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Coming Soon: Early Investigator Advancement Program (EIAP)

Goal: to facilitate the advancement of scientists from diverse backgrounds 
to independent investigators 

Focus on Diversity: Participants must be U.S. citizens, legal permanent 
residents, or non-citizen nationals

Individuals from groups identified in NIH’s 
Notice of Interest in Diversity (NOT-OD-20-
031) as underrepresented in the biomedical, 
clinical, behavioral, and social sciences are 
particularly encouraged to apply.

NIH Notice of Interest in Diversity
• Race and ethnicity
• Disability
• Disadvantaged background

• Enhance professional skills
• Guide preparation of an R01 grant application
• Provide access to a mentoring and peer network
• Grow a community of emerging independent investigators from diverse 

backgrounds
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https://grants.nih.gov/grants/guide/notice-files/NOT-OD-20-031.html
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EIAP Program Components

Educate via 
Monthly Webinars
(open to public) 

Grant Application 
Preparation

Mentors and 
Professional 

Network

Virtual Hub
(partially open to 

public)

Participant
• Complete a R01 grant proposal
• Become part of a group of peers with 

similar career goals
• Engage with mentors who are 

established investigators
• Become familiar with job and funding 

opportunities 
• Develop professional and 

management skills critical to growing 
a research group

Program Components

Outcomes for Each Participant

Contact: Alison Lin, PhD
EIAP@nih.gov

Pre-Application Webinar
December 9, 2021, 4-5 pm ET

mailto:EIAP@nih.gov


www.cancer.gov www.cancer.gov/espanol

@NCICRCHD
https://www.cancer.gov/about-nci/organization/crchd

https://www.cancer.gov/about-nci/organization/crchd
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Cancer systems biology

integrating  
experimental and computational 

approaches  
to study the complexities of cancer
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Cancer systems biology

Song, Li, Makaryan and Finley, 2021. Curr Opin Sys Biol
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Systems biology

Source: Institute for Systems Biology; OmicScouts
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Systems biology

Source: Agilent Technologies
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Cancer systems biology: Computational approaches

Rockne and Scott. 2019. JCO CCI
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Cancer systems biology: Experimental approaches

Shi, et al. 2020. Front. Mol. Biosci

Transcriptomics

Omics
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Cancer systems biology

integrating  
experimental and computational 

approaches  
to study the complexities of cancer



Get connected!
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NIH Cancer Systems Biology Consortium

• Division of Cancer Biology Undergraduate Research Program 
(DCB-SURP): Summer 2022 

• Junior Investigators Meeting: late summer 2022

Systems Approaches for Cancer Biology (SACB) Conference 
• October 19-22, 2022  
• Virtual + in-person (Woods Hole, MA)

 

 

Applying systems biology 
to understand cancer 

mechanisms and develop 
therapeutic strategies 

v 

Systems Approaches 

to Cancer Biology 
 
November 7-10, 2018 
 

Marine Biological Laboratory, 
Woods Hole, MA 

 

  

 

 

 

  

 

  

Association for Cancer Systems Biologists (ACSB) — 

fosters, promotes and advocates for cancer systems 
biology and the needs of the researchers in the field



Joshua François, Ph.D. 
Postdoctoral Research Fellow 

Harvard University

Jorge Gómez Tejeda Zañudo, PhD 
Postdoctoral Associate 
Broad Institute &  
Dana-Farber Cancer Institute

Trachette Jackson, PhD 
Professor of Mathematics and  

University Diversity and Social  
Transformation Professor 

University of Michigan
Michael Murrell, PhD 
Associate Professor of  

Biomedical Engineering 
Yale University
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Multiscale Models for Predicting 
Optimum Immune and Targeted 

Therapy Schedules



Goals

JACKSON PAVES 10

• We are combining multiscale mathematical 
approaches with novel cellular quantification 
experimental technologies in order to: 
– To gain a deeper, more robust understanding of 

tumor-immune dynamics
– To optimize combination immunotherapy and 

receptor kinase targeted therapy



Aggressive Bladder Cancer Mutations 

• Genomic analysis of bladder cancer has identified 
frequent alterations of FGFRs, including mutations 
of FGFR3 that activate the receptor via ligand-
independent dimerization à increased cell proliferation 
and survival. 

