Non-small cell lung cancer

Non-Small Cell Lung Cancer

Eva Szabo, MD Chief, Lung and Upper Aerodigestive Cancer Research Group Division of Cancer Prevention, NCI

Nov. 7, 2022

Global cancer burden

Global Burden of Cancer 2020

International Agency for Research on Garoar

(d) trainet

https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf

US lung cancer statistics, 2021

US Lung Cancer Statistics, 2021

- 235,760 estimated new cases (lung and bronchus)
- 131,880 estimated deaths
- leading cause of cancer deaths
 - greater than breast+prostate+colon
 - death rate per 100,000 decreasing (90.56 in 1990; 67.45 in 2006)
 - Incidence declining in men since mid-1980's, wo men since mid-2000's
- 21% five-year survival
 - 5% in 1950's, 12% in 1970's
- 22% of all male and female cancer deaths

h Ups Maanut Latencerg/conteng/dam/cancer-org/research/cancer-face-and-stallslies/annutLatencer-faces-and-flgures/2021/cancer-face-andflgures-2021.gdf

Risk factors

Risk Factors

- Tobacco, tobacco, tobacco (85% lung ca.)
 - Including passive smoking
 - Prior aerodigestive malignancy
 - COPD
- Other exposures
 - Asbestos, radon, polycyclic aromatic hydrocarbons, chromium, nickel, inorganic arsenic – mining, ship building, oil refining
- Genetic predisposition
 - Familial lung cancer Germline mutations EGFR T790M
 - Bell et al., Nat Gen 2005;37:1315
 - 15q24-25.1 nicotinic acetylcholine receptor subunits CHRNA3 and CHRNA5, OR=1.3, attributable risk ~14%
 - Amos et al., Nat Gen 2008;40:616, Hung et al. Nature 2008;452;633, Thorgeirsson et al. Nature 2008;452:638
 - CH3NA3/5 is also susceptibility locus for COPD
 - Pillai et al. PLoS Genet 2009;5:1

Tobacco and cancer

Association Between Tobacco and All Cancer Death

Thompson B et al., MdHA On col. Published online. October 21, 2021. d ol. 10.10017amaoncol.2021.494

Smoking cessation

Effect of Smoking Cessation on Lung Cancer Deaths

Lung Health Study, 14.5 yr F/U

Pathology: NSCLC

Pathology: Non-small Cell Lung Cancer

- Adenocarcinoma, inc bronchoalveolar
 40%
- Squamous cell carcinoma - 20%
- Large cell carcinoma – 15%
- Others (carcinoid, etc.)

Lung carcinogenesis

The Continuum of Lung Carcinogenesis Opportunities for Intervention

Treatment Strategies for Lung Cancer

- Treatment based on stage:
 - Early stage (Stage I) surgery
 - Early stage (Stage II, IIIA resected)-surgery + adjuvant chemo
 - Regional spread (IIIA/IIIB) combined modality (chemoradiation; +/- surgery for IIIA)
 - Metastatic (IIIB "wet"/IV)- chemotherapy, radiation as needed for local control, occasional resection of isolated metastases
- Small cell lung cancer: chemotherapy (+thoracic radiation for limited stage; prophylactic cranial radiation to prevent brain mets)

Treatment options

Treatment Options for Metastatic NSCLC

- Chemotherapy
 - Platinum doublets, iv
 - Adjuvant, metastatic disease
 - Still a mainstay of treatment
- Targeted therapy
 - For minority of patients with targetable mutations
 - Oral therapies, better tolerance
 - Extended survival
- Immunotherapy
 - Now a definitive role, frontline and second line

Personalizing Therapy for NSCLC

Personalizing Therapy for NSCLC Genetic Abnormalities in Lung Adenocarcinoma

Targetable mutations/gene fusions

- EGFR
 - multiple drugs
- ALK
 - multiple drugs
- ROS1
 - crizotinib
 DDAE V600E
- BRAF-V600E only
 - dabrafenib/trametinib
- RET
 - Experimental drugs (BLU-667)
- NTRK
 - larotrectinib
- MET ex 14 skipping

 crizotinib
- HER2/Neu exon 20 mutations
 HER2 antibodies + chemo

*Response rates 50-80%

Berge and Doebele Sem Oncol 2014; Hunter et al. Nature 2004; Heinmoller P et al. Clin Cancer Res 2003; Drilon A et al. JCO 2016 suppl; Drilon A NEJM 2018

EGFR and NSCLC

EGFR as a Target for NSCLC

- Epidermal growth factor receptor (EGFR) mutated in ~15% NSCLC
- Oncogenic driver; primarily in non-smokers
- Targeted therapies tyrosine kinase inhibitors (TKIs) highly active
 - 60-80% response rates EGFR-MT disease
 - Progression-free survival 10-14 months (c/w chemo 4-6 months)
 - Median survival 30 vs. 24 months with chemo
 - Maem ando et al N Eng J Med 2010;362/2380
- Multiple TKIs approved for frontline use; 3rd generation TKI (osimertinib) superior
- Mechanisms of resistance well understood (T790M; osimertinib)

