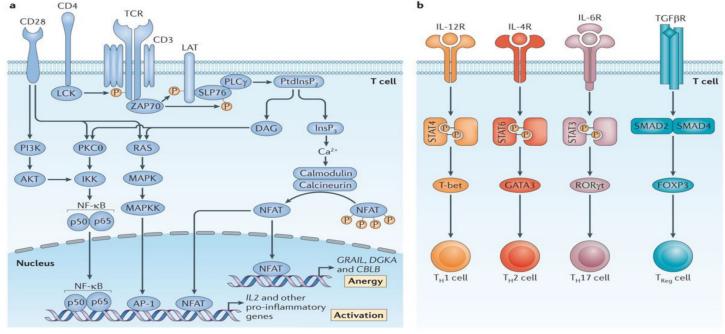
Germain 2002


Builds a repertoire of T cells

T cell activation

Nature Reviews | Immunology Heath 2001

- Signal 1: Specificity
- TCR engages antigen in context of MHC

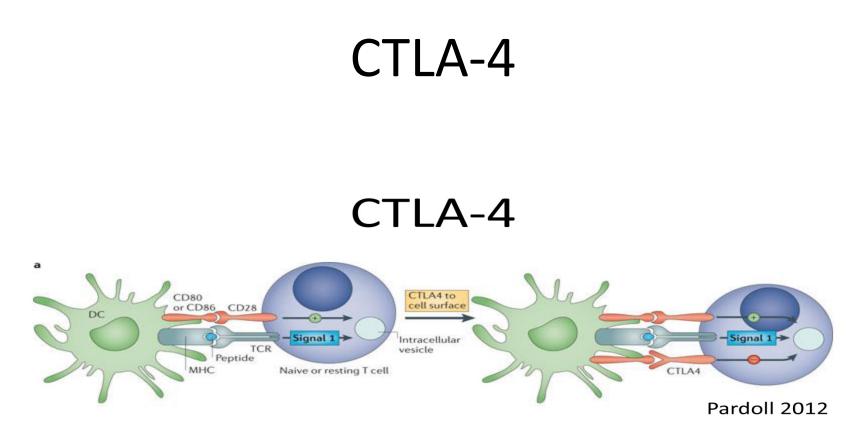

• Signal 2: Activation vs. Anergy

Chen 2013 Nature Reviews | Immunology

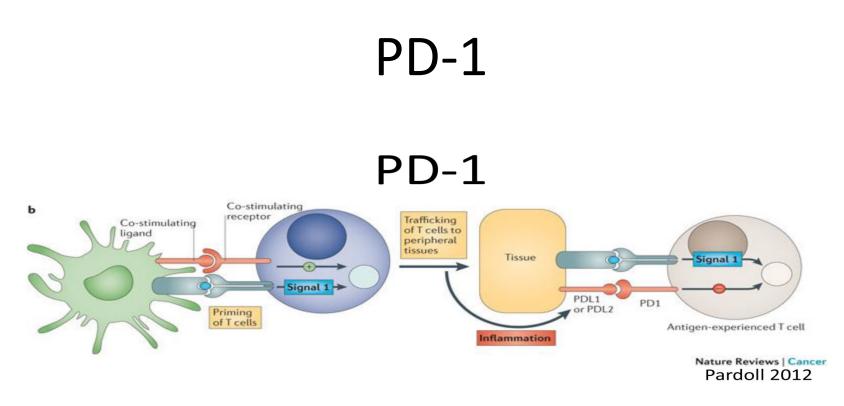
Costimulatory molecules

T cell activation

T cell activation

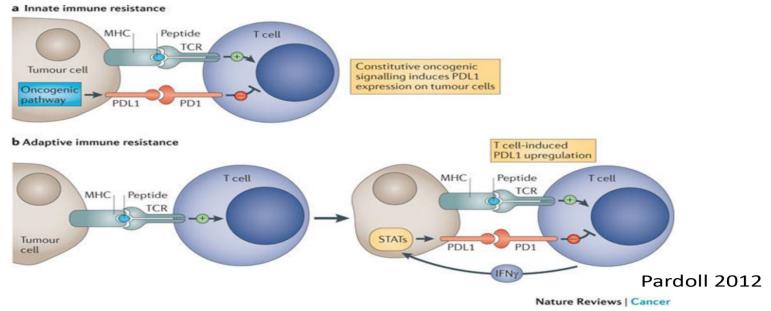

Nature Reviews | Immunology

Pollizzi 2014


- Signal 3: Polarization
- Dependent on cytokine profile of the microenvironment

The role of Signal 2 checkpoints

- Immune checkpoints promote self-tolerance
 - Initial response to antigen occurs primarily in secondary lymphoid organs (lymph nodes, tonsils, spleen, Peyer's patches, mucosa associated lymphoid tissue)
- Immune checkpoints limit "collateral damage"
 Effector recognition in peripheral tissue/tumor
- For cancer immunotherapy, two opportunities to break tolerance to self-antigen

