
Circulating tumour DNA (ctDNA) typically constitutes 
a small proportion of an individual’s total circulating 
free DNA (cfDNA); <1% according to some studies1–3. 
However, with improving assay techniques providing 
greater levels of sensitivity, the analysis of ctDNA is 
rapidly being accepted as a reliable tool in oncology.  
In contrast to the analysis of tumour biopsy samples, 
which are not only invasive to obtain but often also do 
not fully capture tumour heterogeneity and evolution, 
the analysis of ctDNA offers a non- invasive method of 
repeatedly evaluating the genomic profile of a patient’s 
cancer. Although ctDNA is typically thought to rep-
resent DNA isolated from blood, multiple other body 
fluids, such as cerebrospinal fluid, saliva, pleural effu-
sions, urine and stool samples, can now all be used as 
sources of tumour DNA4–8. The proportion of patients 
with colorectal cancer (CRC) in whom ctDNA can be 
detected depends on the extent of tumour volume and 
ranges from 50% in those with non- metastatic disease 

to nearly 90% in patients with metastatic disease9.  
In those who have undergone curative resection, ear-
lier studies suggest that the postoperative detection of 
ctDNA ranges from 10–15% of patients with stage II 
disease to nearly 50% in those with stage IV disease9–16. 
Building on these studies, data on the potential uses  
of ctDNA are rapidly accumulating in the continuum of  
care across multiple cancers, including CRC (Fig. 1). 
However, most of these research efforts have been 
heterogeneous and involved disparate settings, assays 
and end points. Given the rapid pace of developments 
in this field and the many proposed uses of ctDNA in 
patients with CRC, an urgent need exists to identify the 
key opportunities and provide guidance towards accel-
erating the integration of ctDNA into the routine care 
of patients with CRC.

Acknowledging this heterogeneity in research 
efforts, the Colon and Rectal–Anal Task Forces of the 
United States National Cancer Institute (NCI) convened 
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this panel with the tasks of summarizing the current 
state of the field of ctDNA research in CRC, identifying 
the opportunities and defining the goals that could be 
best addressed using ctDNA, and providing guidance 
towards achieving these goals, considering issues such 
as feasibility, the challenges that are most likely to be 
encountered and the potential for clinical trials. As 
discussed earlier, the panel focused on four key clini-
cal areas in CRC care in which ctDNA could have the 
greatest potential.

Methods
A workshop was conducted under the auspices of the 
Colon and Rectal–Anal Task forces of the US NCI on 
3 June 2018 in Chicago, IL, USA, at the ASCO Annual 
Meeting (co- Chairs A.D., V.M. and S.K.). Members of 
the Task Forces, along with selected invitees, collec-
tively provided expertise in next- generation sequencing 
(NGS), ctDNA methodology and other aspects of assay 
development (S.R.H., M.D.), bioinformatics (M.D.), 
biostatistics and technical data management (Q.S., G.Y., 
F.S.O.) as well as in various subdisciplines of clinical 
care and clinical and translational research, including 
genomic medicine (S.K., R.B.C.) in CRC and patient 
advocacy. Additional invitees included select mem-
bers of the NCI, the NCI’s Cancer Therapy Evaluation 
Program and the Gastrointestinal Steering Committee. 
The attendees were split into four Working Groups, 
each with 2–3 leaders (who prepared literature reviews 
in advance of the conference): ‘Detection of Minimal 
Residual Disease’ (M.D., V.M.), ‘Management of Rectal 
Cancer’ (A.D., Y.N.Y., T.H.), ‘Monitoring Response 
to Therapy’ (J.S., K.R., R.Y.) and ‘Tracking Clonal 
Dynamics’ (S.K., R.C., C.M.). The recommendations 
developed during the thematic Working Groups were 
then discussed and voted upon individually by all mem-
bers towards the development of a consensus to recog-
nize the limitations of current knowledge and identify 
key gaps and to develop recommendations for future 
research (Box 1; TaBle 1). A summary of the recom-
mendations in each area is presented in Boxes 2–6.  
The recommendations of each Working Group were 
compiled by the group leaders and reviewed by mem-
bers of that group. A draft of the entire manuscript 
was subsequently prepared. The draft was circulated 
amongst all the authors and revised based on their 
input; an electronic voting system was used to record 
consensus prior to manuscript submission. The final 
draft of the manuscript was also reviewed by members 
of the Cancer Therapy Evaluation Program, whose 
helpful comments were then incorporated. Of note, the 
role of ctDNA as a tool for early detection of CRC was 
not part of the Workshop agenda and is not covered in 
this manuscript but has been comprehensively reviewed  
elsewhere17,18.

Technical considerations
Several factors can influence the analytical and clinical 
validity as well as the clinical utility of ctDNA- based 
assays. These factors include preanalytical variables, 
assay characteristics and the bioinformatic analysis of 
the data provided.
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Pre- analytical variables. The major challenges at the pre- 
analytical stage include the typically small proportion of 
ctDNA relative to total cfDNA, the potential for contam-
ination of samples by DNA released during immune- 
cell lysis and the labile nature of DNA (and consequent 
implications for storage and transport)19. Blood samples 
should be drawn using a large gauge diameter needle 
(≤21 G) according to established guidelines, and analysis 
should be performed on ctDNA obtained from plasma 
rather than on serum as the latter contains greater 
quantities of DNA released from immune cells during 
the clotting process20–23. Blood should be drawn into 
K2EDTA or cell- stabilizing tubes (such as Streck cfDNA 
collection tubes). Plasma isolation should be done as 
soon as possible and no later than 24 hours with K2EDTA 
(preferably within 4–6 hours) or within 2–7 days if using 
cell- stabilizing tubes, with interim storage at 4°C for the 
former and at 10–30°C for the latter20–26. The volume of 
blood drawn should be optimized according to the clin-
ical setting (for example, higher volumes of plasma (up 
to 60 ml) might be required for the detection of minimal 
residual disease (MRD) compared with attempts to eval-
uate therapy responses in the metastatic setting, in which 
5–10 ml is usually sufficient) and the analytical method 
used. Blood should be processed for the isolation of 
plasma using sequential centrifugation at progressively 
increasing speeds (800–1,600 g) at 4°C or through fil-
tration followed by immediate deep freezing (typically 
at –80°C)20–22. Immune cells obtained from the buffy 
coat layer can be used as a source of DNA for assess-
ment of mutations as originating from the germ line 

and/or clonal haematopoiesis of indeterminate potential 
(CHIP)27,28. Although rapid freezing of plasma samples 
does not affect subsequent DNA yield, unspun blood 
must not be frozen (to avoid immune- cell lysis) nor 
should plasma samples be exposed to multiple freeze–
thaw cycles20–26. The latter issue can easily be avoided 
by aliquoting plasma into single- use tubes of an appro-
priate volume. Several methods of DNA extraction and 
purification from plasma are currently available through 
ready- to- use commercial kits. However, the DNA puri-
fication method needs to be tailored depending on 
the upstream pre- analytical and downstream analysis 
methods used20,29 (Fig. 2).

