Introduction/Meeting Description:
The Clinical Imaging Steering Committee (CISC) meeting was held April 18-19, 2018 at NCI-Shady Grove in Rockville, MD. Attendees included clinicians and researchers with expertise in neuro-oncology and clinical imaging. Subgroup focus areas were multiparametric and radiomic assessment, pediatric neuroimaging, and implementation of advanced imaging methods. Objectives were to discuss the development of brain tumor imaging techniques and how to integrate them into clinical trials, as well as to prepare recommendations for a subsequent white paper(s).

Background:
Recent NCI neuroimaging trials have focused on predictive and prognostic biomarker development and pharmacodynamic studies. Methods range from magnetic resonance imaging (MRI) based diffusion-weighted imaging (DWI) and magnetic resonance spectroscopy (MRS), to 3′-deoxy-3′-18F-fluorothymidine positron emission tomography ([18F]FLT-PET) imaging. There is a need to increase the impact of imaging in clinical trials for patient benefit. Integration of imaging markers as an inherent part of study design is a key step to reaching this goal.

Challenges and Advances in Neuro-Oncology Subspecialties:
Neuro-oncology relies on quality imaging methods. Progress in standardization, and international collaboration has resulted in guidelines to reduce variability and improve sensitivity and specificity. Neurosurgery’s critical role is to remove a maximal amount of tumor while preserving function. Quantitative image guided methods are key to advance tailored therapy, localize deep lesions, and provide therapeutic delivery to the brain. Neurosurgery can provide validation of novel technologies and help distinguish tumor recurrence versus pseudoprogression. Similarly, intraoperative CT and MRI have shown benefit for real-time assessment of resection and reduction in brain shift, but need optimization to reduce cost and improve efficiency. The multi-modal nature of radiation oncology holds promise to selectively treat tumor. Goals are to reduce radiation risk to healthy tissue, improve methodology, and focus on patient well-being. Ultrasound, fluorescence, and photon imaging are viable, yet will require further study. The committee also discussed the need to collaborate with clinicians and researchers and to have CISC members advocate for committee interests.

RANO/BTIP
RANO (Response Assessment for Neuro-Oncology) expands on prior response criteria, with the inclusion of non-enhancing tumors, T2/FLAIR, psuedoprogression, and a requirement for response confirmation. FLAIR has been challenging to quantify and characterize, raising questions about its inclusion in future studies. Immunotherapy-RANO (iRANO) was developed in response to RANO’s miscategorization of pseudoprogression in patients undergoing immunotherapy, which resulted in patients being prematurely removed from study. Consultation with the FDA highlighted standardization issues and led to the development of Brain Tumor Imaging Protocol (BTIP), now required by NCI CIP and CTEP for new studies.
Standardization is important for reducing variability caused by protocol differences and contrast timing. BTIP focuses on synergy and compatibility in clinical MRI protocols to maximize compliance and data quality and is now integrated in most new malignant glioma trials. Movement towards automatic volumetric segmentation and feature extraction will further improve data consistency and reliability.

Current literature supports use of 3D IR-GRE (inversion recovery fast gradient echo) imaging methods due to existing Alzheimer's Disease Neuroimaging Initiative (ADNI) standards, documented accuracy, and vascular enhancement that can verify tumor angiogenesis. Debate continues over the definition and occurrence rate of pseudoprogression, especially in immunotherapy, thus emphasizing the need for consensus. Future directions include developing 1) more effective ways to differentiate non-enhancing tumors, 2) measures of clinical deterioration, 3) instruments for measuring Quality of Life (QoL), 4) guidance for steroid requirements and 5) specific criteria for low-grade gliomas. Approaches combining imaging with neuro-cognitive function, growth trajectory and clinical outcomes will best enhance characterization. Furthermore, there is a focus on relating patient symptoms to diagnostic signs of progression and applying these findings to treatment decisions.

Improved baseline diagnostics, measures for T2/FLAIR, iRANO validation, and pathology based identification of residual disease are also in the pipeline.