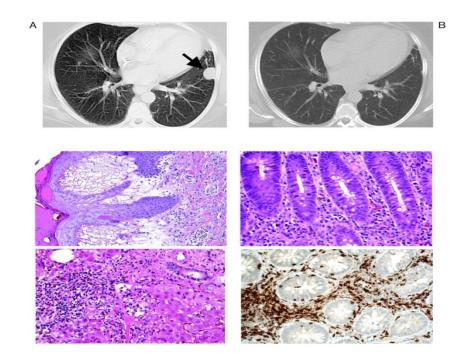

- Naïve and memory T cells express surface CD28
- CTLA-4 is transported to the surface in correlation to the strength of CD28 stimulation
- CTLA-4 also competes with higher affinity for CD80/86
- A dampening effect on downstream processing
- Constitutively present on Treg cells

- A primed T-cell is heading to peripheral tissue to engage a target, and once activated begin to express PD-1
- Inflammation present in the tissue can promote upregulation of the ligands of PD-1
- In general, this limits collateral damage during cellmediated destruction of infection

PD-1/PD-L1

PD-1/PD-L1 in cancer

- Cancer cells can increase the amount of PDL1
- Successful T-cell tumor destruction can increase
 PDL1 through upregulation in response to IFNγ


Checkpoint Blockade

- Where to start?
- Tumors known to respond to other immunotherapy
- Melanoma
- Estimated 9,940 deaths/year in US
- Metastatic disease
 16% 5 yr survival
- Interleukin-2 durable *cure* in 4%

- Renal Cell Cancer
- Estimated 14,080 deaths/year in US
- Metastatic disease
 12% 5 yr survival
- Interleukin-2 durable *cure* in 7%

Checkpoint Blockade @ NCI

- αCTLA-4, ipilimumab
- Phase I trial
- mAb (3mg/kg) + peptide
- Enrolled 14 patients
- 2 complete responders
- 1 partial response
- Accrual stopped for toxicity
 - Dermatitis, colitis, hepatitis, hypophysitis

Phan GQ 2003

Checkpoint Blockade @ NCI

- Cautiously proceeded with Phase II trials in melanoma and RCC, initially with dose reduction (3 → 1 mg/kg)
- Objective response was associated with development of autoimmune events

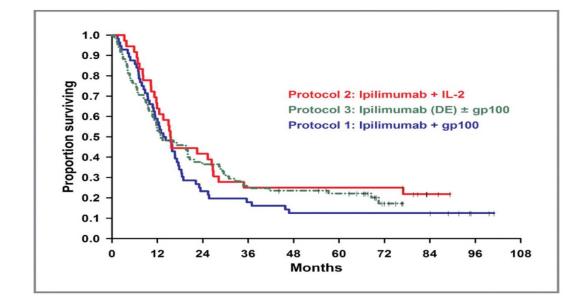
Melanoma, p=0.008

RCC, p=0.009

	> Gr 3 AE	< Gr 3 AE		> Gr 3 AE	< Gr 3 AE
Objective Response (CR = 2)	5 (36%)	2 (5%)	Objective Response (CR = 0)	5 (29%)	0 (0%)
Non-responder	9	40	Non- responder	12	23
	Attia F	2005 °		Yang	JC 2007

Checkpoint Blockade @ NCI

- Formal Phase II intrapatient dose escalation demonstrated association of response with immunerelated adverse events of any grade
- Enterocolitis was the most common grade 3/4 IRAE in patients with melanoma (18%) or RCC (28%)
- The administration of steroids to manage IRAE did not truncate responses

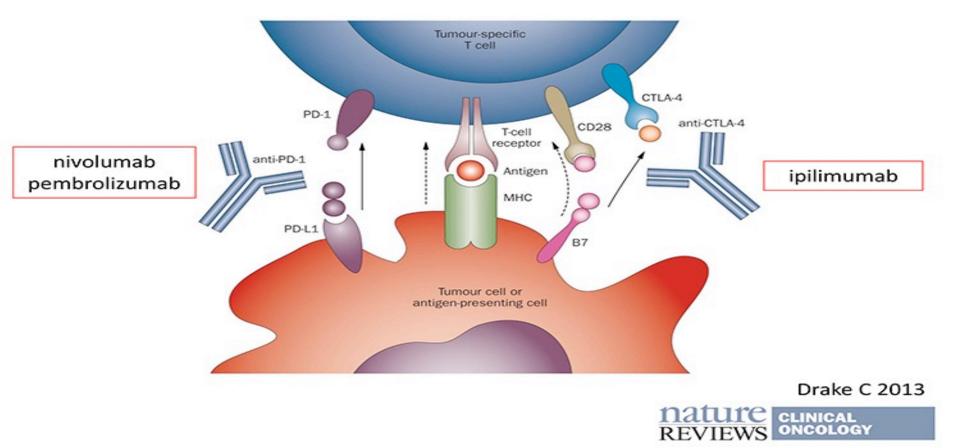

Melanoma, p=0.0004

	Gr 3/4 IRAE	Gr 1/2 IRAE	No IRAE
Objective Response (CR = 3)	14 (28%)	<mark>8</mark> (22%)	1 (2%)
Non- responder	36	28	52

