NCI SBIR/STTR PARs

Cancer Prevention, Diagnosis, and Treatment Technologies for Low-Resource Settings (R43/44 & R41/42 - Clinical Trial Optional)

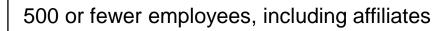
> Ming Zhao, PhD NCI SBIR Development Center July 24, 2018

Goals

- The two FOAs encourages SBIR/STTR grant applications from small business concerns (SBCs) proposing commercially-directed research for the development of cancer prevention, diagnosis, or treatment technologies to improve cancer outcomes in low- and middle-income countries (LMICs), and low-resource settings in the US.
- Specifically, the FOAs encourage grant applications from SBCs to **develop or adapt**, **apply**, **and validate** existing or emerging technologies into user-friendly products for cancer prevention, diagnosis, or treatment in low-resource settings.
- The technologies may include, but are **not limited** to tools for vaccine dissemination/delivery, imaging, in vitro diagnosis, or treatment of pre-cancerous (pre-neoplastic) or cancerous lesions that are preventable or treatable within low-resource settings.
- Strong emphasis is placed on technologies that directly provide or immediately lead to treatment options available in the local health system.
- Projects funded by the two FOAs may include patient enrollment in foreign countries. It should be noted that applicants are required to
 include a statement in their applications on why these resources are not available in the US if a portion of the work is performed outside of
 the US.
- Products addressing cancers of the cervix, colon/rectum, esophagus, and oral cavity are particularly encouraged for this FOA. However, applications may address any single cancer type.

PAR-18-801: https://grants.nih.gov/grants/guide/pa-files/PAR-18-801.html (SBIR: R43/44) PAR-18-802: https://grants.nih.gov/grants/guide/pa-files/PAR-18-802.html (STTR: R41/42)

SBIR ELIGIBILITY



Applicant must be a Small Business Concern (SBC)

Organized for-profit U.S. business

> 50% U.S.- owned by individuals and independently operated

OR

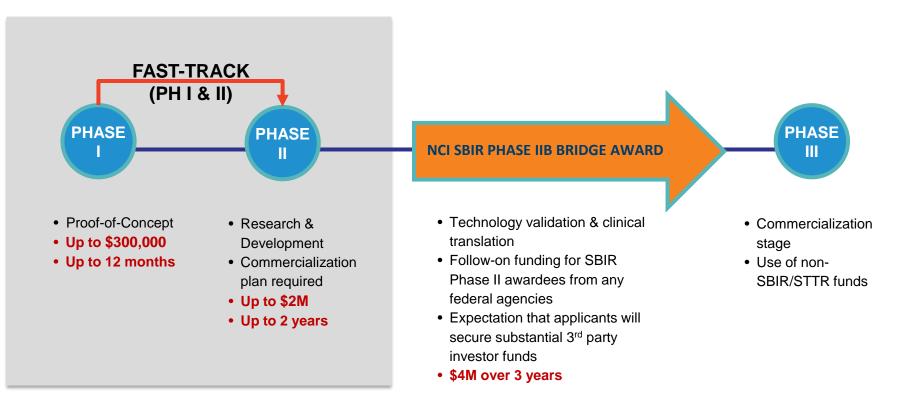
> 50% owned and controlled by another (one) business concern that is > 50% owned and controlled by one or more individuals

OR (SBIR ONLY)

> 50% owned by multiple venture capital operating companies, hedge funds, private equity firms, or any combination of these

3

STTR ELIGIBILITY


- Applicant is a Small Business Concern (SBC)
- Organized for-profit U.S. business
- Formal cooperative R&D effort
 - Minimum 40% by small business
 - Minimum 30% by US research institution
- US Research Institution: college or university; non-profit research organization; Federally-Funded R&D Center (FFRDC)
- Principal Investigator's primary employment may be with either the SBC or the research institution
- SBC must have right to IP to carry out follow-on R&D and commercialization

First-time applicants may submit a Phase I or Fast-Track application

- Posted Date: May 24, 2018
- Open Date (Earliest Submission Date): August 5, 2018
- Letter of Intent Due Date(s): 30 days prior to the application due date
- Application Due Date(s): September 5, 2018, January 5, 2019, April 5, 2019 Standard dates apply, by 5:00 PM local time of applicant organization
- Expiration Date: January 6, 2021
- Applicants are encouraged to apply early to allow adequate time to make any corrections to errors found in the application during the submission process by the due date