Utility of Advanced MR Techniques
Dynamic contrast-enhanced (DCE) MRI of the brain has been available for decades, but rarely incorporated due to a lack of standardization. Difference in parameter selection have led to significant variability in reported outcomes. American Society of Functional Neuroradiology (ASFN) recommendations have been used to guide standardization efforts and improve consistency in segmentation, lesion extraction, and post-processing. Single dose protocols with low flip angle are favorable due to low error rate and reduced need for contrast. Other key parameters are fractional tumor burden, which shows predictive value for OS, as well as repeatability, which is vital to determining statistical power/trial size. Vessel size and architecture markers may aid future assessment of prognosis and response.

Permeability is another technique requiring standardization and updating since prior Quantitative Imaging Biomarker Alliance (QIBA) guidelines published in 2012. New methods such as compressed sensing and K-trans will help improve image frequency and coverage. Use cases include target engagement/early response, surgical resection guidance, and enhanced biopsy capabilities guided by K-trans. Automation, B1 correction and a balance between progress and standardization will be necessary moving forward. Atrial spin labeling (ASL) allows assessment of the complete vascular compartment. The technique is unaffected by the blood brain barrier (BBB) and provides a direct quantifiable measure of blood flow, best used in low grade tumors. Preliminary indications show ASL can be an effective quantitative imaging biomarker.

Diffusion is useful for clinical imaging due to its sensitivity to tissue properties like cell density. Approaches include isotropic DWI, apparent diffusion coefficient (ADC), diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM) and non-Gaussian techniques. ADC can provide whole
lesion metrics, voxel-based functional diffusion, and histogram tumor segmentation. Important considerations for standardization include centralization, mitigating system bias, and site certification for scanner performance. Isotropic techniques and high b-value microstructural tumor analysis are most promising for near-future studies. Another advanced technique, 2HG imaging, can easily be used to clinically monitor treatment due to a standard 97-ms detection time, high sensitivity and specificity. Currently, challenges exist with acquisition, voxel placement, shimming, data processing, and interpretation. New protocols are improving pre-processing, thus enhancing outcome data. International Society for Magnetic Resonance in Medicine (ISMRM) also recently published methodologies for application of these methods.

PET techniques continue to emerge and markers are being widely investigated. Applications for PET include distinguishing tumor growth from necrosis and monitoring response. FLT, FDG and FDOPA exhibit complementary strengths and enhanced background ratios. FDOPA has been used to detect prostate cancer and shows promise for an amino acid agent for metabolic tumor imaging. However, FLT methodology and clinical relevance remain to be established. PET/MR is also useful for response assessment to help address unexplained variability in patient outcome and provides functional and anatomical information about the brain. Information gained on differential tumor biology can facilitate personalized therapy. Current priorities are increasing patient accrual, shortening scan time, addressing multi-modality logistics, standardization, and availability of PET tracers. Finding methods to improve cost-effectiveness, and encourage patient participation, as well as obtaining site agreement on standard PET sequences will be beneficial.

Pediatric Neuroimaging

Despite a sharp increase in knowledge of the genomics of pediatric brain tumors, the translation of this knowledge into clinical practice remains a challenge. Survival rates have been stagnant, prompting changes in treatment. Integrated genomics can aid in tumor classification as seen in medulloblastoma data showing poorer prognosis in WNT vs SHH tumors, and help guide treatment. Other efforts will focus on subgroup analysis of metastatic disease and the transition from morphological diagnosis to less invasive methods. Given the many heterogeneous tumor types requiring different imaging protocols, RAPNO (pediatric RANO) criteria needs to be expanded and should incorporate molecular subgroup analysis. Technical considerations include optimizing volume measurements, standardizing software, and incorporating advanced MR imaging metrics beyond T2 contrast.

Clinical Trial Issues/Logistics/Patient Perspective

Patients are becoming more informed on their diagnosis and treatment, requiring equal dedication and innovation from the clinical team. Standards must be developed to reduce scanner variability and establish early detection strategies. The patients are the core of the clinical trial and their perspectives and experience should be considered to minimize patient burden, improve imaging protocols, and provide necessary incentives and outcome information. Additional communication with the clinician, dedicated imaging manuals, and more timely reporting were suggested to increase site compliance, and reduce ambiguity and inconsistency in protocol language.