Beck KE 2006 Downey SG 2007

Checkpoint Blockade @ NCI

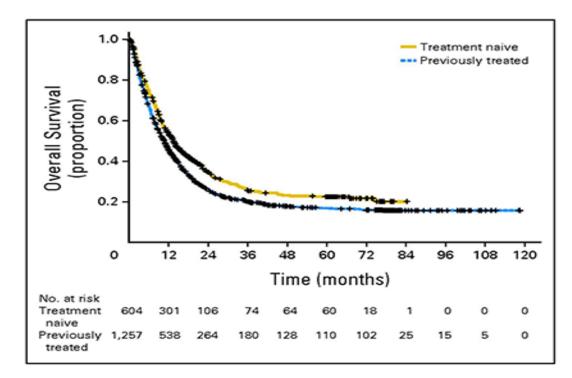
- Developed algorithms for management of IRAEs
- Demonstrated durability of responses
 - OR 13-20%
 - 5 yr OS 13-23%



Clinical

Cancer Research

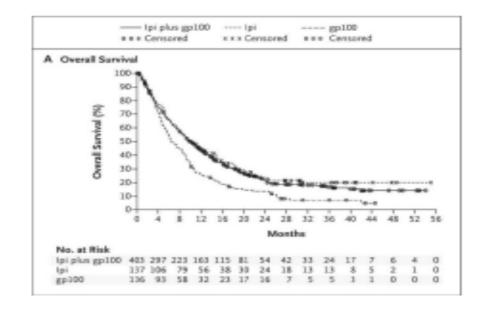
Prieto PA 2012


Checkpoint blockade in melanoma

Ipilimumab

Ipilimumab for melanoma

- Updated survival
- 3 year OS, 20-26%
- "Tail of the curve"
 - Durable for a small
 # of patients


Schadendorf D 2015

Ipilmumab

Ipilimumab for melanoma

- 11% response rate in Phase II trials at highest doses (10 mg/kg)
- Randomized Phase III ipilimumab ± gp100 vaccine vs. gp100 vaccine
- Allowed re-induction
- OR: ipilimumab arms
 7% (38/540)
 CR in 3 patients
- Disease control rate 22%
- Gr 3/4 irAE 10-15%

FDA approval for metastatic melanoma in March 2011

Hodi FS 2010

Nivolumab for melanoma

Nivolumab for melanoma

- Ipilimumab-refractory
- RCT: nivolumab vs chemotherapy of choice (CheckMate 037)
- Objective Response

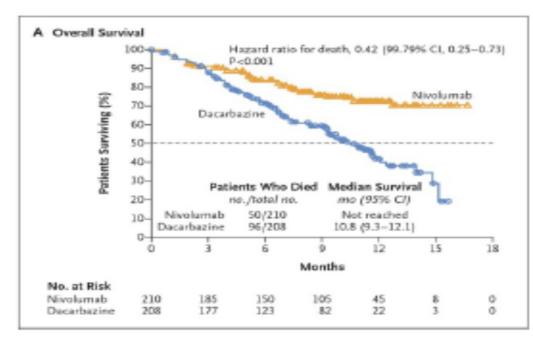
100

75 50

-50

est reduction from baseline in target lesion (%)

- Nivolumab 38/120, 31.7% with 4 CR
- A ____ Chemotherapy 5/47, 10.6%

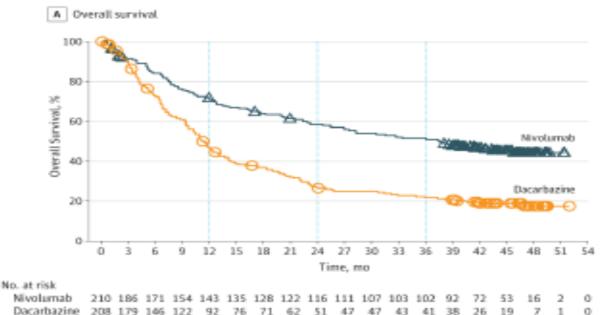

FDA approval for refractory melanoma in December 2014

> Weber JS 2015 THE LANCET Oncology

Nivolumab for melanoma

Nivolumab for melanoma

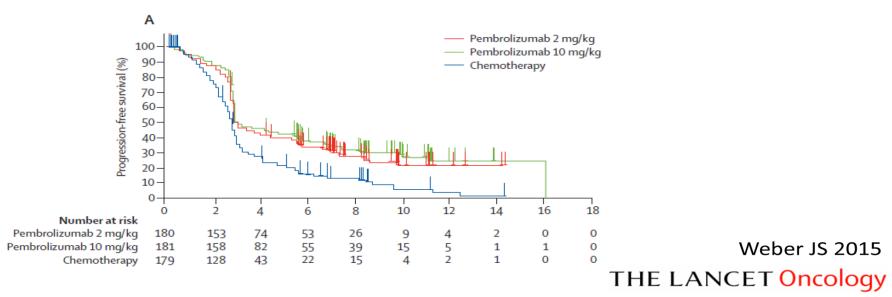
- Untreated metastatic disease
- Wildtype BRAF
- RCT: nivolumab vs dacarbazine (CheckMate 066)
- Objective response
 - Nivolumab 84/210 (40%) CR in 16 pts (7.6%)
 - Dacarbazine 29/208 (14%) CR in 2 pts (1%)