Figure credit:  https://www.medscape.com/viewarticle/925321

JACKSON PAVES 10



Targeted Therapy

• Clinical trials using SMIs 
of FGFR3 are leading to 
promising clinical 
responses for patients 
with FGFR3 mutations. 

• Last year, the FDA 
approved the first FGFR3 
targeted therapy for 
bladder cancer.  

Figure credit:  https://www.medscape.com/viewarticle/925321

JACKSON PAVES 10



Immunotherapy

• MAbs targeting the PD-1/PD-L1 pathway have resulted in 
favorable outcomes in advanced bladder cancer.

• Despite the activity of these drugs in some patients, the 
objective response rate remains less than 25%.

Figure credit:  https://www.medscape.com/viewarticle/925321

JACKSON PAVES 10



Mutations Hinder Immunotherapy

Mutant CellsWild Type Cells

Control
Treated

Control
Treated

JACKSON PAVES 10



Combination Therapy

Co-acting combination of potent immune checkpoint
inhibitors and specific FGFR3 inhibitors potentially
offers an advance in targeted therapeutics for cancer.

Figure credit:  https://www.medscape.com/viewarticle/925321

Active FGFR3 
Dimer

Targeting 
FGFR3 

SMI

JACKSON PAVES 10



Optimizing Combination Therapy

Figure credit:  https://www.medscape.com/viewarticle/925321

A powerful and practical way to optimize novel drug 
combinations for clinical cancer treatment is to use 
data-driven computational models.

Active FGFR3 
Dimer Targeting FGFR3 

SMI

Figure Credit:  Durvalumab in NSCLC: latest evidence and clinical potential. Ther Adv Med Oncol. 2018

JACKSON PAVES 10



Preliminary Data: Live Cell Tracking 

• My collaborators 
developed a novel 
pipeline to track 
and quantify the 
interactions of 
living tumor cells 
and immune cells, 
including cell death. 

JACKSON PAVES 10



Preliminary Data: Live Cell Tracking 

• Evidence of both rapid and slow killing during tumor-immune interactions. 
• The proportion of slow and rapid killing within a solid tumor could have 

significant impact on immune mediated anti-cancer effects.

Cell death 
marker 
rapidly 
increases 
following 
minimal 
colocation

Extended 
cellular 
colocation 
of before 
cell death 
marker 
increases

JACKSON PAVES 10



Impact of Fast/Slow Killing Probabilities

: 75% 
reduction of 
total tumor 
volume after 
checkpoint 
blockade

Colors 
represent % 
change in the 
proportion of 
low antigen 
cells compared 
to the 
checkpoint 
active case.

JACKSON PAVES 10
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p1 – probability of fast killing for high antigen cells 



FGFR3 Mutation and Immune Dynamics

JACKSON PAVES 10



Model Predictions:  Monotherapies
• We can predict 

when targeted 
therapy 
outperforms the 
immune therapy.

• The heatmap shows 
the difference 
between  the 
immune and 
targeted therapies 
on day 25 as the 
impact of the 
mutation on 
proliferation and 
survival varies.  