Emerging Metric and Radiomics

Clinically relevant metrics require robust methods, widely available software, intuitive processes that
can be readily interpreted, and timely image generation and visualization. Emerging ideas are metrics
tailored to the analysis needed, down to the lesion level. Multi-site studies analyzed with statistical
rigor are key to understanding the full potential of quantitative imaging. Radiomics fits into the
context of big data and machine learning. Efforts to move away from qualitative image interpretation
and traditional radiology reports have led to new software such as VASARI, which allows quantitative
standardization at the time of feature capture. Regional tumor texture, intensity, morphology and
prognosis, can also be determined. Similarly, a defined path of progression is desired for future
quantitative imaging biomarkers. Discussion covered the goal of increasing data availability and the
timing and methods to do so. Suggested approaches to advance methodology into clinical trials were
NCTN/NCORP supported analytics with large clinical data sets and capitalizing on deep learning and
automated techniques.

Consensus & Recommendations: (Immediate/3-5 years)
There are promising technologies that could profoundly impact diagnosis, monitoring and treatment,
but need standardization, method development and well-controlled clinical trials.

Subgroup Reports:
Implementation of Advanced Imaging Methods in Clinical Trials
- Adopt BTIP methodology in clinical trials
 - QC efforts headed by Michael Knopp
 - BTIP-centric trials to study tumor size, growth rate, and morphology as risk factors
- Obtain FDA approval of standard analysis for segmentation to encourage consistency
- Develop new PET agents, address availability and potential to identify microglial activation
- Improve standardization across all methods; apply to multi-center setting
- Reassess the validity of validation process for trial sample selection
- Find new ways to incentivize trial participation
- Implement trial designs focused on a specific diagnostic problem

Multi-Parametric and Radiomic Assessments
- Identify computational methods to extract quantitative features from radiographic images
 informative of patient/disease status, and feasible for incorporation in clinical trials
- Anticipate and address the needs of the oncologist and clinical trialists
- Balance innovation with necessity of standardization
- Refine definition of pseudoprogression within the context of iRANO criteria

Pediatric Neuroimaging
- Shorten trial completion and reporting time
- Standardize and differentiate image protocol design in clinical trials
- Create superuser group to facilitate uniform imaging practice and
dissemination across clinical imaging sites
- Incorporate latest WHO classification schemes (e.g. molecular subgroups) in protocols
- Integrate functional data and quantify long-term sequelae of treatment effects
- Include artificial intelligence and machine learning for big data analyses (short/long term)
- Develop imaging data processing pipelines for centralized processing
- Test novel molecular probes and theranostic agents

(This Executive Summary presents the consensus arising from the CISC Workshop. These
recommendations are not meant to address all clinical contexts, but rather represent priorities for
publicly funded clinical research.)
Meeting Attendees & Affiliations

Jeffrey Abrams,
M.D. Associate Director
Cancer Therapy Evaluation Program National Cancer Institute
Email: abramsj@mail.nih.gov

David Arons, J.D.
Chief Executive Officer
National Brain Tumor Society
Email: darons@braintumor.org

Daniel Barbioriak,
M.D. Professor of Radiology
Duke University Medical Center
Email: daniel.barboriak@duke.edu

Maria T. Botello-Harbaum, M.S., Ed.D.
NCI CISC Steering Committee Coordinator
The Emmes Corporation
Email: mbotello-harbaum@emmes.com

Jerrold Boxerman, M.D., Ph.D.
Ph.D. Associate Professor
Rhode Island Hospital/Brown University
Email: jboxerman@lifespan.org

Jeff Buchsbaum, M.D., Ph.D.
Medical Officer & Program Director National Cancer Institute
Email: jeff.buchsbaum@nih.gov

Kevin Camphausen, M.D.
Branch Chief/Principal Investigator National Cancer Institute
Email: camphauk@mail.nih.gov

Rafael Ceschin, Ph.D.
Assistant Professor
University of Pittsburgh
Email: Rafael.Ceschin@pitt.edu

Thomas Chenevert,
Ph.D. Professor, Radiology University of Michigan
Email: tchenev@med.umich.edu

Cynthia Davies-Venn, PhD Information Specialist
The Emmes Corporation
Email: cdaviesvenn@emmes.com

Benjamin Ellingson,
Ph.D. Associate Professor
University of California, Los Angeles
Email: BEllingson@mednet.ucla.edu

Elizabeth Gerstner,
M.D. Neuro-Oncologist
Massachusetts General Hospital
Email: egerstner@partners.org