Approved for initial treatment (*BRAF*-wt) in November 2015

Nivolumab

Nivolumab for melanoma

- Overall Survival update for Checkmate 066
- Three-year OS:
 - Nivolumab 51%
 - Dacarbazine 22%


Ascierto P 2018

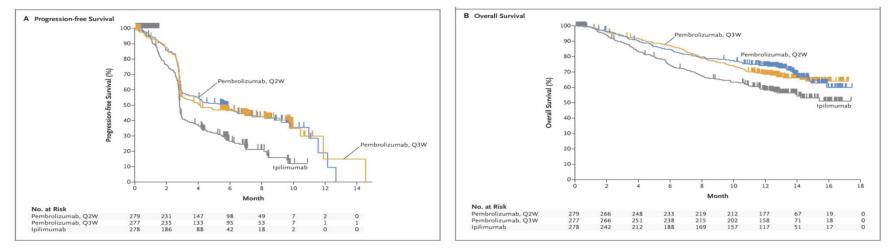
JAMA Oncology

Pembrolizumab for melanoma

Pembrolizumab for melanoma

- Ipilimumab-refractory
- Phase II, dose comparison (2mg/kg vs 10 mg/kg) vs chemo
- 540 patients
 - 2mg/kg ORR 38 (21%), 10 mg/kg ORR 46 (25%), chemo 8 (4%)
- Grade 3/4 AE 12%

Pembrolizumab for melanoma

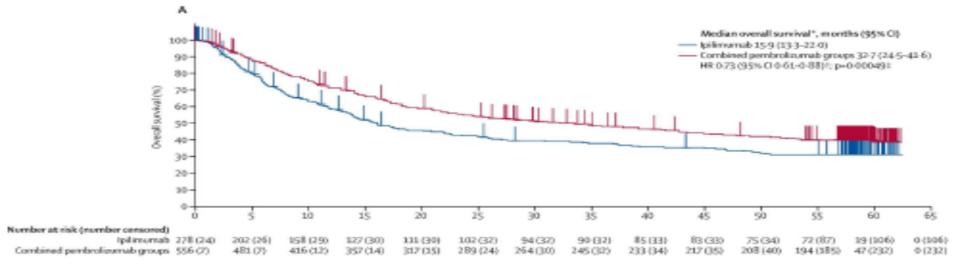

Pembrolizumab for melanoma

- RCT, KEYNOTE-006, first-line therapy
- Pembrolizumab (q2w, q3w) vs ipilimumab
- 1:1:1
- 834 patients
- Objective Response
 - Pembrolizumab q2w 94/279 (33.7%), CR 14
 - Pembrolizumab q3w 91/277 (32.9%), CR 17
 - Ipilimumab 33/278 (11.9%), CR 4

Pembrolizumab for melanoma

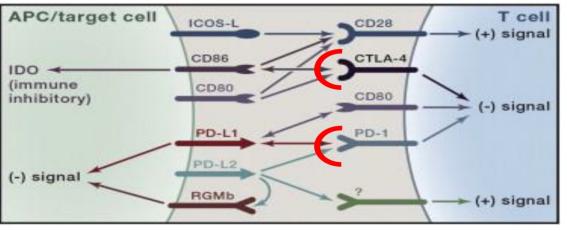
Pembrolizumab for melanoma

- Grade ≥3 AE
 - Pembrolizumab q2w 13.3% (1.4% Colitis)
 - Pembrolizumab q3w 10.1% (2.5% Colitis)
 - Ipilimumab 19.9% (7% Colitis)


Robert C 2015

Pembrolizumab

Pembrolizumab for melanoma


Three year OS of 48.1% vs 37.8%

Robert C 2019 THE LANCET Oncology

Checkpoint modulation

Checkpoint Modulation

Topalian, Cancer Cell 2015

- In melanoma, the two approved antibodies interfere with separate receptor/ligand complexes
- Could combination therapy improve response or survival?

