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Coming Soon: Early Investigator Advancement Program (EIAP)

Goal: to facilitate the advancement of scientists from diverse backgrounds

to independent investigators

» Enhance professional skills

»  Guide preparation of an R01 grant application

» Provide access to a mentoring and peer network

« Grow a community of emerging independent investigators from diverse
backgrounds

Focus on Diversity: Participants must be U.S. citizens, legal permanent
residents, or non-citizen nationals

Individuals from groups identified in NIH's NIH Notice of Interest in Diversity

Notice of Interest in Diversity (NOT-OD-20-
031) as underrepresented in the biomedical,
clinical, behavioral, and social sciences are
particularly encouraged to apply.

 Race and ethnicity

Participant

 Disability
» Disadvantaged background

m) NATIQPNAL CANCER INSTITUTE


https://grants.nih.gov/grants/guide/notice-files/NOT-OD-20-031.html

EIAP Program Components

Pre-Application Webinar
December 9, 2021, 4-5 pm ET

Program Components

Educate via

: Grant Application . .
Monthly Webinars Preparation Outcomes for Each Participant

(open to public)

Complete a R01 grant proposal
Become part of a group of peers with
similar career goals

Engage with mentors who are
established investigators

Participant

Mentors and Virtual Hub

Professional (partially open to
Network public)

Become familiar with job and funding
opportunities

Develop professional and
management skills critical to growing

Contact: Alison Lin, PhD a research group

EIAP@nih.gov

m) NAT L CANCER INSTITUTE
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httos://www.cancer.qov/about-nci/organization/crchd
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Cancer systems biology

integrating
experimental and computational
approaches
to study the complexities of cancer



Cancer systems biology

Tumor-immune interactions Immune cell interactions

l Immune
attack
Tumor
cell death

Cancer Cancer-associated
cell Fibroblast &
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Song, Li, Makaryan and Finley, 2021. Curr Opin Sys Biol

Endothelial cell




Systems biology

new

hypotheses

new
software

Source: Institute for Systems Biology; OmicScouts
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Systems biology

Biological system analysis
and model formation

Prediction and
hypothesis refinement

Experimental
design

“Dry” experiments
(simulation)

Data and hypothesis- Model
driven modeling

Analysis Experiment
Data Data acquisition
—

- Transcriptome
Experimental
data analysis Proteome
Interactome
Metabolome

Source: Agilent Technologies



Cancer systems biology: Computational approaches

Mathematical Models: Translating big data to the clinic

Big data Clinic
Mathematical Drugs
modeling
Individual
progress
Angiogenesis Tumor Diagnostic
Tests/Apps

® Immune cells Stroma

Personalized/
targeted
therapies

Mathematical Oncology Content Collection JCO® Clinical Cancer |nfo'rm stics
DOI: 101200/CCI19.00017 'An American Society of Clinical Oncology Journal

Rockne and Scott. 2019. JCO CCl 5



Cancer systems biology: Experimental approaches

Genomics Y0000 Differential Biological Networks Degmep e { Personalized
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Shi, et al. 2020. Front. Mol. Biosci



Cancer systems biology

integrating
experimental and computational
approaches
to study the complexities of cancer
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Applying sys biology

Get connected!

Association for Cancer Systems Biologists (ACSB) —

fosters, promotes and advocates for cancer systems
biology and the needs of the researchers in the field

NIH Cancer Systems Biology Consortium

e Division of Cancer Biology Undergraduate Research Program
(DCB-SURP): Summer 2022

e Junior Investigators Meeting: late summer 2022

Systems Approaches for Cancer Biology (SACB) Conference
e October 19-22, 2022
e Virtual + in-person (Woods Hole, MA)
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Goals

* We are combining multiscale mathematical
approaches with novel cellular quantification
experimental technologies in order to:

— To gain a deeper, more robust understanding of
tumor-immune dynamics

— To optimize combination immunotherapy and
receptor kinase targeted therapy

JACKSON PAVES 10 M ‘ I_S A MATHEMATICS

UNIVERSITY OF MICHIGAN



Aggressive Bladder Cancer Mutations

Figure credit: https://www.medscape.com/viewarticle/925321

 Genomic analysis of bladder cancer has identified
frequent alterations of FGFRs, including mutations

of FGFR3 that activate the receptor via ligand-

independent dimerization = increased cell proliferation
and survival.

JACKSON PAVES 10 M ‘ I_S A MATHEMATICS

UNIVERSITY OF MICHIGAN



Targeted Therapy

* Clinical trials using SMls
of FGFR3 are leading to
promising clinical
responses for patients 1

MAPK insbitors | Rak

with FGFR3 mutations. ¥ & 0 C i
* Last year, the FDA o [~ 1® @ e

approved the first FGFR3 ¢ . | ®

targeted therapy for i

b I argels (e g..éb)(? inlsbitors)
ddadaer cancer ol
(] survival, call prolileration tabol agatve f

(survival, call prolileration, blosynihesis, metabolism, nagative feadback) .
Figure credit: https://www.medscape.com/viewarticle/925321
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Immunotherapy
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* MADbs targeting the PD-1/PD-L1 pathway have resulted in
favorable outcomes in advanced bladder cancer.

