Treatment Clinical Trials for Myelodysplastic/Myeloproliferative Disease

Clinical trials are research studies that involve people. The clinical trials on this list are for myelodysplastic/myeloproliferative disease treatment. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 51-75 of 84

  • Glutaminase Inhibitor CB-839 and Azacitidine in Treating Patients with Advanced Myelodysplastic Syndrome

    This phase I / II trial studies the side effects of glutaminase inhibitor CB-839 in combination with azacitidine in treating patients with myelodysplastic syndrome that has spread to other places in the body. Glutaminase inhibitor CB-839 and azacitidine may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Regorafenib in Treating Patients with Relapsed or Refractory, Advanced Myeloid Malignancies

    This phase I trial studies the side effects and best dose of regorafenib in treating patients with myeloid malignancies that have spread to other places in the body and have come back or do not respond to treatment. Regorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
    Location: Massachusetts General Hospital Cancer Center, Boston, Massachusetts

  • Engineered Donor Stem Cell Transplant in Treating Patients with Hematologic Malignancies

    This pilot phase I trial studies the side effects of engineered donor stem cell transplant in treating patients with hematologic malignancies. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Using T cells specially selected from donor blood in the laboratory for transplant may stop this from happening.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Partially HLA-Mismatched Related Donor Stem Cell Transplant Using Killer Immunoglobulin Receptor and Human Leukocyte Antigen Based Donor Selection in Treating Patients with Hematologic Malignancies

    This pilot clinical trial studies how well partially human leukocyte antigen (HLA)-mismatched related donor stem cell transplant using killer immunoglobulin receptor or HLA based donor selection works in treating patients with hematologic malignancies. Partially mismatched donor stem cells may reduce the risk of cancer recurring after transplant.
    Location: Memorial Sloan Kettering Cancer Center, New York, New York

  • Busulfan, Fludarabine Phosphate, and Post-Transplant Cyclophosphamide in Treating Patients with Blood Cancer Undergoing Donor Stem Cell Transplant

    This phase II trial studies the side effect of busulfan, fludarabine phosphate, and post-transplant cyclophosphamide in treating patients with blood cancer undergoing donor stem cell transplant. Drugs used in chemotherapy, such as busulfan, fludarabine phosphate and cyclophosphamide work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy such as busulfan and fludarabine phosphate before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving cyclophosphamide after the transplant may stop this from happening. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Pharmacological Study of Intravenous OTS167 in Patients With Refractory or Relapsed Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Advanced Myelodysplastic Syndromes, Advanced Myeloproliferative Neoplastic Disorders, or Advanced Chronic Myelogenous Leukemia

    The purpose of Phase I of this study is to test the safety and tolerability of the investigational drug, OTS167, and that of Phase II of this study is to confirm the potential response benefit of OTS167. OTS167 is a maternal embryonic leucine zipper kinase (MELK) inhibitor which demonstrated antitumor properties in laboratory tests. It is being developed as an anti-cancer drug. In this study OTS167 will be administrated to patients with AML, ALL, advanced MDSs, advanced MPNs, or advanced CML.
    Location: University of Chicago Comprehensive Cancer Center, Chicago, Illinois

  • Blinatumomab and T Cell Depleted Donor Blood Cell Transplant in Treating Younger Patients with Relapsed or Refractory Hematologic Malignancy after a Previous Transplant

    This phase II trial studies how well blinatumomab and T cell depleted donor blood cell transplant work in treating children and young adults with hematologic cancer that has not responded or has come back after a previous transplant. White blood cells from donors may be able to kill cancer cells in patients with hematologic cancer. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Removing the T cells from the donor cells before the transplant may stop this from happening. Monoclonal antibodies, such as blinatumomab, may interfere with the ability of cancer cells to grow and spread. Giving blinatumomab after a blood cell transplant may destroy any remaining cancer cells.
    Location: St. Jude Children's Research Hospital, Memphis, Tennessee

  • Personalized NK Cell Therapy after Chemotherapy and Cord Blood Transplant in Treating Patients with Myelodysplastic Syndrome, Leukemia, Lymphoma or Multiple Myeloma

    This phase II clinical trial studies how well personalized natural killer (NK) cell therapy works after chemotherapy and umbilical cord blood transplant in treating patients with myelodysplastic syndrome, leukemia, lymphoma or multiple myeloma. This clinical trial will test cord blood (CB) selection for human leukocyte antigen (HLA)-C1 / x recipients based on HLA-killer-cell immunoglobulin-like receptor (KIR) typing, and adoptive therapy with CB-derived NK cells for HLA-C2 / C2 patients. Natural killer cells may kill tumor cells that remain in the body after chemotherapy treatment and lessen the risk of graft versus host disease after cord blood transplant.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Cyclophosphamide, Fludarabine Phosphate, and Total-Body Irradiation with or without Anti-Thymocyte Globulin before Donor Umbilical Cord Blood Transplant in Treating Patients with Hematologic Cancer