Assay characteristics. An easy (or perhaps simplistic) 
method of classifying ctDNA assay techniques would be 
based on whether they involve PCR or NGS. PCR- based 
techniques (such as Droplet Digital PCR or beads, emul-
sion, amplification, magnetics (BEAMing) techniques) 
rely on the detection of specific known mutations 
using primers that are complementary to the mutant 
sequences. This technique offers high levels of sensitivity 
(variant allele frequency (VAF) for detection of ≤0.01%), 
although it is also limited to the detection of either a sin-
gle or a small number of known mutations27. NGS- based 
techniques theoretically enable sequencing of the entire 
genome and provide an improved breadth of coverage, 
although they are typically limited to a panel of genes or 
hotspots within up to several hundred genes.

Either of the techniques discussed above can be 
tumour informed, implying that the identification 
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Fig. 1 | Clinical applications of ctDNA. Circulating tumour DNA (ctDNA) provides a more sensitive method of detecting 
malignancies than imaging or other conventional approaches. This sensitivity can be exploited in several ways: early diagnosis 
of colorectal cancer prior to the emergence of clinical or radiological manifestations and in the detection of minimal residual 
disease (MRD), defined as the detection of ctDNA with no other clinical evidence of disease recurrence in patients who have 
completed all potentially curative therapies. In patients with radiographically evident disease, ctDNA also seems to be more 
sensitive to changes in tumour burden and might assist in tailoring the intensity of therapy in the neoadjuvant setting and in 
monitoring for tumour response in patients requiring palliative treatment. Furthermore, qualitative assessments of the types 
of aberrations and their subsequent alterations might assist in assessments of tumour evolution and heterogeneity that lead 
to the emergence of resistance as well as in selection of the most appropriate therapies.
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of genomic aberrations in ctDNA can be tailored 
based on sequencing of the tumour tissue in order to 
improve sensitivity and reduce the risk of false- positive 
results related to sequencing errors and also owing to 
non- tumour- related mutations such as those arising 
from CHIP. However, this additional level of sensitiv-
ity might lead to further expense and delays related 
to sequencing of the tumour tissue; this latter issue is 
of particular importance when considering assays for 
use in the adjuvant setting, in which timely initiation 
of therapy is crucial30. Furthermore, sequencing of an 
initial biopsy sample might not necessarily capture the 
complexities of subsequent treatment- emergent muta-
tions. Sequencing errors might be difficult to distinguish 
from mutations, especially those of a low VAF (<0.01%). 
This issue might be addressable using molecular barcod-
ing of the initial DNA molecules with 10–12 random 
bases, such that the barcode is amplified and sequenced 
together with the DNA — this would enable the correc-
tion of sequencing errors by building a consensus read 
from all the reads bearing the same barcode20,23,27 (Fig. 2).

Stringent quality control must be maintained at all 
steps of the pre- analytical and analytical processes, 
the former being the most common source of errors, 
accounting for up to two- thirds of all errors made in 
clinical laboratory medicine20,31. Pre- analytical factors, 
such as the methodology and types of tubes used for 
blood draws, plasma isolation, transport and storage 
must all be carefully documented. Extracted DNA must, 
at the very least, be evaluated for DNA concentration 
(typically using either spectrometry, fluorometry or 
quantitative PCR), for contamination with genomic 
DNA from lysed immune cells (using electrophoresis or 
PCR involving amplicons of different lengths building 
on the longer lengths of cfDNA) and for DNA integrity 

(by assessing for the level of fragmentation) in order to 
ensure optimal subsequent sequencing performance20.

Bioinformatics analysis. This step focuses mainly on 
variant detection and calling, with a focus on differen-
tiating mutations from background sequencing and/or  
PCR errors. As discussed above, molecular barcod-
ing addresses this issue to a great extent; care should 
be taken, however, to ensure that the bioinformatics 
pipeline is adapted to process molecular tags. Variants 
might also be evaluated against a background error rate 
(computed from a reference set or from the sample being 
analysed). The error rate can be averaged over the entire 
sequence or calculated per base in addition to the ability 
to account for the different types of aberrations (such as 
base substitutions, transitions, transversions, insertions 
and deletions). The bioinformatics pipeline might also be 
informed by data from germline and/or tumour sequenc-
ing. The eventual bioinformatics pipeline chosen should 
be dependent upon the characteristics of the library, 
sequencing methods and proposed clinical application32.

Establishing validity and utility. Obstacles to estab-
lishing analytical validity include inter- assay variabil-
ity in the level of genomic coverage (in terms of both 
depth and breadth), assay methodology and a lack of 
an established standard for comparisons. These factors 
are discussed previously, in addition to inconsistent pre- 
analytical variables. Although the detection of genomic 
variants in tumour tissue has often been used to establish 
the analytical validity of ctDNA- based assays, temporal, 
inter- tumoural and intra- tumoural heterogeneity limit 
this approach in several settings. An alternate approach 
would be to establish samples of reference DNA with 
prespecified dilutions in an appropriate medium to 
evaluate ctDNA assays. Establishing guidelines for the 
desired level of assay coverage and/or performance for 
each clinical setting, in addition to conducting studies 
with rigorous cross- assay comparisons by independent 
groups to enable assays to be used interchangeably, is 
also imperative.

The methodology for establishing clinical valid-
ity and, more importantly, utility is dependent on the 
clinical scenario. In the detection of MRD, because 
the outcomes are binary (ctDNA detection and dis-
ease recurrence), clinical validity will likely be demon-
strated by data from prospective interventional and 
observational studies correlating ctDNA detection with 
disease- free survival (DFS), which is a well- established 
surrogate for overall survival (OS). Equally crucially, 
these studies will also interrogate the clinical validity of 
ctDNA clearance in patients receiving adjuvant therapy, 
which is a more immediate end point, as a surrogate 
for DFS. Clinical utility for MRD will therefore likely 
be in the form of de- escalation of therapy and surveil-
lance in patients with ctDNA- negative disease and the 
converse in those with ctDNA- positive disease; this  
approach is being explored in ongoing interventional 
studies. In the metastatic setting, for patients receiving 
targeted agents based on the presence of established 
predictive biomarkers (such as RAS, BRAFV600E, HER2 
and/or microsatellite instability (MSI)), determining the 

Box 1 | Recommendations to address barriers to integration of ctDNA into 
CRC care

Inconsistent pre- analytical variables
•	Standardization of pre- analytical variables across trials, including a common 

methodology for blood collection, plasma separation storage, transport and DNA 
extraction

•	Development of a readily available and uniform standard of practices template for 
blood draws, plasma isolation and storage for easy integration into planned and 
ongoing trial protocols

Variability in ctDNA assays being used
•	establish a minimum set of standards for each setting, including platform methodology, 

breadth and depth of coverage, analytical validity, turnaround time and costs

Difficulty in establishing clinical utility and validity
•	Proactive discussions and collaborations with researchers, regulatory agencies and 

pharmaceutical companies to identify key end points for prospective and retrospective 
studies and to discuss the most relevant approval and/or regulatory hurdles