Osimertinib

Osimertinib in Chemotherapy-naïve Patients

New Approaches-Immunotherapy

New Approaches - Immunotherapy

- PD-1
 - T-cell co-inhibitory receptor, regulates T-cell activation
 - Main role: to limit activity of T cells in peripheral tissues during inflammatory response to infection and to limit autoimmunity
 - ligands PD-L1 (frequently expressed on tumors) and PD-L2
 - Blockade of PD-L1/PD-1 interaction potentiates immune response (to tumor)

Pardoll D Nat Rev Cancer 2012;12:252

Immunotherapy

Immunotherapy

- Anti-PD-1 or PD-L1 antibodies approved for frontline NSCLC, second line Rx, in combination with chemo (frontline), and maintenance post-chemoradiation
 - Tail of the survival curves suggests long term benefit for minority of patients

Frontline treatment

Second line treatment

Reck Met al NBJM 2016;375:1823-1833 Brahmer J et al NBJM 2015;373:123-135

Clinical approach

Approach to the Patient with Metastatic NSCLC

NSCLC mortality

\downarrow Mortality from NSCLC with Improved Therapy

Mortality decreased faster than incidence

- 2008-2016 -Incidence 13.1% annually (men)
- Lung cancer specific survival improved from 26% to 35% from 2001 to 2016
- Similar in women, across all races/ethnic groups
- For SCLC, decreased mortality was same as decreased incidence
- Conclusion: treatment advances (esp. targeted therapies) responsible

Howlader N et al., NEJM 2020 383:640

Approaches to reducing cancer morbidity and mortality

- Prevention (primary, secondary, tertiary)
- Early detection

• Better therapeutics

Lung carcinogenesis

The Continuum of Lung Carcinogenesis Opportunities for Intervention

Cancer Chemoprevention

- The use of natural or synthetic agents to suppress or reverse carcinogenesis
 - Regress existing neoplastic lesions (treat intraepithelial neoplasia)
 - Prevent development of new neoplastic lesions (preneoplastic and cancer)
 - Suppress recurrence of neoplastic lesions

Lung Cancer Prevention

Rationale for Lung Cancer Prevention

- Metastatic cancer is rarely curable
 - US lung cancer 5 yr survival is ~15% (5% 1950's, 13% 1970's)
- Cancer is preventable
 - P1, STAR breast cancer prevention trials with tamoxifen and raloxifene
 - Fisher B et al., JNCI 1998;190:1371; Vogel, VG et al., JAMA 2006;295:2727
 - Multiple animal studies with multiple agents
- Long preclinical phase with increasing histologic and molecular abnormalities, identifiable populations at risk

Lung premalignancy

Evolution of Lung Premalignancy

Premalignant squamous lesions

Premalignant Squamous Lesions Bronchial Dysplasia – precursor and risk marker

- 164 pts. with low or high-grade lesions
 - 33.5% developed invasive cancer, median 16.5 mths
 - 41% cancers developed from abnormal site, 59% from other sites (central or peripheral)
 - High grade lesions assoc with cancer; COPD and prior hx lung ca assoc with OS
- Bronchial dysplasia both precursor and risk marker for abnormal field

Van Boerdonk et al., Am J Respir Crit Care Med 2015;192:1483

Atypical adenomatous hyperplasia

Adenocarcinoma Precursor: Atypical Adenomatous Hyperplasia (AAH)

- Natural history not well understood
- Localized ground glass opacities on CT:
 - AAH 25%; bronchoalveolar ca 50%; invasive adenoca 10%; fibrosis 15%
 - Nakajima et al., J Comput Assist Tomogr 2002;26:323
 - AAH 63%; bronchoalveolar ca 34%; scar 3%
 - Ohtsuka et al., Eur J Cardio-Thor Surg 2006;30:160

Non-solid nodules

Non-Solid Nodules – Natural History

- Prospective trial, 795 patients with 1229 subsolid nodules (GGNs, <3cm, solid component <5 mm)
 - f/u 4.3<u>+</u>2.5 years
 - 1046 pure GGN \rightarrow 5.4% became part solid
 - 81 heterogeneous GGN \rightarrow 19.8% became part solid
 - Resected nodules (in 80 patients)
 - 35/997 pure GGNs (9 MIA, 21 AIS, 5 AAH)
 - 7/78 heterogeneous GGNs (5 MIA, 2 AIS)
 - 49/174 part solidGGNs (12 invasive, 26 MIA, 10 AIS, 1 AAH)
 - 1% of all nodules became invasive cancer (all were part solid)
 - 3.3% became MIA, 2.7%AIS, 0.5%AAH