Mark R. Gilbert, M.D.
Chief, Neuro-Oncology Branch Senior Investigator
Deputy Director, Center for Cancer Research National Cancer Institute
Email: mark.gilbert@nih.gov

Xavier Golay, Ph.D.
Professor
University College London
Email: x.golay@ucl.ac.uk

Sachin Gujar, M.B.B.S., D.A.B.R. Assistant Professor
Johns Hopkins Hospital
Johns Hopkins School of Medicine
Email: sgujar1@jhmi.edu

Lori Henderson, Ph.D.
Clinical Trials Branch National Cancer Institute
Email: hendersnlori@mail.nih

Erich Huang, Ph.D.
Mathematical Statistician
Biometric Research Branch National Cancer Institute
Email: erich.huang@nih.gov

Paula Jacobs, Ph.D.
Associate Director Molecular Imaging Branch National Cancer Institute
Email: Jacobspl@mail.nih.gov
Jayashree Kalpathy-Cramer, Ph.D. Associate Professor
Massachusetts General Hospital Harvard Medical School
Email: kalpathy@nmr.mgh.harvard.edu

Morgan Mortazavi, M.S.
Information Specialist
The Emmes Corporation
Email: mmortazavi@emmes.com

Timothy Kaufmann, M.D. Professor of Radiology Mayo Clinic
Email: kaufmann.timothy@mayo.edu

Sarah Nelson, Ph.D. Professor
University of California, San Francisco
Email: Sarah.nelson@ucsf.edu

Michael Knopp, M.D., Ph.D. Vice Chair of Research
The Ohio State University
Email: knopp.16@osu.edu

Zoltán Patay, M.D., Ph.D. iChair, Department of Diagnostic Imaging St. Jude Children's Research Hospital
Email: zoltan.patay@stjude.org

Steven Larson, M.D. Chief, Nuclear Medicine Service
Memorial Sloan Kettering Cancer Center
Email: LarsonS@mskcc.org

Tina Young Poussaint, M.D., F.A.C.R. Director of PBTC Neuroimaging Center, Professor of Radiology Boston Children’s Hospital
Email: tinayoung.poussaint@childrens.harvard.edu

Michael LeBlanc, Ph.D. Member
Fred Hutchinson Cancer Research Center
Email: mleblanc@fhcrc.org

Vijay Ramaswamy, M.D., Ph.D. Assistant Professor Hospital for Sick Children
Email: vijay.ramaswamy@sickkids.ca

Barbara LeStage, M.H.P. Member
Clinical Imaging Steering Committee National Cancer Institute Email: blestage@verizon.net

Steve Reeves, Ph.D. Program Director
Coordinating Center for Clinical Trials National Cancer Institute
Email: steven.reeves@nih.gov

Alexander Lin, Ph.D. Director, Assistant Professor
Brigham and Women’s Hospital Email: aplin@bwh.harvard.edu

Brian Rodgers, M.D. Medical Officer
Clinical Trials Branch National Cancer Institute
Email: brian.rodgers@nih.gov

Christine Liu, Ph.D. Program Director National Cancer Institute Email: christine.liu@nih.gov

Neil Rofsky, M.D. Professor and Chairman
University of Texas Southwestern Medical Center
Email: Neil.Rofsky@UTSouthwestern.edu

Parham Moftakhar, M.D. Neuroradiologist
Christiana Hospital
Email: moftakharparham@yahoo.com

Nancy Sauers, M.S. Patient Advocate
Email: njsauers@comcast.net
Lalitha Shankar, M.D., Ph.D.
Chief, Clinical Trials Branch
Cancer Imaging Program
National Cancer Institute
Email: shankarl@mail.nih.gov

Pushpa Tandon, Ph.D.
Cancer Imaging Program Director
Division of Cancer Treatment and Diagnosis National Cancer Institute
Email: tandonp@mail.nih.gov

William C. Timmer,
Ph.D. Program Director
Cancer Therapy Evaluation Program National Cancer Institute
Email: william.timmer@nih.gov

Daniel Silverman, M.D., Ph.D.
Head, Neuronuclear Imaging Section University of California, Los Angeles
Email: uclasonmdan@yahoo.com

Sridhar Vajapeyam,
Ph.D. Staff Scientist
Boston Children’s Hospital Email: sridhar.vajapeyam@childrens.harvard.edu