Impact of Mutation on Proliferation

Im
pa

ct
 o

f M
ut

at
io

n 
on

 S
ur

vi
va

l

JACKSON PAVES 10



Model Predictions - Combo Therapy

(86%)
(70%)
(36%)
(14%)

Average % of mice 
that survived

JACKSON PAVES 10



Comparing Dosing Strategies

JACKSON PAVES 10

Baseline Schedule:  Co-treatment



Next Steps:  Agent-based Modeling

JACKSON PAVES 10



JACKSON ISoP 2020

Collaborators
Dr. Alexander Pearson, MD PhD

University of Chicago

Dr. Daniel Bergman
University of Michigan

Dr. Kamaldeen Okuneye, PhD
Applied Biomath, Boston

Dr. Randy Sweis, MD
University of Chicago

JACKSON - AIM 501 2020JACKSON – Systems Approaches to Cancer Bio 2020

Shirlyn Wang
University of Michigan



Jorge Gómez Tejeda Zañudo
Postdoctoral Associate
Broad Institute of MIT and Harvard
Dana-Farber Cancer Institute
Nikhil Wagle’s lab

November 30th, 2021
PAVES Seminar 10: Cancer Systems Biology

Mathematical models of biological networks:
applications to metastatic reprogramming and 

cancer drug resistance



J.G.T. Zañudo
Cell fate reprogramming by control of intracellular 

network dynamicsOutline

1) Research program: Modeling decision-making 
of the biological networks underlying cancer 

2) Academic trajectory

3) Resistance mechanisms to targeted therapies 
in breast cancer



Motivation

Cellular decision-making emerges from the dynamics of the underlying
complex intracellular network

Hanahan, 
Weinberg (2000)

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance

Cellular decision-making

Death vs survival
Proliferation vs arrest
Phenotype switching



Motivation

Understand and model how the dynamics of intracellular networks give
rise to decision-making in cancer cells

Cancer cell

Survival Death

Drug
therapy

Intracellular
network

Mathematical
model

Decision-making
dynamics

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance



Network-based modeling

A C DSurvival Death

Decision-making dynamics
+ network control theory

J.G.T. Zañudo et. al. PLoS Comp. Bio. 2015
J.G.T. Zañudo et. al. PNAS 2017
J.G.T. Zañudo et. al. Physical Biology 2019
J.C. Rozum, J.G.T. Zañudo et. al. Science Advances 2021

Network structure + 
mathematical model

Understand: Connecting the network structure and function to
decision-making dynamics

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance



Dynamics of cancer networks

Model: Building models of the dynamics of intracellular networks
underlying decision-making processes in cancer, to predict:

Nodes that block metastatic 
reprogramming
(EMT in liver cancer)

Mechanisms of drug resistance and 
drug combinations
(targeted therapies in breast cancer)

SN Steinway, JGT Zañudo, et al. Cancer Res. (2014).
SN Steinway*, JGT Zañudo*, et al. npj Syst. Biol. & Appl. (2015).

JGT Zañudo, et al. Cancer Convergence. (2017).
JGT Zañudo, et al. Cancer Research. (2021).

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance



Academic trajectory

College
U. de Guadalajara
(Mexico)

- Physics
- Math. modeling

Ph.D.
Penn State University
Physics (Réka Albert)

- Math. modeling (tools)
- Cancer math. modeling

(applied)

Postdoc #1
Penn State University / Broad Institute
Physics / Cancer Systems Biology
(Réka Albert, Nikhil Wagle)

- Math modeling (tools / applied to cancer)
- Wet-lab experiments
- Computational cancer biology
- Translational cancer genomics

Postdoc #2
Broad Institute / Dana-Farber
Cancer Systems Biology, Genomics
(Nikhil Wagle, Réka Albert)

- Computational cancer biology
- Translational cancer genomics
- Wet-lab experiments
- Math modeling

2009 2016 2019 2022

Instructor
Broad Institute / Dana-Farber 
Cancer Genomics
(Nikhil Wagle)

- Computational cancer biology
- Translational cancer genomics

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance



Dynamics of cancer networks

Model: Building models of the dynamics of intracellular networks
underlying decision-making processes in cancer, to predict:

Nodes that block metastatic 
reprogramming
(EMT in liver cancer)

Mechanisms of drug resistance and 
drug combinations
(targeted therapies in breast cancer)

SN Steinway, JGT Zañudo, et al. Cancer Res. (2014).
SN Steinway*, JGT Zañudo*, et al. npj Syst. Biol. & Appl. (2015).