    This phase II trial studies the side effects of cyclophosphamide, fludarabine phosphate, and total-body irradiation with or without anti-thymocyte globulin before donor umbilical cord blood transplant and to see how well they work in treating patients with hematologic cancer. Giving chemotherapy and total-body irradiation before donor umbilical cord blood transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving sirolimus and mycophenolate mofetil before and after the transplant may stop this from happening.
    Location: University of Minnesota / Masonic Cancer Center, Minneapolis, Minnesota

  • Fludarabine, Cyclophosphamide, and Total-Body Irradiation before Donor Stem Cell Transplant in Treating Patients with Blood Diseases

    This phase II trial studies how well fludarabine, cyclophosphamide, and total-body irradiation before donor stem cell transplant work in treating patients with blood diseases. Giving chemotherapy, such as fludarabine and cyclophosphamide, and total-body irradiation before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient’s immune cells and help destroy any remaining cancer cells.
    Location: University of Minnesota / Masonic Cancer Center, Minneapolis, Minnesota

  • Hu8F4 in Treating Patients with Advanced Hematologic Malignancies

    This phase I trial studies the side effects and best dose of anti-PR1 / HLA-A2 monoclonal antibody Hu8F4 (Hu8F4) in treating patients with malignancies related to the blood (hematologic). Monoclonal antibodies, such as anti-PR1 / HLA-A2 monoclonal antibody Hu8F4, may interfere with the ability of cancer cells to grow and spread.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Genetically Modified Donor Stem Cell Transplant Followed by Zoledronic Acid in Treating Younger Patients with Relapsed / Refractory Hematologic Malignancies or High Risk Solid Tumors

    This phase I trial studies the side effects of zoledronic acid given after genetically modified donor stem cell transplant in treating younger patients with hematologic malignancies or high risk tumors that have returned after a period of improvement (relapsed) or do not respond to treatment (refractory). Giving chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When healthy stem cells from a donor that have been genetically modified are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving mycophenolate mofetil and tacrolimus after the transplant may stop this from happening. Giving zoledronic acid after the transplant may help strengthen the immune system and make the immune cells work better.
    Location: University of Wisconsin Hospital and Clinics, Madison, Wisconsin

  • Nivolumab and Azacitidine with or without Ipilimumab in Treating Patients with Refractory / Relapsed or Newly Diagnosed Acute Myeloid Leukemia

    This phase II trial studies the side effects and best dose of nivolumab and azacitidine with or without ipilimumab when given together and to see how well they work in treating patients with acute myeloid leukemia that has not responded to previous treatment or has returned after a period of improvement or is newly diagnosed. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nivolumab, azacitidine and ipilimumab may kill more cancer cells.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Ruxolitinib Phosphate and Decitabine in Treating Patients with Relapsed or Refractory or Post Myeloproliferative Acute Myeloid Leukemia

    This phase I / II trial studies the side effects and best dose of ruxolitinib phosphate when given together with decitabine and to see how well they work in treating patients with acute myeloid leukemia that has come back or is not responding to treatment, or has developed from a type of bone marrow diseases called myeloproliferative neoplasms. Ruxolitinib phosphate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ruxolitinib phosphate together with decitabine may be an effective treatment for acute myeloid leukemia.
    Location: M D Anderson Cancer Center, Houston, Texas

  • CD34+ Stem Cell Selection in Preventing Graft-Versus-Host Disease in Younger Patients with Malignant Disease Undergoing Donor Stem Cell Transplant

    This phase I / II trial studies cluster of differentiation 34 positive (CD34+) stem cell selection in preventing graft-versus-host-disease (GVHD) in younger patients with malignant disease undergoing donor stem cell transplant. Selected CD34+ stem cell may help stop the patient's immune system from rejecting the donor's stem cells and prevent GVHD.
    Location: NYP / Columbia University Medical Center / Herbert Irving Comprehensive Cancer Center, New York, New York

  • Donor Natural Killer Cells and Donor Stem Cell Transplant in Treating Patients with High Risk Myeloid Malignancies

    This phase I / II trial studies the side effects and best dose of donor natural killer cells when given together with donor stem cell transplant and to see how well they work in treating patients with myeloid malignancies that are likely to come back or spread. Giving chemotherapy, such as busulfan and fludarabine phosphate, before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Chemotherapy in Treating Patients with Myelodysplastic Syndrome before Donor Stem Cell Transplant