Nivolumab/Ipilmumab

Nivolumab/Ipilimumab for melanoma

- Previously untreated
- Phase III, RCT
- 945 patients
- 1:1:1
- PD-L1 (+) ≥5%

Characteristic	Nivolamab [N=336]	Niwakamab pilas Ipili mu mab (N=314)	Ipilimumab (N=315)	Total (N = 945)
PD-L1 status no. (%)				
Positive	80 (25.3)	68 (21.7)	75 (23.8)	223 (23.6)
Negative	208 (65.8)	210 (66.9)	202 (64.1)	620 (65.6)
Could not be determined or evaluated	28 (8.9)	36 (11.5)	38 (12.1)	102 [10.8]
BRAF status no. (%)				
Mutation	100 (31.6)	101 (32.2)	97 (30.8)	298 (31.5)
No mutation	216 (68.4)	213 (67.8)	238 (69.2)	647 (68.5)

Larkin J 2015

Nivolumab/Ipilmumab

Nivolumab/Ipilimumab for melanoma

- Previously untreated
- Phase III, RCT
- 945 patients
- 1:1:1
- Grade 3/4 AE
 - Nivolumab 16.3%
 - Ipilimumab 27.3%
 - Combo 55.0%

/ariable	Nivolumab (N=316)	Nivolumab plus Ipilimumab (N=314)	lpilimumab (N=315)
8est overall response — no. (%)*			
Complete response	28 (8.9)	36 (11.5)	7 (2.2)
Partial response	110 (34.8)	145 (46.2)	53 (16.8)
Stable disease	34 (10.8)	41 (13.1)	69 (21.9)
Progressive disease	119 (37.7)	71 (22.6)	154 (48.9)
Could not be determined	25 (7.9)	21 (6.7)	32 (10.2)
D <mark>biective response</mark> t			
No. of patients with response	138	181	60
% of patients (95% CI)	43.7 (38.1–49.3)	57.6 (52.0-63.2)	19.0 (14.9–23.8)
Estimated odds ratio (95% CI):	3.40 (2.02-5.72)	6.11 (3.39–10.38)	
Two-sided P value	<0.001	<0.001	_
ime to objective response — mo			
Median	2.78	2.76	2.79
Range	2.3-12.5	1.1-11.6	2.5-12.4

* The best overall response was assessed by the investigator according to the Response Evaluation Criteria in Solid Tumors, version 1.1.

 That included patients with a complete response and those with a partial response. The calculation of the confidence interval was based on the Clopper-Pearson method. These analyses were conducted with the use of a two-sided Cochran-Mantel-Haenszel test stratified according to PD-L1 status, *BRAF* mutation status, and metastasis stage.
 The comparison is with the ipilimumab group.

Nivolumab/Ipilmumab

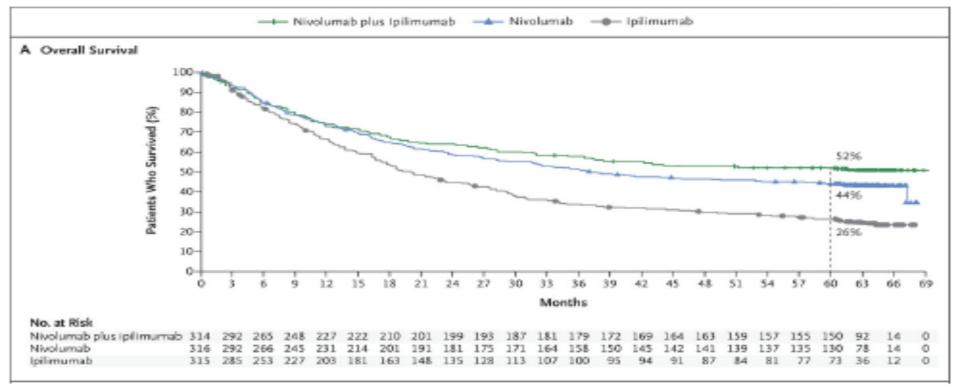
Nivolumab/Ipilimumab for melanoma

- Previously untreated
- Phase III, RCT
- 945 patients
- 1:1:1

• Grade 3/4 AE

- Nivolumab 21%
- Ipilimumab 28%
- Combo 59%

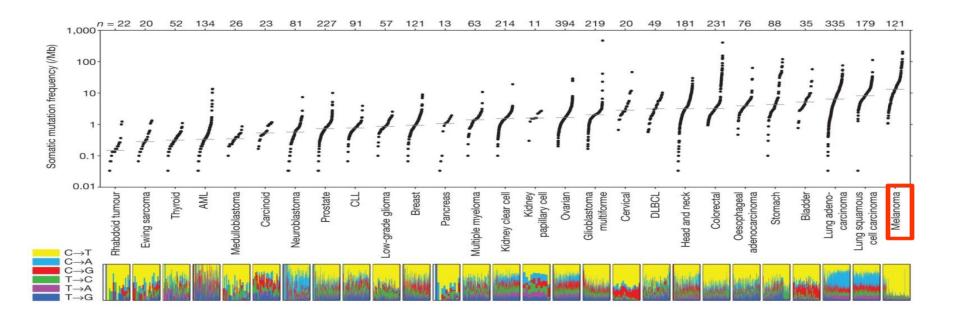
Variable	Nivolamab plas Ipilimamab (N = 314)	Nivolumab (N=316)	(N = 315)
Rest overall response - no. (%) †			
Complete response	61 (19)	52 (16)	16 (5)
Partial response	122 (99)	88 (28)	43 (14)
Stable disease	38 (12)	31 (10)	69 (22)
Progressive disease	74 (24)	121 (18)	159 (54)
Usable to determine	19 (6)	24 (8)	28 (9)
Objective response:			
No. of patients with response	183	140	59
% of patients (95% C)	58 (53-64)	44 (39-50)	19 (15-24)
Estimated odds ratio (95% CI)§	6.46 (4.45-9.38)	3.57 (2.48-5.15)	
P solue	<0.001	-0.001	
Median duration of response (95% CI) - mo	NR	NR (36.3-NR)	19.3 (8.3-NR)