JGT Zañudo, et al. Cancer Convergence. (2017).
JGT Zañudo, et al. Cancer Research. (2021).

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance



PI3K⍺ inhibitors in breast cancer

In 2019, alpelisib (PI3K⍺ inhibitor) became the first approved therapy
specifically for metastatic ER-positive breast cancer with PIK3CA mutations

Fabrice, et al. NEJM (2019)

PIK3CA mutated cohort

Which of the known resistance mechanisms will be observed clinically?

Are we missing important resistance mechanisms?

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance



Why do we need math models?

Lessons from drug resistance to BRAFi (and other targeted therapies):
signaling pathways are not linear cascades – feedback regulation is important

Melanoma (BRAF mutant)
Sensitive to BRAFi

Colorectal cancer (BRAF mutant)
Resistant to BRAFi due to EGFR feedback 

Prahallad et al. Bernards’ 
lab. Nature (2012)

BRAFi BRAFi
Feedback
regulation

Survival, Proliferation Survival, Proliferation

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance



Network models and drug resistance

Our approach: Mathematical model of the network of signaling pathways relevant
to PI3K-alpha inhibitors in ER+ PIK3CA mutant breast cancer

Cancer cell

Survival Death

Drug
sensitivity

Drug
resistance

Network of 
signaling pathways

Mathematical
model

Network dynamics 
and decision-making

Zañudo, Steinway, & Albert (2018). 
Curr. Opinion in Syst. Biol. 9, 1-10.

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance



Breast cancer network model
We built a network that captures the current knowledge of response/resistance to

PI3K⍺ inhibitors in (ER-positive PIK3CA-mutant )

JGT Zañudo et al. (2017)

Cancer Convergence 1, 5.

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance



Resistance to PI3K inhibitors

We used the model to systematically search for PI3Ki resistance mechanisms

New predictions: knockdown of FOXO3 reduces sensitivity to PI3K inhibition
and is a potential resistance mechanisms.

JGT Zañudo et al. (2017)
Cancer Convergence 1, 5.

Survival Death

Red:  High activity
Blue: Low activity

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance



Ctrl Taselisib

We experimentally confirmed that FOXO3 KD decreases sensitivity to PI3K
inhibitors and is a potential resistance mechanism

Re
ad

 c
ou

nt
s

FOXO3 KD (CRISPR screen)
p<2·10-3

FDR<10-1

DMSO Alpelisib

Re
ad

 c
ou

nt
s

MCF7 T47D

FOXO3 KD (CRISPR screen)
p<10-5

FDR<10-3

FOXO3 KD and resistance to PI3Ki
J.G.T. Zañudo

Math models of biological networks: metastatic 
reprogramming and cancer drug resistance

JGT Zañudo et al. 
Cancer Research 81, 
4603-4617 (2021)



pro-survival
anti-survival

Science Translational Medicine 2015 Science Translational Medicine 2017

FOXO3 KD and resistance to PI3Ki

FOXO3 knockdown result is surprising given its pro-survival role in feedback regulation

FOXO3 has pro-survival (feedbacks) and anti-survival (tumor suppressor) effects

Our model captures that the tumor suppressor effect can dominate

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance

JGT Zañudo et al. 
Cancer Research 81, 
4603-4617 (2021)



Synergy with PI3Kα inhibitors

We systematically searched for synergistic combinations with PI3K⍺ inhibitors

New predictions: synergy with the inhibition of anti-apoptotic proteins MCL1
and BCL2 (BH3 mimetics).

JGT Zañudo et al. (2017)
Cancer Convergence 1, 5.