•	establishment of collaborative databases to enable high- quality meta- analyses  
and pooled data analyses

Lack of clinical adoption
•	education of patients, clinicians, payers and other key stakeholders to address issues 

such as uptake and reimbursement

•	early incorporation into consensus guidelines

crc, colorectal cancer; ctDNA, circulating tumour DNA.
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extent to which ctDNA variations correlate with tissue 
findings might suffice in establishing clinical validity 
and utility. However, establishing the clinical validity and 
utility of dynamic changes in ctDNA levels as predictors 
of response to therapy is much more difficult. Current 
data largely originate from small cohort studies using 
either VAF or cfDNA levels to reflect tumour response. 
However, as reported in patients with non- small- cell 
lung cancer in 2019, such studies are affected by sub-
stantial intra- patient variations in levels of cfDNA even 
after accounting for pre- analytical and/or inter- assay 
variables33. These variations likely reflect a multitude 
of patient- related biological and demographic factors. 
Studies might take advantage of the short half- life of 
cfDNA that enables controlling for certain transient 
variables, such as fasting, physical exercise, surgery 
or exposure to radiation, by allowing adequate time 
after exposure to such factors before blood sampling. 
Other intransient variables, such as comorbidities or 
demographic factors, must be carefully documented 
and adjusted for when interpreting results. Furthermore, 
no data or consensus are available regarding the most 
clinically relevant thresholds and cut- offs for the cat-
egorization of continuous data (ctDNA levels). The 
most appropriate method of quantifying ctDNA and 
whether a multidimensional approach to integrating 
data on other features, such as fragment size, methyla-
tion or other circulating elements, might provide useful 
additional information will likely evolve with continued 
research and practice and will likely be unique to each 
clinical scenario (Box 2).

Management of MRD
The presence of ctDNA- defined MRD, likely reflecting the  
existence of micrometastases following definitive surgi-
cal resection, might serve as a harbinger for persistent 
and/or recurrent malignancy well before becoming 
clinically evident. For example, among 231 patients with 
resected stage II colon cancer, the presence of ctDNA in 
postoperative plasma samples was strongly associated 
with recurrence in those who did not receive adjuvant 
chemotherapy (14/178 patients had detectable ctDNA 
after surgery, of whom 11 (79%) had disease recurrence 

at a median follow- up duration of 27 months (HR 18, 
95% CI 7.9–40; P < 0.001)) as well as in those who 
received adjuvant chemotherapy (3/44 patients had 
detectable ctDNA on completion of adjuvant chemo-
therapy, all of whom had disease recurrence within 
11 months of completion of chemotherapy (HR 11, 
95% CI 1.8–68; P = 0.001)), regardless of the ‘low- risk’ 
or ‘high- risk’ stratification based on clinical features12,34. 
Similar prognostic implications of MRD have also been 
reported from multiple other studies involving patients 
across all stages of CRC12,35–39.

Despite these overwhelming prognostic implica-
tions, whether or not ctDNA can be cleared by adju-
vant chemotherapy remains uncertain. In a cohort of 
patients with resected stage III colon cancer, ctDNA 
became undetectable in 9 out of 18 patients after com-
pletion of adjuvant chemotherapy and was associated 
with improved relapse- free survival relative to those 
who retained detectable ctDNA (HR 5.1; P = 0.02)13,37. 
Although limited by small numbers, these data suggest 
that patients with detectable ctDNA after surgery could 
benefit from a duration of adjuvant chemotherapy cor-
responding to ctDNA clearance. The current paradigm 
tested in most trials in the adjuvant setting is to treat 
all patients with adjuvant therapy with the primary 
end point of DFS. However, this approach requires 
the follow- up monitoring of large numbers of patients 
over long periods of time in order to provide definitive 
results. By contrast, conducting these trials in patients 
who have detectable ctDNA at enrolment with the pri-
mary end point of ctDNA clearance would be vastly 
more efficient by reducing both the number of patients 
needed to treat and the duration of follow- up monitor-
ing. However, the establishment of ctDNA loss as a valid 
surrogate end point requires additional, larger- scale 
observational data evaluating the kinetics of ctDNA 
during adjuvant therapy. The Working Group provides 
guidelines recommending the timepoints for standard-
ized sample collection for future protocols (TaBle 1). We 
also emphasize the need to establish high- level con-
sensus regarding methods, clinical data collection and 
data sharing towards enabling pooled analyses of data 
from several studies in the future. Efforts to improve 

Table 1 | Recommended minimum standard timepoints for perioperative sample collection

Timepoint Timeframe Potential correlative outcomes

Treatment naive Prior to treatment, concurrent with initial 
clinical staging

Pathological response to 
neoadjuvant therapy, long- term 
survival and disease status

Post- neoadjuvant therapy and/or 
restaging

≥4 weeks after completing neoadjuvant 
therapy; ≤2 weeks of concurrent clinical 
assessment or restaging and/or resection

Pathological response 
to neoadjuvant therapy, 
neoadjuvant rectal score

Post- resection 4–8 weeks after surgical resection with a 
curative intent

Long- term survival and disease 
status, including overall survival, 
disease- free survival and 
recurrence- free survivalAfter adjuvant therapy or completion 

of all potentially curative therapy; 
minimal residual disease

2–8 weeks after completion of all 
curative- intent therapy

Disease relapse or recurrence ≤2 weeks, concurrent with clinical 
assessment and/or restaging showing 
evidence of disease relapse and/or 
recurrence
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the sensitivity of ctDNA assays and thereby capture all 
patients with MRD should continue. Factors affecting 
the sensitivity of ctDNA assays include the analytical 
limit of detection, sampling volume, number of input 
molecules and tumour burden. A typical 10 ml volume 
of blood yields an average of 4 ml of plasma containing 
approximately 12 × 103 DNA molecules (6,000 diploid 
genomes), which theoretically provides a sensitivity limit 
of 0.01% (1 in 12,000 copies). In terms of MRD detec-
tion, in which both the tumour burden and number 
of input molecules is low, comprehensive NGS panels 
that enable testing for a large number of genomic and 
epigenetic alternations might improve assay sensitivity. 
As discussed elsewhere30, the use of NGS panels might 
also avoid additional expenses and delays related to 
sequencing of the tumour tissue, the latter issue being of 
particular importance in the adjuvant setting, in which 
timely initiation of therapy is crucial. Current consensus 
guidelines recommend the initiation of adjuvant therapy 
as soon as patients are medically able to receive it, ide-
ally no later than 6–8 weeks after surgery. The stochastic 
distribution of ctDNA molecules in patients with MRD 
might also be mitigated to a certain extent by increas-
ing the sample volume. This volume (and thus the 
number of input molecules) can be increased either by 
drawing a larger volume of blood at a single time point 
(but might be constrained by the need to draw blood 
for other purposes) or through serial monitoring; the 
latter approach is also aided by increasing ctDNA lev-
els reflecting similar changes in tumour volume. These 
factors might reduce the risk of false- negative results by 
optimizing the detection of ctDNA that has been shed 
into the plasma, although they might not account for 
false negatives related to biological variables. For exam-
ple, patients with metastatic spread to the peritoneum 
and brain might not have detectable ctDNA in blood; 
similarly, a small but clinically relevant proportion of 
patients with intact primary tumours might have unde-
tectable ctDNA. The underlying reasons for this are 
unknown but could be related to mechanisms of ctDNA 
production and release that remain to be elucidated40. 
Until these factors have been delineated, investigators 
running clinical trials involving adjuvant therapy with 
ctDNA- based monitoring for MRD should consider 

pre- screening patients for ctDNA prior to surgical 
resection of the primary tumour, with patients who 
have undetectable ctDNA being excluded from further 
participation.