Gilbert Vezina,
M.D.
Neuroradiologist
Children’s National Medical Center
Email: gvezina@cnmc.org
AGENDA

DAY 1 – WEDNESDAY, APRIL 18, 2018

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM – 8:30 AM</td>
<td>Registration</td>
<td></td>
</tr>
<tr>
<td>8:30 AM – 8:40 AM</td>
<td>Welcome and Overview</td>
<td>Lalitha Shankar, MD, PhD</td>
</tr>
<tr>
<td>8:40 AM – 9:00 AM</td>
<td>Brief overview of neuroimaging in NCI Trials</td>
<td>Brian Rodgers, MD</td>
</tr>
<tr>
<td>8:50 AM – 9:00 AM</td>
<td>Biomarker Study Designs</td>
<td>Erich Huang, PhD</td>
</tr>
<tr>
<td>9:00 AM – 9:20 AM</td>
<td>Current Issues in neuro-surgery</td>
<td>Mike Vogelbaum, MD</td>
</tr>
<tr>
<td>9:20 AM – 9:40 AM</td>
<td>Current Issues in neuro-oncology</td>
<td>Mark Gilbert, MD</td>
</tr>
<tr>
<td>9:40 AM – 10:00 AM</td>
<td>Current issues in Radiation Oncology</td>
<td>Kevin Camphausen, MD</td>
</tr>
<tr>
<td>10:00 AM – 10:20 AM</td>
<td>Patient perspective</td>
<td>David Arons, JD</td>
</tr>
<tr>
<td>10:20 AM – 10:40 AM</td>
<td>Panel Discussion</td>
<td>Neil Rofsky, MD</td>
</tr>
<tr>
<td>10:40 AM – 11:00 AM</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>11:00 AM – 11:20 AM</td>
<td>RANO Updates</td>
<td>Patrick Wen, MD</td>
</tr>
<tr>
<td>11:20 AM – 12:30 PM</td>
<td>Lunch (on your own)</td>
<td></td>
</tr>
<tr>
<td>12:30 PM – 12:45 PM</td>
<td>Current Clinical Trial Issues</td>
<td>Daniel Barboriak, MD</td>
</tr>
<tr>
<td>12:45 PM – 1:00 PM</td>
<td>DSC</td>
<td>Jerrold Boxerman, MD, PhD</td>
</tr>
<tr>
<td>1:00 PM – 1:15 PM</td>
<td>Permeability</td>
<td>Daniel Barboriak, MD</td>
</tr>
</tbody>
</table>
DAY 1 – WEDNESDAY, APRIL 18, 2018 (CONTINUED)

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:15 PM – 1:30 PM</td>
<td>ASL</td>
<td>Xavier Golay, PhD</td>
</tr>
<tr>
<td>1:30 PM – 1:45 PM</td>
<td>Diffusion</td>
<td>Thomas Chenevert, PhD</td>
</tr>
<tr>
<td>1:45 PM - 2:00 PM</td>
<td>2HG Spectroscopy</td>
<td>Alexander Lin, PhD</td>
</tr>
<tr>
<td>2:00 PM – 2:30 PM</td>
<td>Panel Discussion</td>
<td>Daniel Barboriak, MD</td>
</tr>
<tr>
<td>2:30 PM – 2:50 PM</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>PET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:50 PM – 3:10 PM</td>
<td>Clinical PET (and Potential/promising PET agents)</td>
<td>Dan Silverman, MD</td>
</tr>
<tr>
<td>3:10 PM – 3:30 PM</td>
<td>PET/MR</td>
<td>Elizabeth Gerstner, MD</td>
</tr>
<tr>
<td>3:30 PM – 4:00 PM</td>
<td>Panel Discussion</td>
<td>Steven Larson, MD</td>
</tr>
<tr>
<td>Pediatric Neuroimaging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00 PM – 4:20 PM</td>
<td>Biological considerations</td>
<td>Vijay Ramaswamy, MD, PhD</td>
</tr>
<tr>
<td>4:20 PM – 4:40 PM</td>
<td>Radiological considerations</td>
<td>Tina Young Poussaint, MD, FACR</td>
</tr>
<tr>
<td>4:40 PM – 4:50 PM</td>
<td>Discussion</td>
<td></td>
</tr>
</tbody>
</table>
DAY 2 – THURSDAY, APRIL 19, 2018