* Despite the activity of these drugs in some patients, the
objective response rate remains less than 25%.

JACKSON PAVES 10 M | I_S A MATHEMATICS
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Mutations Hinder Immunotherapy
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Combination Therapy

Active FGFR3 Targeting
Dimer FGFR3
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Co-acting combination of potent immune checkpoint

inhibitors and specific FGFR3 inhibitors potentially
offers an advance in targeted therapeutics for cancer.

JACKSON PAVES 10 M ‘ I_S A MATHEMATICS
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Active FGFR3 ,
Dimer Targeting FGFR3

B {lﬂﬂﬂﬂ[}ﬂﬂﬂEﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂlﬁﬂﬂﬂl}ﬁﬂﬂﬂHEHHHBHH

SMI

Optimizing Combination Therapy

Figure Credit: Durvalumab in NSCLC: latest evidence and clinical potential. Ther Adv Med Oncol. 2018

A powerful and practical way to optimize novel drug
combinations for clinical cancer treatment is to use

data-driven computational models.
JACKSON PAVES 10 M ‘ I_S A MATHEMATICS

UNIVERSITY OF MICHIGAN



Preliminary Data: Live Cell Tracking

* My collaborators
developed a novel
pipeline to track
and quantify the
interactions of

living tumor cells
and immune cells,
including cell death.

JACKSON PAVES 10 M | I_S A MATHEMATICS

UNIVERSITY OF MICHIGAN



Preliminary Data: Live Cell Tracking
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e Evidence of both rapid and slow killing during tumor-immune interactions.

 The proportion of slow and rapid killing within a solid tumor could have
significant impact on immune mediated anti-cancer effects.

JACKSON PAVES 10 M ‘ I_S A MATHEMATICS

UNIVERSITY OF MICHIGAN




Impact of Fast/Slow Killing Probabilities
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FGFR3 Mutation

and Immune Dynamics
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Model Predictions: Monotherapies

* We can predict
when targeted
therapy
outperforms the
immune therapy.

 The heatmap shows
the difference
between the
immune and
targeted therapies
on day 25 as the
impact of the
mutation on
proliferation and
survival varies.

JACKSON PAVES 10
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Model Predictions - Combo Therapy

Anti-FGFR3
Anti-PDL1
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No treatment 50 34 7 (14%)
Anti-FGFR3 50 42 18 (36%)
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Combination therapy 50 43 (86%)
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Comparing Dosing Strategies

Model prediction of tumor volume on day 25
(% reduction in tumor volume relative to no treatment)
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Next Steps: Agent-based Modeling

Y Free Drug Concentration e
Repeat p s ow ig
at small PDE‘/ Diffusion CellColorLegend %
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() Apoptotic Tumor Cell
N ODEs«Reactions

Molecular Dynamics Cell Fate Decisions Emergent Behavior

JACKSON PAVES 10 M | I_S A MATHEMATICS
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Collaborators

Dr. Alexander Pearson, MD PhD Dr. Randy Sweis, MD
University of Chicago University of Chicago

Dr. Kamaldeen Okuneye, PhD Dr. Daniel Bergman

Applied Biomath, Boston University of Michigan Shirlyn Wang

University of Michigan
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MATHEMATICS

UNIVERSITY OF MICHIGAN
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Mathematical models of biological networks:
applications to metastatic reprogramming and
cancer drug resistance

Jorge Gomez Tejeda Zanudo
Postdoctoral Associate
Broad Institute of MIT and Harvard

Dana-Farber Cancer Institute
Nikhil Wagle’s lab



1) Research program: Modeling decision-making
of the biological networks underlying cancer

2) Academic trajectory

3) Resistance mechanisms to targeted therapies
in breast cancer



Math models of biological networks: metastatic
reprogramming and cancer drug resistance

J.G.T. Zafiudo %BROAD

INSTITUTE

DANA-FARBER

CANCLER INSTITULL

Cellular decision-making emerges from the dynamics of the underlying
complex intracellular network
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Understand and model how the dynamics of intracellular networks give
rise to decision-making in cancer cells

Intracellular Mathematical Decision-making
network model dynamics

C 1l
aanrce _ Drug

-+ therapy
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N etwo rk- ba sed m Od e I I ng Math models of biological networks: metastatic DFI\IN\TSC;\LI:];ER
reprogramming and cancer drug resistance E Camcik insrirere

Understand: Connecting the network structure and function to
decision-making dynamics