Data from ongoing observational trials with large 
cohorts, such as TRACC (n = 1,000; NCT04050345) and 
ADNCirc (n = 473; NCT02813928), will help to estab-
lish much needed reference benchmarks for ctDNA as a 
marker for MRD and, collectively with other data, might 
help to establish ctDNA clearance as a surrogate marker 
for survival. In other trials, such as IMPROVE- IT2 
(n = 254; NCT04084249), investigators are attempt-
ing to define the optimal combination of ctDNA and 
imaging assessments for the detection of disease recur-
rence, which will help in establishing evidence- based 
management guidelines.

Ongoing therapeutic studies involving patients 
with stage II colon cancer, such as the NCI–sponsored 
randomized phase II/III COBRA study (n = 1,408; 
NCT0406810), the CIRCULATE trial (n = 1,980;  
NCT04120701) and the DYNAMIC- II study (n = 450; 
ACTRN12615000381583), are testing the hypothesis 
that ctDNA will enable the identification of patients 
with a high risk of disease recurrence (despite hav-
ing low- risk stage II colon cancer by clinical criteria) 
who might benefit from adjuvant chemotherapy. 
The phase II/III DYNAMIC- III study (n = 1,000;  
ACTRN12617001566325) is currently recruiting patients  
with stage III colon cancer to evaluate the clinical utility 
of chemotherapy de- escalation or escalation as informed 
by ctDNA status. Other de- escalation trials are cur-
rently being designed by multiple international groups. 
Together, these trials will provide data on the clinical 
utility of ctDNA in monitoring MRD.

In future adjuvant studies, ctDNA could also be used 
to select patients with a high risk of disease recurrence 
who could then be enrolled in trials evaluating rational 
combinations, such as the addition of irinotecan to 
folinic acid, 5-fluorouracil and oxaliplatin (FOLFOX), 
or even promising immunotherapeutics based on the 
premise that the latter therapies might be most effec-
tive when the tumour burden is the lowest such as in 
the MRD state. Such a trial design would require a 
ctDNA- based assay with a high level of specificity, even 
at the expense of lower sensitivity, in order to mini-
mize the risks of added toxicities associated with novel 
therapies (Fig. 2). This technology can also be used in 
clinical trials of novel agents informed by the specific 
mutation detected. For example, given the promising 
phase III data on the efficacy of targeted combination 
therapies for patients with BRAFV600E- mutant meta-
static CRC41,42, the identification of patients with MRD 
harbouring this mutation introduces an opportunity to 
extend the testing and treatment of these patients to the 
adjuvant setting43.

In the MRD setting, patients with persistent ctDNA 
that is not cleared by initial adjuvant chemotherapy 
might have an aggressive underlying tumour biology. 
Whether second- line systemic treatment improves 
recurrence- free survival and/or OS in these patients 
could be elucidated through a randomized trial with 
observation as the control.

Box 2 | Key recommendations on assay characteristics

The following are general recommendations, irrespective of the sequencing assay used 
or the bioinformatics pipeline chosen, that are dependent upon the characteristics  
of the circulating tumour DNA library, sequencing methods and proposed clinical 
application.

•	circulating tumour DNA analysis must be conducted on plasma rather than on serum 
samples.

•	K2eDTA or cell- stabilizing tubes should be used for blood collection, and plasma 
should be isolated as soon as possible (4–6 hours for K2eDTA and 2–7 days for 
cell- stabilizing tubes).

•	Plasma samples must be stored at –80°c, and repeated cycles of freezing and thawing 
must be avoided.

•	clonal haematopoiesis and sequencing and/or Pcr- related errors are all important 
sources of false- positive results that can be mitigated by the use of a tumour- informed 
assay, barcoding of DNA molecules prior to sequencing, and sequencing on and 
comparison with germline DNA or with DNA from immune cells of the buffy coat layer.
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In the setting of metastatic CRC, early changes in 
ctDNA VAF are correlated with radiographic responses 
to treatment44. Similarly, ctDNA clearance could plau-
sibly be used to identify patients who might be eligi-
ble for de- escalation of adjuvant chemotherapy. On the 
basis of data from the IDEA trial, the majority of patients 
with stage III colon cancer are deemed to have low- risk 
disease and might require only 3 months of adjuvant 
chemotherapy; therefore, an attractive approach to fur-
ther de- escalation could be to skip adjuvant therapy 
altogether45. This possibility is supported by histori-
cal data suggesting that nearly half of all patients with 
stage III colon cancer are cured by surgery alone46.  
Trials designed to evaluate this hypothesis would 
require an assay with a high level of sensitivity (sug-
gested >95%) for the prediction of disease recurrence, 
with the allowance of a lower level of specificity (Fig. 3). 
High sensitivity is a key requirement of the assays used 
in these trials in order to avoid the undertreatment of 
patients who have false- negative ctDNA levels owing to 
assay- related technical factors but have the highest risk 
of disease recurrence and might benefit from adjuvant 
therapy. Studies conducted over the past few years using 
novel assays and serial sampling suggest sensitivity rates 
approaching 90% for the detection of disease recurrence 
in certain settings, and these might continue to improve 
with continued advances in the field37. The sensitivity of 
blood- based ctDNA assays will also likely hit a ceiling 
(owing to the inability to detect ctDNA in non- shedders 
or from certain metastatic sites such as tumours of the 
peritoneum or nervous system), beyond which fur-
ther improvements in assay performance would not be 
possible43. ctDNA is purely prognostic and is not predic-
tive of benefit from adjuvant therapy; therefore, the goal 
of research in the MRD setting would be to personalize 
the duration of treatment based on dynamic changes in 
ctDNA and not on initial TNM staging, which is the 
current clinical practice (Fig. 3). This goal is reflective 
of the availability of robust data suggesting that ctDNA 
outperforms TNM staging and other clinical factors in 

the stratification of patients with stage II–III CRC by 
risk of recurrence12,37.