Kakinuma et al., J Thor Oncol 2016;11:1012

Targeting inflammation

Targeting Inflammation for Lung Cancer Prevention: Rationale

- Animal data showing role for steroids in cancer prevention
 - 1970's skin
 - Early 1990's lung (oral steroids)
 - Late 1990's lung (inhaled steroids)
- Epidemiology/Human data
 - Mainly negative (but studies of short exposure duration)
 - VA cohort with COPD (n=10,474) HR 0.39 (95% CI, 0.16-0.96)
 - Parimon T et al., AJRCCM 175:712, 2007

Phase IIb budesonide trial

DCP Phase IIb Trial of Inhaled Budesonide in Bronchial Dysplasia

Lam et al., Clin Cancer Res 2004;10:6502

Bronchial dysplasia

Phase IIb Trial of Inhaled Budesonide in Bronchial Dysplasia

- Bronchial dysplasia no effect of 6 mth Rx
- CT-detected lung nodules 27% vs. 12% resolved (p=0.024)

Chemoprevention trial. Phase IIb Trial

Peripheral Lung Carcinogenesis Trial Design Phase IIb Budesonide Chemoprevention Trial

202 participants with persistent LD-CT-detected peripheral nodules

Primary endpoint: shrinkage of lung nodules

-Veronesi et al., Cancer Prev Res 2011;4:34-42

Chemoprevention Trial

Phase IIb Budesonide Chemoprevention Trial Lesion Specific Analysis

-Overall response negative, but trend toward regression in nonsolid lesions (putative precursors of adenocarcinoma)

> Veronesi et al., Cancer Prev Res 2011;4:34-42 Veronesi et al., Ann Oncol 2015;26:1025-30

Aspirin and Mortality

Effect of Aspirin on Lung Cancer Mortality -Rothwell et al., Lancet 2011;377:31

-individual patient data from trials of ASA vs. none

-lung	•	
f/u	0-10 yrs	0-20 yrs
HR	0.68	0.71
(0.50-0.92, p=0.01)		(0.58-0.89, p=0.002)

-adenocarcinoma only-benefit only after 5 yrs

Phase II Trial

A Randomized Phase II Trial of Low Dose Aspirin versus Placebo in High-Risk Individuals with CT Screen Detected Subsolid Lung Nodules Pls: Giulia Veronesi, MD and Bernardo Bonanni, MD; IEO

1° Endpoint: #/Size semisolid lung nodules
 2° Endpoints: COX/LOX urinary metabolites (hs-CRP, PGEM, LTE4), miRNA signature, nodule-based endpoints

Accrual as of October 15, 2015: 47 participants

Aspirin trial

Phase II Trial of Low Dose Aspirin Trial

-98 participants randomized -no difference in nodule size, new nodules -no differences by sex, smoking status -underpowered to detect differences in new cancers

Biomarkers

Biomarker Aspirin Chemoprevention Trials Linda Garland, University of Arizona

1° Endpoint: smoking gene expression signature (nasal epithelium) 2° Endpoint: PI3K gene expression signature, lung cancer gene expression Signature, COX/LOX urinary metabolites (PGEM, LTE4)

Aspirin

Minimal Effects of Continuous vs. Intermittent Aspirin on Nasal Smoking Gene Signature Score

Garland LL et al. Cancer Prev Res 2019;12:809-820

Aspirin and zileuton

Effect of Aspirin and Zileuton on Nasal Dysplasia Gene Signature Score

- Significant decrease in dysplasia gene score
- No effect on nasal smoking gene signature score
- Significant effect on lipoxygenase metabolism (LTE4)
- Minimal effect on cyclooxygenase metabolism
 - PGEM borderline suppressed (p=0.07)

-unpublished

Cancer Immunoprevention

Cancer Immunoprevention: Potential for prevention of multiple cancers

Nature Reviews | Immunology

MUC1

MUC1

- Human tumor-associated antigen discovered in 1989
- Expressed on all human adenocarcinomas
- Differentially glycosylated compared to normal cells
 - –particularly VNTR region
- Cancer therapy target; may be more immunogenic at preinvasive stage
 - Highly expressed in many premalignancies

Courtesy of Olja Finn and Paul Limburg

MUC1 vaccine

MUC1 Vaccine in Patients with Newly Diagnosed Advanced Colorectal Adenomas (O. Finn Vaccine)

Trial overview

- Age 40-70 years; recent advanced colorectal adenoma
- MUCl vaccine vs. placebo at weeks 0, 2, 10 (Part I) and 53 (Part II)
- Primary endpoint: △MUC1 IgG level at week 12 vs. week 0
- Secondary endpoints: △MUC1 IgG level at week 55 v s. week 53; adenoma recurrence at up to week 156