Survival Death

Red:  High activity
Blue: Low activity

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance



β"#$ = 0.45
β"#$

Synergy with PI3Kα inhibitors

MCF7 T47D
s63845 + navitoclax:

MCL1 + BCLXL/BCL2

inhibitor

s63845:

MCL1

inhibitor

We experimentally showed that BH3 mimetics and PI3Kα inhibitors are

synergistically efficacious, and the BH3 mimetic needed is cell-line-specific

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance

JGT Zañudo et al. 

Cancer Research 81, 

4603-4617 (2021)



T47D - ExperimentsMCF7 - Experiments

MCF7 - Model T47D - Model

MCL1 + BCLXL/BCL2
inhibitor

MCL1
inhibitor

BH3 mimetics as effective drug combos

BCL-XL expression explained the differential sensitivity to BH3 mimetics and
updated model reproduced the cell line-specific behavior

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance

JGT Zañudo et al. 
Cancer Research 81, 
4603-4617 (2021)



Conclusions

Mathematical models and experimental work to identify potential resistance
mechanisms and drug combinations for PI3K⍺ inhibitors in ER+ PIK3CAmut breast cancer

Experimentally confirmed model’s predictions: FOXO3 knockdown as a potential
resistance mechanism, PI3K⍺ inhibitors + (tumor-specific) BH3 mimetics as an
efficacious drug combination

J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance

JGT Zañudo et al. Cancer
Research 81, 4603-4617 (2021)
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J.G.T. Zañudo
Math models of biological networks: metastatic 

reprogramming and cancer drug resistance



Thank you for your time!

Jorge Gómez Tejeda Zañudo
Postdoctoral researcher
Broad Institute of MIT and Harvard
Dana-Farber Cancer Institute

Contact: jgtz@broadinstitute.org
@jgtzanudo (Twitter)
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Synergy with PI3Kα inhibitors

We built an updated version of the model incorporates:
(1) cell-line-specific aspects
(2) discrepancies found by our experiments

J.G.T. Zañudo
Network models of ER+ breast cancer identify PI3Kα 
inhibitor sensitivity factors and drug combinations

JGT Zañudo et al. 
Cancer Research 81, 
4603-4617 (2021)



Steps in constructing a mathematical model of a signaling network

Building the ER+ PIK3CAmut BC model

Response to PI3K⍺ inhib. in
ER+ PIK3CA mut BC

Phenomenon:
Identify cancer process

Identify nodes and edges,, and 
regulatory functions for each node

Addition of deregulated elements 
(e.g. mutations) and external stimuli (e.g. drugs)

Simulate information propagation,
Determine cellular outcomes

Prediction

Validation 

Response/resistance to PI3K⍺ inhib. 
(in vitro, in vivo, clinical literature). 
Tissue-specific interactions (breast 

cancer)

Known resist. mechanisms, 
clinically relevant drugs in BC

Proliferation, Apoptosis
in response to PI3K⍺ inhib., resist. 

mech., other drugs

Potential PI3K⍺ inhib. resist. 
mechanisms, drug combos

PI3K⍺ inhib. response in cell lines 
with predicted resist. mechanisms, 

drug combos

J.G.T. Zañudo
Network models of ER+ breast cancer identify PI3Kα 
inhibitor sensitivity factors and drug combinations

Zañudo, Steinway, & 
Albert (2018). Curr. 
Opinion in Syst. Biol



s63845 + navitoclax:
MCL1 + BCLXL/BCL2
inhibitor

s63845:
MCL1
inhibitor

Synergy with PI3Kα inhibitors

BH3 mimetics and PI3Kα inhibitors are as synergistically efficacious (or more) than
other known synergistic combinations, and cause more apoptosis

J.G.T. Zañudo
Network models of ER+ breast cancer identify PI3Kα 
inhibitor sensitivity factors and drug combinations

T47DMCF7

JGT Zañudo et al. 
Cancer Research 81, 
4603-4617 (2021)



Studying the relationship between DNA damage 
in cancer cells and immune responses