CHIP refers to aberrations arising in the DNA of 
haematopoietic stem cells that can be detected once 
DNA fragments from these non- malignant cells are 
released into the circulation47,48. The prevalence of CHIP 
mutations increases during the ageing process49,50, and 
CHIP mutations have been reported at low levels in as 
many as 95% of patients aged 50–60 years who do not 
have cancer, typically at a VAF <0.1%51. Initial studies 
focused on sequencing assays demonstrate that CHIP 
affects mutations in genes that are known to be impli-
cated in haematological malignancies, such as TET2, 
DNMT3, JAK2 and ASXL1, without much relevance 
to solid tumours such as CRC. Subsequent unbiased 
sequencing studies have also revealed mutations in other 
genes, such as TP53 and KRAS, that might contribute 
to false- positive results in patients with CRC, especially 
when testing for MRD52–54. These CHIP- related aberra-
tions can be filtered out using novel pipelines developed 
based on bioinformatics advances that have improved 
the sensitivity for calling cancer- associated mutations 
present in ctDNA. Another alternative would be to 
match ctDNA sequencing with that of leukocytes and/or  
matched tumour tissues to provide confirmation of 
such findings. Future studies should focus on the best 
approach to minimizing false positives related to CHIP 
with an emphasis on costs and efficiency, keeping in 
mind the critical time constraints for use of adjuvant 
therapy in MRD trials.

The rapid turnaround of ctDNA results is crucial 
given the need for clinical decision- making in the con-
text of the curative potential of these patients. In sit-
uations in which tissue sequencing results required 
for the design of tumour- informed ctDNA assays are 
delayed, we favour NGS- based multigene assays that 
can be implemented without prior knowledge of spe-
cific genomic aberrations; such assays also have the the-
oretical advantages of being able to capture subclonal 
populations that expand over time under the selective 
pressures of systemic treatment (Box 3).

Management of rectal cancer
Several areas of controversy currently exist relating 
to the optimal risk stratification and management 
approach for patients with locally advanced rectal can-
cer (LARC). The consensus view of the Rectal Working 
Group is that ctDNA could help address many of these 
key controversies. Despite this potential, very few stud-
ies involving patients with LARC have thus far focused 
on ctDNA. Data from a study involving 123 patients 
with LARC show that the total cfDNA at diagnosis is 
modestly prognostic: patients with cfDNA levels above 
the 75th percentile had worse DFS and a higher risk 
of disease recurrence than those below it (HR 2.48, 
95% CI 1.3–4.8; P = 0.007)55. Data from another study 
involving 159 patients with LARC show that ctDNA 
is detectable in 77%, 8% and 12% of pre- treatment, 
post- chemoradiotherapy and postoperative plasma 
samples and that the presence of postoperative ctDNA 
is a very strong predictive marker for disease recur-
rence irrespective of the use of adjuvant chemotherapy 

Box 3 | Key recommendations on the management of MRD

•	current data suggest that detectable circulating tumour DNA (ctDNA) after surgery 
and/or completion of adjuvant therapy is strongly associated with a high risk of 
disease recurrence, suggesting that ctDNA is a robust marker for minimal residual 
disease (mrD).

•	ctDNA clearance should be evaluated as a surrogate end point in trials involving 
adjuvant therapy in order to streamline and assist with efficient drug development. 
Towards this goal, sample collection time points should be standardized across trials 
(TaBle 1) and consensus should be reached on data sharing.

•	Next- generation sequencing- based multigene assays are the preferred method 
of MRD	detection,	as	opposed	to	Droplet	Digital	PCR-	based	assays.

•	current assays have a high level of specificity and a good positive- predictive  
value and are being evaluated in trials involving therapy escalation in patients  
with detectable ctDNA. The use of assays and/or strategies with sensitivity  
levels ≥95% is suggested in de- escalation trials in order to mitigate the risk of 
false- negative results.

•	multiple approaches are being explored in an attempt to design more sensitive 
assays; for now, next- generation sequencing- based multigene approaches involving 
the sampling of serial and/or larger plasma volumes currently provide the best level 
of sensitivity	for	the	detection	of	MRD.
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(chemotherapy: HR 10, 95% CI 3.4–29; P < 0.001; with-
out chemotherapy: HR 22, 95% CI 4.2–110; P < 0.001)56.  
Furthermore, the findings of a study involving 
47 patients with LARC suggest that recurrence-free 
survival is shorter in patients with detectable ctDNA 
after completion of chemoradiotherapy (HR 7.1,  
95% CI 2.4–21.5; P < 0.001)57.

Together, these data suggest that total cfDNA at the 
time of diagnosis might have prognostic implications, 
while binary classifications based on the detection of 
ctDNA might not (in contrast to the situation at later 
time points, such as after chemoradiotherapy, curative 
surgery and/or completion of adjuvant therapy). In fact, a  
systematic review including data from nine studies and 
a total of 615 patients suggests a correlation between 
cfDNA level and clinical outcomes of response to neo-
adjuvant therapy, including DFS58. However, in another, 
larger systematic review of data from 25 studies, the 
investigators concluded that data are as yet inconclusive 
regarding the utility of pretreatment liquid biopsy or 
serial (pre- treatment and post- treatment) monitoring, 
but that the presence of MRD is consistently associated 
with worse outcomes across studies59. The next steps 
would be to consider validating the clinical utility of 
cfDNA and, importantly, to look at additional quan-
titative assessments (such as VAF) and/or qualitative 
assessments (such as mutations) as a means of improv-
ing the prognostic ability of liquid biopsies at the time of 
diagnosis. Without such advances, the role of cfDNA at 
this time point prior to a mandatory intervention might 
be limited. Conversely, the prognostic implications of 
detectable ctDNA in patients with earlier- stage II and 
stage I rectal cancer currently not considered for neo-
adjuvant therapy are unknown. Whether ctDNA can 
assist with identifying the minority of these patients with 
aggressive disease biology and micrometastatic disease 
within a timeframe that enables them to receive earlier 
and/or more aggressive interventions is an essential 
question that should be answered.

The current trimodality approach for patients with 
LARC involves surgery, chemotherapy and radiother-
apy, results in substantial morbidities and might not 

be required for some patients, yet also fails to prevent 
disease recurrence in others. The key limitation in the 
current management of rectal cancer is the lack of reli-
able and accurate methods of predicting responsiveness 
to neoadjuvant therapies without surgical resection 
and subsequent pathological assessments. For exam-
ple, among patients who demonstrate adequate clinical 
responses to induction systemic chemotherapy, omit-
ting radiotherapy and its associated toxicities might 
be possible; this hypothesis is currently being tested in 
the phase II/III PROSPECT trial (NCT01515787) and 
in the OPRA trial (NCT02008656) in patients with a 
complete clinical response to neoadjuvant therapy, in 
whom standard proctectomy might be avoided (the ‘wait 
and watch’ approach)60. We hypothesize that ctDNA or 
changes in ctDNA could provide added value in predict-
ing responsiveness to neoadjuvant therapy in lieu of the 
current standard pathological assessment criteria — this 
represents a major research need. For example, a tool 
designed to increase the level of concordance between 
clinical and pathological complete response is desper-
ately needed in order to enable the ‘watch and wait’ 
approach to be adopted as mainstream clinical practice.

