Treatment Clinical Trials for Esophageal Cancer

Clinical trials are research studies that involve people. The clinical trials on this list are for esophageal cancer treatment. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 76-77 of 77

  • Pulsed Low Dose Radiation Therapy and Chemotherapy in Reducing the Rates of Severe Acute Esophagitis in Patients with Stage IIIA Non-small Cell Lung Cancer and Stage IB-IIIC Esophageal Cancer

    This phase I trial studies how well pulsed low dose radiation therapy and chemotherapy work in reducing the rates of severe acute esophagitis in patients with stage IIIA non-small cell lung cancer and stage IB-IIIC esophageal cancer. Pulsed low dose rate radiation therapy uses short pulses to deliver low doses of radiation for extended times and may reduce the rate of severe acute esophagitis in patients with lung and esophageal cancer.
    Location: Fox Chase Cancer Center, Philadelphia, Pennsylvania

  • Adjuvant Tumor Lysate Vaccine and Iscomatrix With or Without Metronomic Oral Cyclophosphamide and Celecoxib in Patients With Malignancies Involving Lungs, Esophagus, Pleura, or Mediastinum

    Background: During recent years, cancer-testis (CT) antigens (CTA), particularly those encoded by genes on the X chromosome (CT-X genes), have emerged as attractive targets for cancer immunotherapy. Whereas malignancies of diverse histologies express a variety of CTAs, immune responses to these proteins appear uncommon in cancer patients, possibly due to low-level, heterogeneous antigen expression, as well as immunosuppressive regulatory T cells present within tumor sites and systemic circulation of these individuals. Conceivably, vaccination of cancer patients with tumor cells expressing high levels of CTAs in combination with regimens that deplete or inhibit T regulatory cells will induce broad immunity to these antigens. In order to examine this issue, patients with primary lung and esophageal cancers, pleural mesotheliomas, thoracic sarcomas, thymic neoplasms and mediastinal germ cell tumors, as well as sarcomas, melanomas, germ cell tumors, or epithelial malignancies metastatic to lungs, pleura or mediastinum with no evidence of disease (NED) or minimal residual disease (MRD) following standard multidisciplinary therapy will be vaccinated with H1299 tumor cell lysates with Iscomatrix adjuvant. Vaccines will be administered with or without metronomic oral cyclophosphamide (50 mg PO BID x 7d q 14d), and celecoxib (400 mg PO BID). Serologic responses to a variety of recombinant CTAs as well as immunologic responses to autologous tumor or epigenetically modified autologous EBVtransformed lymphocytes will be assessed before and after a six month vaccination period. Primary Objectives: 1. To assess the frequency of immunologic responses to CTAs in patients with thoracic malignancies following vaccinations with H1299 cell lysate / Iscomatrix(TM) vaccines alone in comparison to patients with thoracic malignancies following vaccinations with H1299 cell lysate / Iscomatrix vaccines in combination with metronomic cyclophosphamide and celecoxib. Secondary Objectives: 1. To examine if oral metronomic cyclophosphamide and celecoxib therapy diminishes the number and percentage of T regulatory cells and diminishes activity of these cells in patients with thoracic malignancies are at risk of recurrence. 2. To examine if H1299 cell lysate / Iscomatrix(TM) vaccination enhances immunologic response to autologous tumor or epigenetically modified autologous EBV-transformed lymphocytes (B cells). Eligibility: - Patients with histologically or cytologically proven small cell or non-small cell lung cancer (SCLC;NSCLC), esophageal cancer (EsC), malignant pleural mesothelioma (MPM) , thymic or mediastinal germ cell tumors, thoracic sarcomas, or melanomas, sarcomas, or epithelial malignancies metastatic to lungs, pleura or mediastinum who have no clinical evidence of active disease (NED), or minimal residual disease (MRD) not readily accessible by non-invasive biopsy or resection / radiation following standard therapy completed within the past 26 weeks. - Patients must be 18 years or older with an ECOG performance status of 0 2. - Patients must have adequate bone marrow, kidney, liver, lung and cardiac function. - Patients may not be on systemic immunosuppressive medications at time vaccinations commence. Design: - Following recovery from surgery, chemotherapy, or chemo / XRT, patients with NED or MRD will be vaccinated via IM injection with H1299 cell lysates and Iscomatrix(TM) adjuvant monthly for 6 months. - Vaccines will be administered with or without with metronomic oral cyclophosphamide and celecoxib. - Systemic toxicities and immunologic response to therapy will be recorded. Pre and post vaccination serologic and cell mediated responses to a standard panel of CT antigens as well as autologous tumor cells (if available) and EBV-transformed lymphocytes will be assessed before and after vaccination. - Numbers / percentages and function of T regulatory cells in peripheral blood will be assessed before, during, and after vaccinations. - Patients will be followed in the clinic with routine staging scans until disease recurrence. - The trial will randomize 28 evaluable patients per arm to either receive vaccine alone or vaccine plus chemotherapy in order to have 80% power to determine if the frequency of immune responses on the combination arm exceeds that of the vaccine alone arm, if the expected frequencies of immune responses on the two arms were 20% and 50%, using a one-sided 0.10 alpha level Fisher s exact
    Location: National Institutes of Health Clinical Center, Bethesda, Maryland