Joshua François
Postdoctoral Research Fellow, Harvard Medical School

PAVES 2021



My Personal Journey

1

University of Maryland, 
Baltimore County

B.S. Mechanical Engineering

University of California, 
San Diego

Ph.D. Bioengineering



Mechanics of Neutrophil Migration in 3-D environments

2

• Built custom migration chamber for directed 3-D neutrophil migration in collagen gels

• Developed automated label and label-free cell tracking methods for tracking > 20,000 cells

François et al. Science Advances. 2021



3

0.25 mg/mL, untreated 0.25 mg/mL, blebbistatin 0.25 mg/mL, ck666 

1.25 2.50

Mag. Incr. 
Disp. (μm)

Findings
Low-Density 3-D Environments: Neutrophils rely on ability to deform surroundings
High-Density 3-D Environments: Neutrophils rely on ability to turn

Proteins involved in cell contractility, and turning crucial for neutrophil migration in 3-D 
environments

François et al. Science Advances. 2021

3-D neutrophil migration is dependent on ability 
to deform local environment and turn



My Personal Journey

4

University of Maryland, 
Baltimore County

B.S. Mechanical Engineering

University of California, 
San Diego

Ph.D. Bioengineering

Harvard Medical School

Postdoctoral Research 
Fellow, 

Systems Biology



p53 dynamics can alter cell fates

p53 recognizes cellular stress
- DNA damage
- unusual growth signals
- oncogene activation
- hypoxia
- etc.

Different p53 dynamics linked to fate
- Pulsatile    ->  DNA damage repair
- Sustained  ->  Senescence

5



Cellular stress signals in tumors 
can illicit immune responses

Immune system can respond to 
tumor cells after cellular stress

Innate and adaptive responses
- Priming of adaptive immune cells
- Amplification of innate immune response
- Innate and adaptive immune cell 

mediated killing

Major cellular stress sensor is p53

Demaria et al. Nature. 2019

Can p53 dynamics in cancer cells alter immune responses?

6



Time course analysis of gene expression in 
MCF-7 cells after DNA damage

7

t0 t9t8t7t6t5t4t3t2t1

0.75 μM 
nutlin

2.25 μM 
nutlin

4 μM 
nutlin

p5
3

time (hr)

time (hr)

p5
3

Do p53 dynamics induce the expression of immune response related 
genes? Yes! 

Are some of these immune response genes p53-dependent? Yes!

Do p53-dependent immune response gene expression dynamics differ 
with pulsatile or sustained p53 expression? Yes!



DNA strand elongation involved in DNA replication
nuclear DNA replication

cell cycle DNA replication
signal transduction involved in DNA integrity checkpoint

DNA damage response, signal transduction by p53 class mediator
signal transduction in response to DNA damage

mitotic sister chromatid segregation
DNA integrity checkpoint

mitotic cell cycle checkpoint
DNA−dependent DNA replication

sister chromatid segregation
nuclear chromosome segregation

cell cycle checkpoint
cell cycle arrest

intrinsic apoptotic signaling pathway
positive regulation of cell cycle process

ribosome biogenesis
mitotic nuclear division

G1/S transition of mitotic cell cycle
cell cycle G1/S phase transition

signal transduction by p53 class mediator
chromosome segregation

DNA replication
positive regulation of cell cycle

nuclear division

0.01 0.02 0.03 0.04
GeneRatio

Count
50

100

1e−11

5e−12

p.adjust

Over-representation of genes belonging to gene ontologies 
expected to be involved in DNA damage pathways

8



Results and Current/Future Work

Preliminary results

• Differential DNA damage responses in cancer cells result in expression of p53-dependent 

immune response genes

Current/Future work

• Experimentally validate gene expression dynamics of CSF-1, PAI-1, TNFRSF10B, and FAS

• Investigate functionally consequences of differential expression dynamics for immune cells

9
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