The role of adjuvant systemic therapy in patients with 
rectal cancer receiving neoadjuvant chemoradiother-
apy and surgery has not yet been examined rigorously 
in randomized trials and is largely extrapolated from 
the experience in those with colon cancer. Whether 
ctDNA status following surgery can help tailor the need 
for and the intensity of adjuvant therapy needs to be 
assessed. Finally, ctDNA- defined MRD might have a 
crucial role in patients undergoing surveillance, simi-
lar to the situation in patients with colon cancer. Thus, 
ctDNA- based analyses have the potential to radically 
change our approach to the management of patients 
with rectal cancer. However, as already highlighted, 
conclusive data are currently lacking. Thus, we propose 
guidelines towards the rapid and efficient accumulation 
of data by obtaining samples across trials at standard-
ized and defined time points in order to overcome these 
key knowledge gaps (TaBle 1). Furthermore, given that 
non- metastatic rectal cancer is typically associated with 
a relatively lower tumour burden than metastatic CRC 
and that it might diminish even further with the use of 
neoadjuvant therapy, selecting a ctDNA platform with 
very high sensitivity (>95%) while preserving specific-
ity (>99%) is imperative. Similar to the MRD setting, 
the rapid turnaround of ctDNA results is also vital 
in the management of patients with rectal cancer given 
the potential for cure and also the need to evaluate dis-
ease status at multiple time points in order to facilitate 
real- time clinical decisions (Box 4).

Monitoring metastatic disease
Advances in the sensitivity and accuracy of ctDNA- based 
analyses have enabled the tracking of tumour dynamics in 
real time61. Such ctDNA- based monitoring for the efficacy 
of therapies is particularly well suited for the metastatic 
disease setting: several issues, including assay sensitiv-
ity, the status of driver versus passenger alterations, and 
tissue– ctDNA discordance, all of which restrict the use 
of ctDNA in other settings, are of lesser concern here61.

Box 4 | Key recommendations on the management of rectal cancer

•	The neoadjuvant management of patients with rectal cancer is in urgent need of 
predictive and prognostic biomarkers and, in this regard, circulating tumour DNA 
(ctDNA) holds great promise; however, limited data are currently available.

•	An urgent need for standardization of sample collection and consensus towards data 
sharing exists in the minimal residual disease setting.

•	Areas of investigation for future neoadjuvant clinical trials should include:

 - the role of cell- free DNA and ctDNA in determining prognosis at the time of 
diagnosis based on early supporting data

 - changes in ctDNA as markers of the degree of response in order to tailor the 
intensity of neoadjuvant therapy and avoid one or more elements of the current 
trimodality therapy (radiotherapy, chemotherapy and surgery)

 - the role of ctDNA in determining the need for adjuvant therapy following 
neoadjuvant therapy and/or surgery

 - the utility of ctDNA as a marker of minimal residual disease during surveillance after 
completion of adjuvant therapy

•	Given the inherent low- volume disease status, considering an assay or strategy with  
a high level of sensitivity (≥95%) is recommended.
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Early changes in ctDNA during treatment with stand-
ard therapies have been shown to predict later radiolog-
ical responses in patients with metastatic CRC62,63. For 
example, in a prospective study (n = 82), reductions in 
ctDNA concentration of ≥80% after first- line or second-  
line chemotherapy were associated with a significantly 
improved objective response rate (47.1% versus 0%; 
P = 0.03) and longer median progression- free survival 
(PFS) (8.5 months versus 2.4 months; HR 0.19, 95% CI  
0.09–0.40; P < 0.0001) and OS (27.1 months versus 
11.2 months; HR 0.25, 95% CI 0.11–0.57; P < 0.001)64. 
Radiographic imaging and serum carcinoembryo nic 
antigen levels are currently used to monitor disease sta-
tus in the metastatic setting. However, serum carcinoem-
bryonic antigen levels might only be elevated in 70–80% 
of patients, and radiographic imaging has several lim-
itations, including costs and inter- operator and/or  
inter- reader variability. Therefore, data from these 
early- stage studies suggesting that changes in ctDNA 
might complement the performance of radiographic 
imaging in earlier lines of therapy are particularly rele-
vant. Currently, two oral therapies (regorafenib and 
TAS-102) are approved for clinical use in patients with 
refractory metastatic CRC with prior disease progression 
on other cytotoxic and targeted therapies. However, these 
agents provide limited benefit at the cost of considerable 
adverse events, with most patients having rapid clini-
cal deterioration owing to disease progression and/or  
drug- related toxicities. Patients with metastatic CRC 
who have a longer PFS on regorafenib and TAS-102 have 
an early decline in mutant DNA fraction, in contrast to 
those with a shorter PFS who either have an increase 
or minimal early change in mutant DNA fraction65,66. 
In patients with metastatic CRC with ctDNA progres-
sion, defined as any increase in VAF on regorafenib or 

TAS-102, the sensitivity, specificity and positive pre-
dictive value of ctDNA progression for the detection 
of subsequent radiographic progressive disease were 
61.5%, 100% and 100%, respectively67. Thus, based on 
the data from these studies, establishing the validity of 
early changes in ctDNA as surrogate markers for clinical 
response in patients on later lines of therapy, in whom 
the prior probability of benefit is low and the risk of 
harm is high, is imperative. Emerging evidence indi-
cates the feasibility and clinical utility of ctDNA- based 
monitoring in patients receiving anti- PD-1 antibodies. 
The monitoring of ctDNA might enable clinicians 
to differentiate unusual patterns of response, such as 
pseudo- progression from true disease progression on 
radiographic imaging, and will likely also be of benefit 
in patients with CRC68–71. The ease of serial monitor-
ing using plasma ctDNA genotyping assays, relative to 
repeat biopsy sampling, means that this technique can 
also be used as an early predictor of treatment response 
or resistance in patients enrolled in clinical trials, par-
ticularly for those receiving therapies that are expensive 
and/or likely to be toxic70.

The ideal ctDNA assay to be used for the detection 
of biomarkers of treatment response will need to have 
a high level of sensitivity (preferably >90%) in order to 
detect ctDNA in the majority of patients with metastatic 
CRC, be reliable and have a rapid turnaround time. 
Furthermore, the ideal ctDNA assay should involve a 
multigene panel that enables high- depth sequencing  
of the most commonly altered genes in order to capture  
the changes associated with non- targeted as well as 
targeted therapies (and ideally also capture off- target 
resistance mutations). With such an assay, the presence 
of any CRC- related somatic alterations could be used 
to indicate a positive test, and the highest VAF of the 
alteration could be used to define ctDNA concentra-
tion. The assay would need to be performed prior to the 
start of therapy and then again soon after starting treat-
ment in order to guide the determination of an early  
clinical response.