Results

- 102 participants evaluable (MUC1 n=52; placebo n=50)
- 2-fold IgG↑ (=response) in 25% MUC1
- Response correlated with low baseline PMN-MDSC levels (p=.000.)
- Adenoma recurrence 138% in responders (not intent-to-treat)
- Ongoing immunogenicity study in heavy smokers undergoing CT screening

Schoen RE, P Limburg & D Finn, personal communications I No. 1 Contra

Metformin

Metformin

- Cancer incidence literature mixed and affected by multiple confounders and time-related biases
- DCP meta-analysis, RR=0.69, 95%CI, 0.52-0.90
 - Correction for BMI or time-related biases reduced RR to 0.82 and 0.90, respectively

Endpoints	Groups	SRR (95%CI)	12	n studies*
Cancerincidence	Allstudies	0.69 (052, 090)	88	19
	Adjusted for BMI	082 (0.70, 096)	76	11
	Adjusted for time related bias	090 (029, 091)	56	8
	Prospective studies	0.71 (0.47, 1.07)	89	12
	Randomized Clinical Trials	0.95 (0.69, 1.30)	5	5
Cancer mortality	Allstudies	0.66 (054, 081)	21	7
	Adjusted for BMI	0.60 (0.45, 0.80)	0	5
	Adjusted for time related bias	0.45 (016, 1.26)	0	3
	Prospective studies	0.48 (0.23, 0.97)	0	4

Gandini S et al. Cancer Prev Res 2014;7:867

Metformin Trial

Phase IIa Metformin Trial in Oral Leukoplakia

Obesity

Visceral Obesity Promotes Lung Cancer Progression and an Immune Suppressive Tumor Microenvironment

- Obesity affects TME
 - Effector cell deficits, exhausted phenotypes
 - ↑ Tregs, MDSCs, activated phenotypes
- Metformin assoc with OS in stage I pts. with high BMI
- Metformin reverses obesity effects in mice

Vendamuri S et al. J Thor Oncol 2019;14:2181 Barbie J et al. J Thor Oncol 2021;16:1333

Metformin

Intervention

The Continuum of Lung Carcinogenesis Opportunities for Intervention

Lung Cancer Screening

Issues in Lung Cancer Screening

- Lead-time bias = earlier diagnosis but no postponement of death (survival appears longer)
- Length bias = diagnosis of more indolent disease with longer preclinical phase (better prognosis, better outcome)
- Overdiagnosis = identification of clinically unimportant lesions that would not be diagnosed otherwise
- Morbidity/mortality/cost of screening and subsequent work-up

PLCO Trial

PLCO CXR Randomized Trial - Mortality

154,901 participants, PA CXR vs. usual care x 4 screens, 13 yr f/u

Oken, MM et al. JAMA 2011;306:1865-73

NLST (National Lung Screening Trial)

- NLST design
 - 53,454 smokers (current and former)
 - − 30 pack-yr smoking hx; quit ≤15 yrs ago
 - Age 55-74
 - Helical CT vs. chest X-ray (prevalence, then x2)
- NLST results
 - CT 24.2% 'positive' tests, 354 lung cancer deaths
 - CXR 6.9% 'positive' tests, 442 lung cancer deaths
 - 20.0% reduction in lung cancer mortality
 - 6.7% reduction in all cause mortality

NLST Research Team. N Engl J Med 2011;365:395-409

Lung Cancer and Deaths

Cumulative Lung Cancers and Deaths from Lung Cancer

NLST Research Team N Engl J Med 2011;365:395-409

CT screening

NELSON CT Screening Trial

- 13,195 men and 2594 women
- age 50-74
- Screening baseline, yr 1, yr 3, yr 5.5
- Volumetric analysis
- 10 yr follow-up
- Men: RR=0.76
- Women: RR=0.67

Summary

Summary

- Tremendous progress has been made in understanding lung carcinogenesis
 - Pathologic classification oversimplifies molecular complexity
 - Heterogeneity in tumors and premalignant lesions complicates efforts to intervene
 - Precision medicine applicable to significant (but small) subset of advanced stage patients, increased survival
 - Early days of immunotherapy prolonged survival in small subset of patients
 - Applications to prevention not yet clear
 - Early detection with helical CT decreased lung cancer mortality
 - New targets and tools available for chemoprevention research

"An ounce of prevention is worth a pound of cure" -Benjamin Franklin

Acknowledgments

Acknowledgments

- DCP Phase II Consortia Program
- Stephen Lam, British Columbia Cancer Agency
- Giulia Veronesi, Humanitas Cancer Institute
- European Institute of Oncology Chemoprevention Group
- Ron Lubet, DCP CADRG
- Avrum Spira, Boston University