    This randomized clinical trial studies different chemotherapies in treating patients with myelodysplastic syndrome before donor stem cell transplant. Giving chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells, and may prevent the myelodysplastic syndrome from coming back after the transplant. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.
    Location: Fred Hutch / University of Washington Cancer Consortium, Seattle, Washington

  • Ruxolitinib Phosphate and Azacytidine in Treating Patients with Myelofibrosis or Myelodysplastic Syndrome / Myeloproliferative Neoplasm

    This phase II trial studies how well ruxolitinib phosphate and azacytidine work in treating patients with myelofibrosis or myelodysplastic syndrome / myeloproliferative neoplasm. Ruxolitinib phosphate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacytidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ruxolitinib phosphate and azacytidine may be an effective treatment for myelofibrosis or myelodysplastic syndrome / myeloproliferative neoplasm.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Reduced-Intensity Conditioning before Donor Stem Cell Transplant in Treating Patients with High-Risk Hematologic Malignancies

    This phase II trial studies reduced-intensity conditioning before donor stem cell transplant in treating patients with high-risk hematologic malignancies. Giving low-doses of chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient’s immune system from rejecting the donor’s stem cells. The donated stem cells may replace the patient’s immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor’s T cells (donor lymphocyte infusion) before the transplant may help increase this effect.
    Location: Thomas Jefferson University Hospital, Philadelphia, Pennsylvania

  • Sotatercept in Treating Patients with Myeloproliferative Neoplasm-Associated Myelofibrosis or Anemia

    This phase II trial studies the side effects of and how well sotatercept works in treating patients with myeloproliferative neoplasm-associated myelofibrosis or anemia. Sotatercept may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Cyclophosphamide in Treating Patients with Hematological Malignancies after Undergoing Donor Stem Cell Transplant

    This clinical trial studies how well cyclophosphamide works in treating patients with cancers that begin in blood-forming tissue, such as the bone marrow, or in the cells of the immune system (hematological malignancies) after undergoing donor stem cell transplant. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving cyclophosphamide after a donor stem cell transplant may decrease the complication rate of transplant.
    Location: Thomas Jefferson University Hospital, Philadelphia, Pennsylvania

  • Low-Dose Donor Bone Marrow Transplant in Treating Patients with Hematologic Malignancies

    This phase I / II trial studies the side effects and the best way to give low-dose donor bone marrow transplant (BMT) and to see how well it works in treating patients with hematologic malignancies. Giving low-doses of chemotherapy, such as fludarabine phosphate and cyclophosphamide, before a donor bone marrow transplant helps stop the growth of cancer cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's bone marrow cells. When the healthy stem cells from a related or unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body’s normal cells (called graft-versus-host disease). Giving cyclophosphamide, tacrolimus, and mycophenolate mofetil (MMF) after transplant may stop this from happening.
    Location: Johns Hopkins University / Sidney Kimmel Cancer Center, Baltimore, Maryland

  • Disease-Specific High-Dose Conditioning Regimens in Treating Patients Undergoing T-cell Depleted Peripheral Blood Stem Cell Transplantation for Hematologic Malignancies or Other Lethal Hematologic Disorders

    This phase II trial studies how well disease-specific high-dose conditioning regimens work in treating patients undergoing T-cell depleted peripheral blood stem cell transplant for hematologic malignancies or other lethal hematologic disorders. Giving high doses of chemotherapy and total body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin and removing the T-cells from the donor cells before transplant may stop this from happening.
    Location: Memorial Sloan Kettering Cancer Center, New York, New York

  • Venetoclax and Lintuzumab-Ac225 in AML Patients

    The study is a multicenter, open label Phase I / II trial. 1. To determine the maximum tolerated dose (MTD) of lintuzumab-Ac225 added to venetoclax for patients with CD33 positive relapsed / refractory AML. (Phase 1 portion) 2. To assess the percentage of patients with CR, CRh, or Overall Response (CR + CRh), up to 6 months after the start of treatment without receiving other AML therapies. (Phase 2 portion)
    Location: UCLA / Jonsson Comprehensive Cancer Center, Los Angeles, California

  • IGF-MTX Conjugate in the Treatment of Myelodysplastic Syndrome

    The primary objective of this study is to determine the safety and tolerability of utilizing the insulin-like growth factor-1-methotrexate conjugate, 765IGF-MTX for the treatment of advanced, previously treated myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML) and oligoblastic acute myelogenous leukemia (oligoblastic AML or O-AML), including determining the maximum tolerated dose (MTD).
    Location: Mayo Clinic, Rochester, Minnesota