FDA approval of combination for melanoma in January 2016

Wolchok J 2017

Nivolumab/Ipilmumab for melanoma

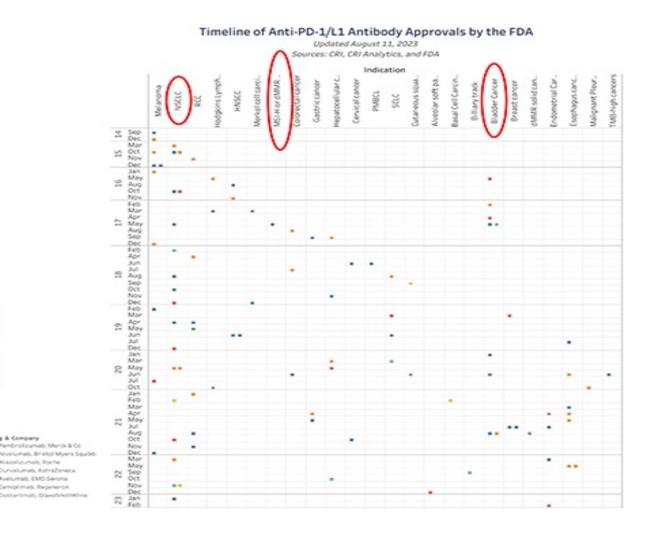
Nivolumab/Ipilimumab for melanoma



Larkin J 2019

Melanoma

Why melanoma?


MS Lawrence et al. Nature 1-5 (2013) doi:10.1038/nature12213

Highly mutated tumors

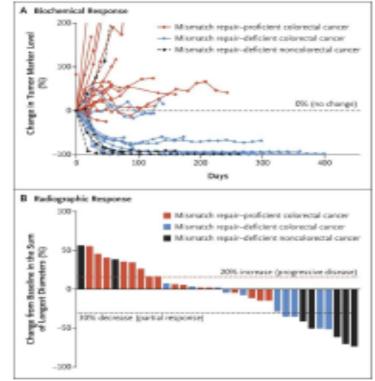
- Non-small cell lung cancer
- ~158,040 deaths/year in US
- Regional disease
 16% 5 yr survival
- Metastatic disease
 2% 5 yr survival
- Correlation between smoking and # mutations

- Tumors with mismatch repair (MMR) deficiency
 - Lynch syndrome (germline mutation)
 - Sporadic mutation
 - MSH2, MLH1, MSH6, PMS2
- Bladder cancer
 - 16,000 deaths/year in US
 - Highly lethal once metastatic

FDA approval time

https://www.cancerresearch.org/scientists /immuno-oncology-landscape/pd-1-pd-l1-

&C

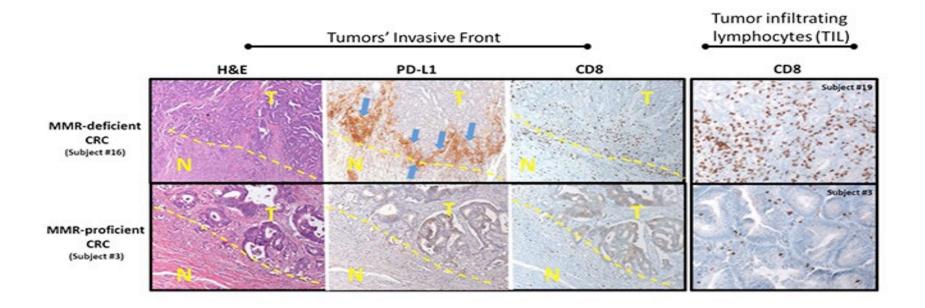

andscape

Orug & Company

Mismatch/repair deficiency

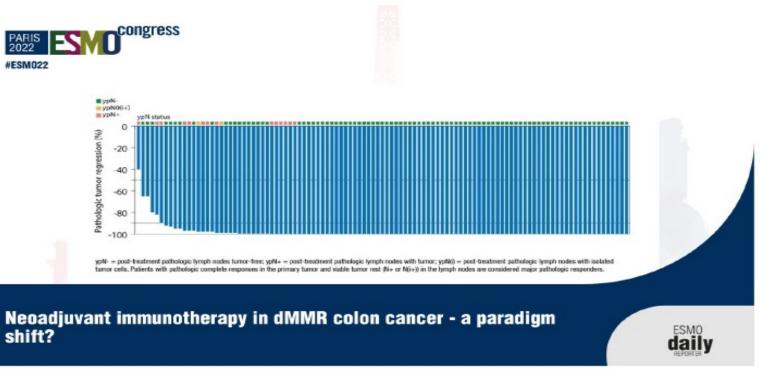
Pembrolizumab for mismatch repair deficient (dMMR) cancer