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 AM – 8:45 AM</td>
<td>Welcome and summary of Day 1</td>
<td>Michael Knopp, MD, PhD</td>
</tr>
<tr>
<td>8:45 AM – 9:00 AM</td>
<td>Current State of Neuroimaging in NCTN</td>
<td>Michael Knopp, MD, PhD</td>
</tr>
<tr>
<td>9:00 AM – 9:15 AM</td>
<td>Quantitative tools for clinical trials and clinical care</td>
<td>Tim Kaufmann, MD, MS</td>
</tr>
<tr>
<td>9:15 AM – 9:30 AM</td>
<td>Emerging MR Metrics</td>
<td>Sarah Nelson, PhD</td>
</tr>
<tr>
<td>9:30 AM – 9:45 AM</td>
<td>Radiomics</td>
<td>Jayashree Kalapathy-Cramer PhD</td>
</tr>
<tr>
<td>9:45 AM – 10:10 AM</td>
<td>Panel Discussion</td>
<td>Michael Knopp, MD, PhD</td>
</tr>
<tr>
<td>10:10 AM-10:20 AM</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>10:20 AM -10:50 AM</td>
<td>Implementation of advanced imaging methods in trials</td>
<td>Daniel Barboriak, MD, Michael Knopp, MD, PhD</td>
</tr>
<tr>
<td>10:50 AM -11:20 AM</td>
<td>Multiparametric and Radiomic Assessments</td>
<td>Jayashree Kalapathy-Cramer PhD, Thomas Chenevert, PhD</td>
</tr>
<tr>
<td>11:20 AM -11:50 AM</td>
<td>Pediatric Neuro-oncologic imaging</td>
<td>Tina Young Poussaint, MD, FACR, Zoltán Patay, MD, PhD</td>
</tr>
<tr>
<td>11:50 AM -12:20 PM</td>
<td>Next steps, action items</td>
<td>Lalitha Shankar, MD, PhD, Daniel Barboriak, MD, Michael Knopp, MD, PhD</td>
</tr>
<tr>
<td>12:20 PM</td>
<td>Meeting Adjourns</td>
<td></td>
</tr>
</tbody>
</table>

Trial Logistics and Considerations from the core lab

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45 AM – 9:00 AM</td>
<td>Current State of Neuroimaging in NCTN</td>
<td>Michael Knopp, MD, PhD</td>
</tr>
<tr>
<td>9:00 AM – 9:15 AM</td>
<td>Quantitative tools for clinical trials and clinical care</td>
<td>Tim Kaufmann, MD, MS</td>
</tr>
<tr>
<td>9:15 AM – 9:30 AM</td>
<td>Emerging MR Metrics</td>
<td>Sarah Nelson, PhD</td>
</tr>
<tr>
<td>9:30 AM – 9:45 AM</td>
<td>Radiomics</td>
<td>Jayashree Kalapathy-Cramer PhD</td>
</tr>
<tr>
<td>9:45 AM – 10:10 AM</td>
<td>Panel Discussion</td>
<td>Michael Knopp, MD, PhD</td>
</tr>
<tr>
<td>10:10 AM-10:20 AM</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>10:20 AM -10:50 AM</td>
<td>Implementation of advanced imaging methods in trials</td>
<td>Daniel Barboriak, MD, Michael Knopp, MD, PhD</td>
</tr>
<tr>
<td>10:50 AM -11:20 AM</td>
<td>Multiparametric and Radiomic Assessments</td>
<td>Jayashree Kalapathy-Cramer PhD, Thomas Chenevert, PhD</td>
</tr>
<tr>
<td>11:20 AM -11:50 AM</td>
<td>Pediatric Neuro-oncologic imaging</td>
<td>Tina Young Poussaint, MD, FACR, Zoltán Patay, MD, PhD</td>
</tr>
<tr>
<td>11:50 AM -12:20 PM</td>
<td>Next steps, action items</td>
<td>Lalitha Shankar, MD, PhD, Daniel Barboriak, MD, Michael Knopp, MD, PhD</td>
</tr>
<tr>
<td>12:20 PM</td>
<td>Meeting Adjourns</td>
<td></td>
</tr>
</tbody>
</table>
References/Literature (To be completed by committee leadership)