The use of ctDNA for disease monitoring has certain 
limitations that need to be acknowledged. First, the 
sensitivity of most ctDNA assays is estimated to be 
around 85%, and this can vary with tumour location 
and burden of metastatic disease72. Second, the optimal 
methodology and modality of ctDNA quantification is 
as yet unknown; most assays rely on measurements of 
somatic VAF, which is a mutation- dependent method. 
Furthermore, a proportion of patients might not have 
detectable somatic variants in ctDNA owing to a low 
tumour burden (owing to limited assay sensitivity) or to 
the true absence of detectable somatic alterations (con-
firmed by tumour sequencing). The costs of current 
sequencing methodologies are another key limitation. 
Mutation- agnostic strategies, such as evalua ting ctDNA 
fragment length or changes in methylation, might 
also be considered. For example, in a study involving 
107 patients with metastatic CRC receiving first- line 
FOLFOX- based chemotherapy, significant decreases 
in the levels of hypermethylated ctDNA from the gene 
encoding neuropeptide Y were found to correlate with 
improvements in PFS (9.5 months versus 7.4 months;  

Box 5 | Key recommendations on the monitoring of metastatic disease

•	Several issues that limit the use of circulating tumour DNA in other settings are of 
lesser concern in the monitoring of metastatic disease.

•	changes in circulating tumour DNA variant allele frequency hold great promise as an 
early predictor of response or resistance and are especially relevant for guiding the 
use of therapies that are toxic and/or expensive.

•	Assays designed to monitor metastatic disease must be based on a multigene panel in 
order to account for tumour heterogeneity and evolution, with the alteration with the 
highest variant allele frequency being used for further tracking.

•	mutation- agnostic approaches, such as quantification of Alu elements, should be 
considered for further development.

Box 6 | Key recommendations for tracking clonal dynamics

•	In patients without tumour tissue available, circulating tumour DNA (ctDNA) provides 
a reliable, non- invasive source of tumour material for baseline mutation testing.

•	on the basis of promising data establishing the ctDNA profiles of resistance to 
anti- eGFr antibodies, ongoing trials are evaluating the effectiveness of re- challenge 
in patients who initially derive benefit, followed by subsequent disease progression 
on anti- eGFr antibodies using dynamic ctDNA profiles.

•	Future trials should evaluate whether ctDNA- based approaches can complement or 
even replace radiographic imaging in guiding the use of anti- eGFr antibodies as well 
as to build upon and validate early data on the efficacy of other targeted therapies, 
such as those targeting Her2 amplification or BRAFv600e, and of immune- checkpoint 
inhibitors.
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P = 0.002) and OS (25.4 months versus 13.5 months; 
P = 0.0001)73–79. Another novel approach is to use 
non- coding repeat sequences or ‘mobile insertion 
elements’ present in genomic DNA to overcome this 
challenge, as these sequences comprise approximately  
10% of the genome (ALU, which was originally charac-
terized by the action of the Arthrobacter luteus, Alu 
restriction endonuclease being the most abundant of 
these elements)80. ALU elements have been correlated 
with carcinogenesis and disease progression, leading to 
efforts in their development as cancer biomarkers81–83. 
Levels of short ALU elements (amplified using a 115 bp 
primer reflecting total cfDNA) and the integrity index 
(ratio of long (247 bp) and short (115 bp) fragments) 
is positively correlated with disease progression and 
prognosis77,84,85. Future studies might involve the further 
evaluation of this method given the requirement for 
only small volumes of plasma77,84. Finally, as discussed 
elsewhere86–88, few ctDNA assays have been prospectively 

validated; therefore, a concerted effort should be made to 
incorporate plasma genotyping assays into prospective 
trials (Box 5).

Tracking clonal dynamics
The current standard of care for metastatic CRC involves 
testing tumour tissues for three biomarkers: expanded 
RAS mutations (which are a negative predictor of ben-
efit from anti- EGFR antibodies); BRAFV600E (which is 
a negative prognostic marker and a positive predictive 
marker for BRAFV600E- targeted therapies) and MSI sta-
tus (which has prognostic and predictive value regard-
ing responsiveness to immune- checkpoint inhibitors 
in addition to being a screening tool for Lynch syn-
drome)89. Furthermore, other markers, such as ERBB2 
amplifications and NTRK fusions, are emerging as 
positive predictive biomarkers for the use of therapies 
directed against these aberrations89–91. In patients that 
lack obtainable tumour tissue, ctDNA- based testing 

Plasma (~55%)

PCR based
NGS based

Plasma isolation 
and storage

ctDNA isolation
and sequencing

RBC (~45%)

Buffy coat (~1%)

K2EDTA tubes

a

b

Cell-stabilizing tubes

• Avoid shaking; 
mix by inverting

• Store at room 
temperature for 
4–6 hours or at 
4°C for up to 24 
hours

Centrifugation

• Mutations
• Copy-number variations
• Fusions
• Methylation

• Sequential centrifugation at low 
and high speed at 4°C

• Avoid contamination by buffy coat
• Aliquot into single-use tubes
• Store at -20°C or -80°C
• Avoid repeated freeze–thaw cycles

DNA library
with mutations

DNA tagged with
molecular barcodes

Amplification with sequencing errors (     ) 
and grouping based on molecular barcodes

Error correction through 
consensus readMolecular barcodes

Blood 
collection

Genome coverage

Limit of detection

NGS based

Whole 
genome/
exome Targeted

10% 1% 0.1% 0.01% 0.001%

With
molecular
barcoding

BEAMing
digital droplet
PCR

PCR based

• Avoid shaking; 
mix by inverting

• Store or 
transport at room 
temperature for 
up to 5–7 days
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might provide a non- invasive solution to the need for 
molecular diagnosis at baseline. Data from several stud-
ies indicate a high level of concordance (>90%) between 
ctDNA and standard- of- care tumour tissue- based RAS 
testing63,92.

Resistance to anti- EGFR antibodies. The use of ctDNA to 
monitor complex and evolving tumour molecular clones 
has the potential to change the way we treat patients 
with metastatic CRC using targeted therapies. Among 
patients with RAS- wild- type metastatic CRCs treated 
with anti- EGFR antibodies, mutations in genes encoding 
proteins in the RAS signalling pathway and/or altera-
tions in the extracellular domain (ECD) of EGFR are key 
mechanisms of resistance92–99. In contrast to tissue- based 
biopsy sampling of a single lesion, ctDNA- based assays 
can enable real- time detection of tumour heterogeneity 
as it evolves as well as the identification of alterations in 
RAS and the ECD of EGFR that might coexist after anti- 
EGFR therapy93–95,100,101. KRAS mutations can emerge in 
the blood of patients treated with anti- EGFR antibodies 
up to 10 months before the emergence of radiological 
disease progression102. ctDNA- based analyses are not 
currently ready to replace medical imaging, although 
trials are warranted to evaluate whether tracking the 
dynamics of resistance mutations in ctDNA should com-
plement — or even ultimately replace — radiological  
assessments in guiding anti- EGFR therapy. The with-
drawal of anti- EGFR therapy correlates with a decline 
in KRAS- mutant allelic fraction in ctDNA obtained 