- Builds on hypothesis of neoantigens from somatic mutations
- Phase 2 study
- Three parallel cohorts
 - MMR-proficient CRC
 - MMR-deficient CRC
 - MMR-deficient other



Le DT 2015

Tumor-stromal interface


Pembrolizumab at the tumor-stroma interface

Pre-op combinations checkpoint

Pre-op combination checkpoint

Chalabi et al ESMO Presidential Session September 2022

Checkpoint blockade

Checkpoint Blockade

Highly mutated tumors

- Melanoma
- Non-small cell lung cancer
- Bladder cancer
- Tumors with mismatch repair deficiency

- Use in other tumors?
 - Renal cell
 - Responds to other immun otherapy
 - Hodgkin's lymphoma
 - Reed-Sternberg cells have elevated amounts of PD-L1
 - Head and neck SCC
 - HPV and mutations

Hodgkin's lymphoma

Nivolumab for Hodgkin's Lymphoma

80 patients

A 100

75

50-25-0-

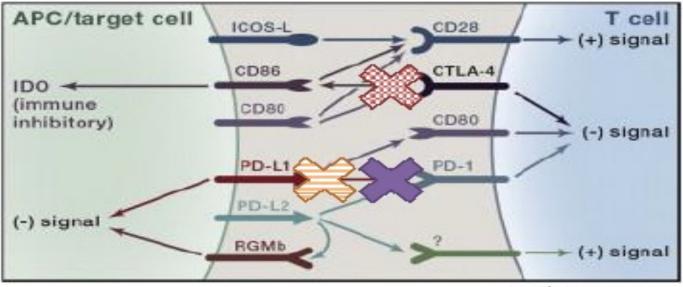
-75

-100-

iest dhange from baseline in target lesion (%)

- Refractory to stem cell transplant
- Refractory to brentuximab

- Objective Response
 53/80 (66%)
 - 7 complete remission

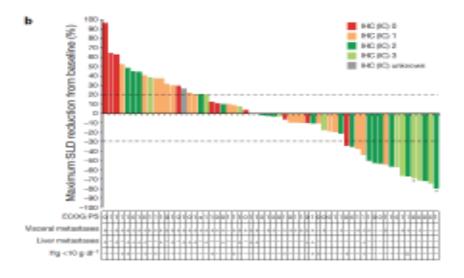

FDA approval for refractory cHL in May 2016

Younes A 2016

THE LANCET Oncology

Checkpoint modulation

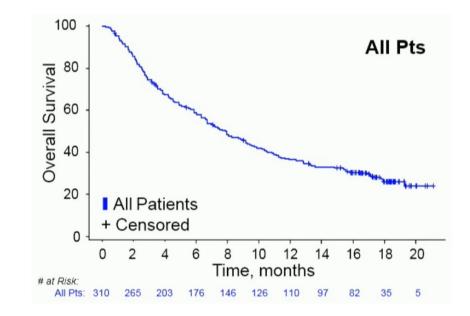
Checkpoint Modulation


To palian, Cancer Cell 2015

- Initial focus on blocking Signal 2 on the T cell side
 - Anti-CTLA-4: ipilimum ab (Yervoy), tremelimum ab
 - Anti-PD-1: nivolumab (Opdivo), pembrolizumab (Keytruda), cemiplimab (Libtayo)
- Newer development on blocking Signal 2 on the target
 - Anti-PD-L1: atezolizumab (Tecentriq), avelumab (Bavencio), durvalumab (Imfinzi)

Bladder cancer

αPD-L1 in Urothelial bladder cancer


- MPDL3280A
- Atezolizumab
- 15 mg/kg q3w
- 27% tumors with >5% PD-L1 by IHC
- 65 patients with pretreatment biopsy
- Objective Response
 - ≥ 5% PD-L1 13/30 (43.3%)
 - < 5% PD-L1 4/35 (11.4%)</p>
- Grade 3/4 AE 4%

αPD-L1 in Urothelial bladder cancer

- 310 patients
- Objective Response
 - 45 (15%)
 - With 15 complete responses
- Overall Survival
 - 7.9 months
- 1 yr Survival
 - 37%