Technology areas of interest include, but are not limited to, the following

- Machine learning algorithms to identify precancer and cancer in optical images captured with simple medical devices (e.g., smart phone)
- Machine learning approaches to enhance POC imaging, telemedicine, or digital pathology
- Software tools for cancer prevention, such as tools for vaccine dissemination, or tools to improve vaccine supply chains
- Delivery technologies to improve reliability, effectiveness, and/or safety of vaccines at the point of use (e.g., needle-free delivery methods, intradermal delivery that could reduce the quantity of vaccine required for an effective dose, or oral delivery)
- In vitro diagnostic assays such as Point-of-Care analytical tools for blood, saliva, or urine (e.g. lab-on-a-chip biosensors that allow remote performance of chemical and/or biological assays outside of a laboratory environment)
- Portable imaging devices for cancer diagnosis based for examples on optical imaging, spectroscopy, or ultrasound
- Devices for cancer treatment such as tools that may facilitate standard minimally invasive cancer treatment modalities, tools for cryotherapy, radiofrequency ablation, laser therapy, low-power-density sonication, high-intensity focused ultrasound or photodynamic therapy in a remote setting
- Devices to aid in delivery of cancer drugs
- Devices for treatment monitoring
- Tools for information and communications technologies to enhance cancer data collection, sharing, or analysis

Technologies that are generally **not** appropriate for this FOA include the following

- Devices that involve highly invasive interventions
- Devices that require extensive user training before they can be used
- Tools or devices that are exclusively focused on telemedicine
- Drug screening
- Companion diagnostics for high-cost drugs that are not affordable in low-resource settings

General Technology Characteristics and Attributes

- Highly portable
- Operable in locations with limited or no medical infrastructure, electricity, landline telephone communication, internet, refrigeration, or central water supply
- Connectable to the Internet as an option
- Low-cost
- Simple to operate by locally trained healthcare staff with minimal training

Omnibus Solicitations (Phase I, Phase II, FastTrack)

- <u>PA-18-573 & PA-18-574 (SBIR)</u>
- PA-18-575 & PA-18-576 (STTR)

We encourage applications for any topic within the NIH mission

Due September 5, January 5, April 5

R&D Contract Funding Opportunity

- PHS 2019-1: HHS Small Business Innovation Research (SBIR) Program Contract Solicitation
- ONE application receipt date per year:
 - Published July 18, 2018

Receipt Date: October 22, 2018, 5:00 PM EDT

- RFP and Program Solicitation can be found at:
 - https://grants.nih.gov/grants/guide/notice-files/NOT-OD-18-209.html
 - https://sbir.nih.gov/sites/default/files/PHS2019-1.pdf
 - More info about NCI's topic areas:
 - http://sbir.cancer.gov/funding/contracts/

FY19 NCI CONTRACT TOPICS

NIH/NCI 382 Integrated Subcellular Microscopy and 'Omics in Cancer Cell	NIH/NCI 390 Clonogenic High-Throughput Assay for Screening Anti-Cancer Agents and Radiation Modulators	
NIH/NCI 383 Smart, Multi-Core Biopsy Needle	NIH/NCI 391 Drugs or Devices to Exploit the Immune Response Generated by Radiation Therapy	
NIH/NCI 384 Digital Healthcare Platform to Reduce Financial Hardship for Cancer Patients	NIH/NCI 392 Clinical Trials of Systemic Targeted Radionuclide Therapies (FAST TRACK ONLY)	
NIH/NCI 385 Leveraging Connected Health Technologies to Address and Improve Health Outcomes of Long- Term Cancer Survivors	NIH/NCI 393 Sensing Tools to Measure Biological Response to Radiotherapy	
NIH/NCI 386 Novel Approaches for Local Delivery of Chemopreventive Agents	NIH/NCI 394 Combinatory Treatment Modalities Utilizing Radiation to Locally Activate or Release Systemically Delivered Therapeutics	
NIH/NCI 387 Multiplexed Preclinical Tools for Longitudinal Characterization of Immunological Status in Tumor and Its Microenvironment	NIH/NCI 395 Targeted Therapy for Cancer- and Cancer Therapy-Related Cachexia	
NIH/NCI 388 In vitro Diagnostic for the Liver Flukes Opisthorchis viverrini and Clonorchis sinensis	NIH/NCI 396 Imaging for Cancer Immunotherapies	
NIH/NCI 389 Development of Artificial Intelligence (AI) Tools to Understand and Duplicate Experts' Radiation Therapy Planning for Prostate Cancer	1	

NIH/NCI 396 - Imaging for Cancer Immunotherapies

Fast Track	# of anticipated awards	Budget (max)	
Accepted	3 - 4	Phase I - \$300K for 9 months	Phase II - \$2M for 2 years

Goal:

The goals of the solicitation are to develop a cancer imaging technology to identify patients who are likely to respond to cancer immunotherapies, evaluate the efficacy and potential toxicities of the treatment, and/or monitor cancer patients' prognosis. The imaging modality could be one of the following, but is not limited to: ultrasound imaging, optical imaging, photoacoustic imaging, PET, SPECT, MRI or combination of multiple modalities. Molecular markers of interest could include but are not limited to: cell surface receptors, immune or associated non-immune cells, cellular infiltrates, enzymes, metabolites or metabolic states, DNAs, RNAs, or epigenetic modifications. The technology development should be platform driven.

Phase I Activities and Deliverables include:

Phase I activities should generate scientific data confirming the clinical potential of the proposed imaging for cancer immunotherapies. The Phase I research plan must contain specific, quantifiable, and testable feasibility milestones.

Ming Zhao, PhD Email: <u>zhaoming3@mail.nih.gov</u>

THE END

14