from patients with metastatic CRC with resistance to 
anti- EGFR therapies owing to an acquired KRAS muta-
tion, suggesting that ctDNA analysis might enable real- 
time monitoring of the effects of the selective pressures 
of targeted therapies on tumour populations101. In the 
CRICKET trial, investigators assessed the benefits of 
re- introducing cetuximab after treatment interruption 
in patients who responded to first- line cetuximab103. 
Interestingly, data from a retrospective analysis of ctDNA 
samples showed that patients with persistent RAS- 
mutant clones (defined by the presence of RAS- mutant 
clones in ctDNA prior to re- challenge) did not benefit 
from the re- introduction of cetuximab104. Other ongo-
ing clinical trials, such as CHRONOS (NCT03227926) 
and FIRE-4 (NCT02934529), are designed to evaluate 
the use of ctDNA to guide re- challenge with anti- EGFR 
antibodies. In a phase II trial investigating the efficacy 
of Sym004 (consisting of two anti- EGFR antibodies, 
futuximab and modotuximab, which target different 
epitopes on EGFR) in patients with metastatic CRC 
with disease progression on cetuximab or panitumumab, 
ctDNA biomarker profiling revealed a subpopulation of 
patients (with wild- type RAS, BRAF and EGFR ECDs) 
who benefited from Sym004 (reF.94).

BRAFV600E, HER2 and other alterations. ctDNA- based 
analyses also enable the characterization of the molecu-
lar landscape of ERBB2- altered metastatic CRCs105. For 
example, ctDNA enabled the identification of alterations 
potentially associated with resistance in the majority of 
patients with ERBB2- amplified metastatic CRCs receiv-
ing HER2- targeted therapies106,107. Among patients with 
BRAFV600E- mutant metastatic CRC, the combination of 
inhibitors of BRAF and EGFR, with or without MEK 
inhibition, has been shown to improve survival out-
comes over standard- of- care chemotherapy108,109. Serial 
ctDNA- based analyses of samples from patients enrolled 
in these trials revealed the emergence of multiple altera-
tions in components of the MAPK signalling pathway at 
the time of development of resistance to these therapies. 
These observations support the reactivation of MAPK 
signalling as an important mechanism of acquired 
resistance that could be tracked in ctDNA. ctDNA- based 
assays now include the ability to test for MSI status, thus 
enabling the identification of mismatch repair muta-
tions and a subset of patients with metastatic CRC who 
are more likely to benefit from immune- checkpoint 
inhibitors68,69,110–112.

These data are promising, although several ques-
tions still need to be addressed in order to maximize 
the utility of ctDNA in tracking clonal evolution and 
in guiding treatment- related decisions in patients with 
metastatic CRC. VAFs of mutant alleles detected in 
ctDNA are dependent on several variables, including 
clonality and the extent of ctDNA shedding63,92. Data 
published in 2019 suggest an exponential decay in 
treatment- emergent ctDNA markers of anti- EGFR ther-
apy, with an estimated ctDNA half- life of 4.3 months. 
Furthermore, these data also suggest a trend for improve-
ment in the objective response rate (16% for <1 half- life 
versus 32% for ≥2 half- lives) and PFS (2.6 months ver-
sus 3.9 months, respectively, HR 0.8, 95% CI 0.46–1.39; 
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P = 0.43) for re- challenge with anti- EGFR therapies 
after increasing time intervals from initial exposure104. 
However, the most appropriate VAF cut- offs that warrant 
a treatment ‘holiday’ and/or subsequent re- introduction 
of therapy are currently unknown. This lack of knowl-
edge, along with the potential for multiple mechanisms 
of treatment- emergent resistance, lends itself to a study 
enrolling patients with disease progression on prior 
EGFR- targeted therapies into a basket trial, with patients 
being placed in one of multiple arms designed to evalu-
ate agents that are active against known mechanisms of 
resistance and/or downstream targets, with re- challenge 
based on ctDNA results. Such prospective trials will 
provide information on multiple unanswered questions 
regarding the optimal use of ctDNA in the manage-
ment of patients with CRC who are receiving targeted  
agents (Fig. 4).

Another important issue is that of false- negative 
results that might limit assay performance and hinder 
clinical management. Additional features of sampling, 
such as the presence of an adequate concentration of 
ctDNA in the plasma specimen and/or the concomi-
tant presence of other detectable mutations, might 
increase the level of confidence, for example, in that a 
patient has a KRAS/NRAS- wild- type tumour despite 
no mutation in these genes being found in ctDNA. 
Improved clinical reporting with additional data to aid 
decision- making might enable this complexity to be 

addressed; for example, providing post- test probability 
of the accuracy of the findings might aid clinicians in 
the interpretation of results and their translation into 
clinical decisions. Finally, current assays are largely 
geared towards the detection and tracking of muta-
tions. However, an increasing level of need also exists 
to assess the presence of other molecular alterations 
such as fusions and/or copy- number alterations. 
Moreover, ctDNA- based testing should be optimized 
to guide the use of immune- checkpoint inhibition: 
whether the number of megabases covered by current 
assays provides an accurate indication of tumour muta-
tional burden or whether a revised larger set of micro-
satellites should be included in ctDNA- based assays 
used to define MSI status remains unknown. These 
questions need to be addressed in prospective clinical  
trials (Box 6).

In the absence of results from ongoing clinical trials  
that include ctDNA- based biomarker screening and 
monitoring, we propose that the collection and long- 
term storage of plasma samples be made mandatory for 
all future studies involving targeted therapies and/or  
immuno therapy in order to enable retrospective assess-
ments of possible mechanisms of treatment resistance. 
Such studies should, as a minimum, aim to collect 
plasma samples prior to treatment, at the time of disease 
progression and, if possible, at other timepoints.

The ideal application- specific assay to be used to 
track resistance should include a comprehensive analysis 
of biomarkers associated with resistance and actionable 
biomarkers, including point mutations, fusions, gene 
copy- number alterations, tumour mutational burden 
and MSI status. The test should be sufficiently sensitive 
to detect the emergence of subclones with a low VAF and 
minimize the number of false- negative results.

Conclusions
In summary, the Workshop members identified multiple 
clinical scenarios in the continuum of CRC management 
in which ctDNA shows the potential to alter the current 
status quo (Boxes 2–6). Although the workshop was con-
ducted under the auspices of the NCI Task Forces and 
hence limited to clinicians and researchers based in the 
United States, the issues discussed are nevertheless of 
universal relevance. As assay development and clinical 
trials are undertaken internationally, it is crucial that 
these efforts should not take place in silos, but rather 
be collaborative and involve key stakeholders, ranging 
from patients and/or their representatives to regulatory 
agencies. These collaborative initiatives should aim to 
address the urgent issues raised here by establishing the 
optimal assay characteristics for each clinical scenario 
and the standardization of quality control and reference 
materials for assays, ensuring reliable pre- analytical 
variables, conducting clinical trials collaboratively, 
especially those requiring large patient numbers such 
as de- escalation trials in patients with MRD that might 
mandate a non- inferiority design, and by establishing 
platforms that would enable the rapid dissemination of 
information and data sharing.
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