Avelumab

Avelumab in Merkel cell carcinoma

ressive disease

atient off treatment

inst occurrence of new lesion

e ovalicable

13 14 15 16 17 18 19 20

11 12

Time since treatment initiation (months

 88 patients

 Confirmed metastatic disease

B

160 140 120

100

80

60

40

-20 -40 -60 -80

Overse in Larset let

- Objective Response – 28/88 (32%)
 - 8 complete remission

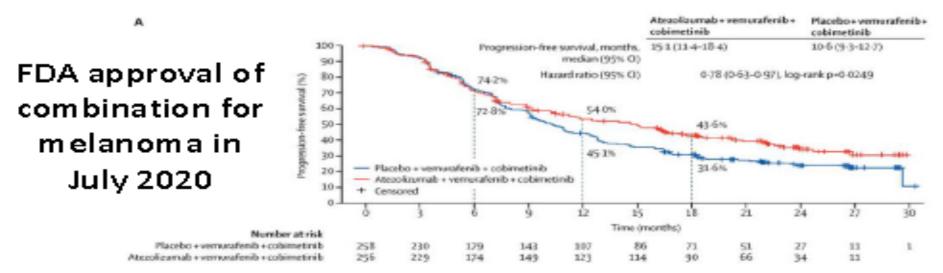
Kaufman HL 2016 THE LANCET Oncology

PD-1/PD-L1 pathwav

Blocking the PD-1/PD-L1 pathway

	Drug	Melanoma	NSCLC	RCC	Bladder
Anti-PD-1	Nivolumab	32% (n=107)	17% (n=129) 30% (n=20)	29% (n=34) 21% (n=168)	NR
	Pembrolizumab	38% (n=135) 26% (n=157)	26% (n=42) 20% (n=194)	NR	24% (n=29)
Anti-PD-L1	BMS-936559	17% (n=52)	10% (n=49)	12% (n=17)	NR
	MEDI4736	NR	16% (n=58)	NR	NR
	Atezolizumab	30% (n=43)	23% (n=53)	14% (n=56)	26% (n=65)

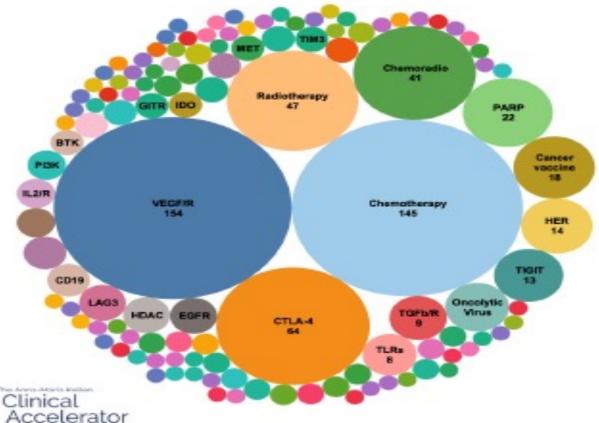
FDA Approved (As of 9/2016)


Adapted from Lipson 2015

Altezolizumab

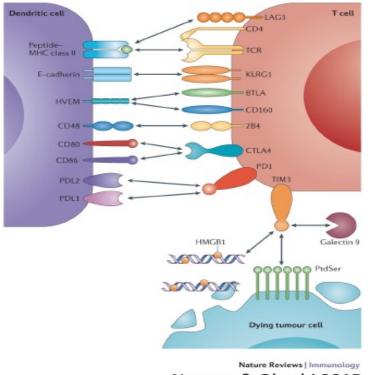
Atezolizumab (aPD-L1) for melanoma

- BRAF V600E/K mutation
- Phase III RCT, with BRAK/MEK inhibitors
- 514 patients, randomized 1:1


Gutzmer R 2020 THE LANCET

Combination clinical trials

Combination Clinical Trials

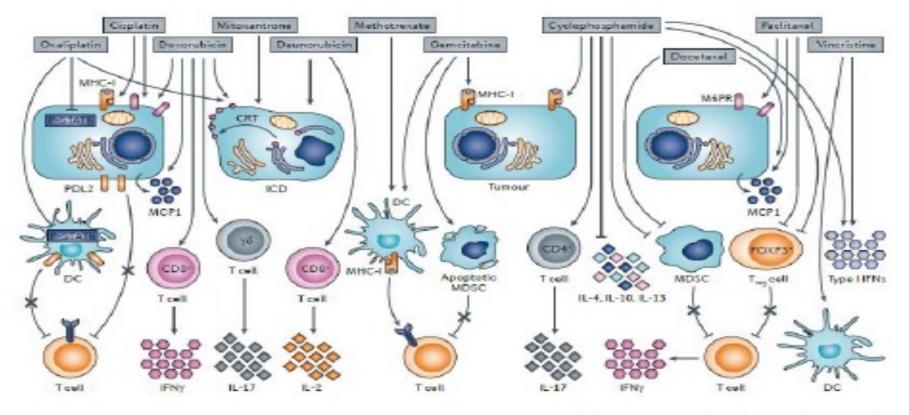

- Over 2900

 different trials of
 combination
 therapy with 253
 different agents
- 724 new trials in first 9 months of 2020

New checkpoint inhibitors

New checkpoint inhibitors

Nguyen & Ohashi 2015


LAG-3

- Combination formula

 Anti PD-1
 - Anti LAG-3
- 16% complete response
- 27% partial respons
- Approved for 1st line metastatic melanoma in March 2022

Chemotherapy combinations

Rationale for Chemotherapy Combinations

Checkpoint modulators

Checkpoint Modulators

- Every expanding list of indications
- Over 2200 different trials of combination therapy
- Any questions?