Network structure + Decision-making dynamics
mathematical model + network control theory

J.G.T. Zaiiudo et. al. PLoS Comp. Bio. 2015

J.G.T. Zaiiudo et. al. PNAS 2017

J.G.T. Zaiiudo et. al. Physical Biology 2019

J.C. Rozum, J.G.T. Zaiiudo et. al. Science Advances 2021




J.G.T. Zafiudo ZBROA
Dyn amics of cancer netwo rks Math models of biological networks: metastatic DFI\IN\TSC;\LRT];ER
reprogramming and cancer drug resistance E Camcik insrirere

Model: Building models of the dynamics of intracellular networks
underlying decision-making processes in cancer, to predict:

Nodes that block metastatic Mechanisms of drug resistance and
reprogramming drug combinations
(EMT in liver cancer) (targeted therapies in breast cancer)

SN Steinway, JGT Zanudo, et al. Cancer Res. (2014). JGT Zaiiudo, et al. Cancer Convergence. (2017).
SN Steinway*, JGT Zaiudo*, et al. npj Syst. Biol. & Appl. (2015). JGT Zaiudo, et al. Cancer Research. (2021).
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Math models of biological networks: metastatic
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Academic trajectory

'~ PennState
'3 Postdoc #2 % %};{9#?‘1[:)
Broad Institute / Dana-Farber DANA-FARBER
Ph.D. Cancer Systems Biology, Genomics
Penn State University (Nikhil Wagle, Réka Albert)

Physics (Réka Albert)
- Computational cancer biology

- Math. modeling (tools) - Translational cancer genomics
- Cancer math. modeling - Wet-lab experiments
(applied) - Math modeling
| | I |
2009 2016 2019 2022
Coll - Postdoc #1 Instructor
UO degg dalai Penn State University / Broad Institute Broad Institute / Dana-Farber
y e buadalajara Physics / Cancer Systems Biology Cancer Genomics
(Mexico) (Réka Albert, Nikhil Wagle) (Nikhil Wagle)
) :\DAhﬁiCS dell - Math modeling (tools / applied to cancer) - Computational cancer biology
- Math. moaeling - Wet-lab experiments - Translational cancer genomics
- Computational cancer biology
- Translational cancer genomics g %&Q@P

DANA-FARBER

.ﬂ‘ Pennstate EBROAD CANCLER INSTITULILE
Z S INSTITUTE
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Model: Building models of the dynamics of intracellular networks
underlying decision-making processes in cancer, to predict:

Nodes that block metastatic Mechanisms of drug resistance and
reprogramming drug combinations
(EMT in liver cancer) (targeted therapies in breast cancer)

SN Steinway, JGT Zanudo, et al. Cancer Res. (2014). JGT Zaiiudo, et al. Cancer Convergence. (2017).
SN Steinway*, JGT Zaiudo*, et al. npj Syst. Biol. & Appl. (2015). JGT Zaiudo, et al. Cancer Research. (2021).
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PI3Ka inhibitors in breast cancer Math models of biological networks: metastatic ST
reprogramming and cancer drug resistance E Corcin tharirurs

In 2019, alpelisib (PI13Ka inhibitor) became the first approved therapy
specifically for metastatic ER-positive breast cancer with PIK3CA mutations

The NEW ENGLAND JOURNAL of MEDICINE

PIK3CA mutated cohort

1.0+

ORIGINAL ARTICLE ‘

0.9

0.8+
0.74

Alpelisib for PIK3CA-Mutated, Hormone

Receptor—Positive Advanced Breast Cancer o

0.5
0.4+

0.3+ Alpelisib+fulvestrant

Probability of Progression-free Survival

0.2+
_| Hazard ratio for progression or death, 0.65 (95% Cl, 0.50-0.85)
ol P<0.001 Placebo +fulvestrant
Fabrice, et al. NEJM (2019) 00 < co. S v ulv R
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 31
Month

Which of the known resistance mechanisms will be observed clinically?

Are we missing important resistance mechanisms?
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Why do we need math models? Math models of biological networks: rr_1etastatic E DANAFARBER
reprogramming and cancer drug resistance CANCER LNSTITULL

Lessons from drug resistance to BRAFi (and other targeted therapies):
signaling pathways are not linear cascades — feedback regulation is important

Melanoma (BRAF mutant) Colorectal cancer (BRAF mutant)
Sensitive to BRAFi Resistant to BRAFi due to EGFR feedback
o —
RAS RAS
: Feedback i
e BRAFI regulation | €L €SP — BRAFI
MEK MEK
ERK ERK
Survival, Proliferation Survival, Proliferation

Prahallad et al. Bernards’
lab. Nature (2012)
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N etwork models a nd d rug res'sta nce Math models of biological networks: rr_1etastatic E DANAFARBER
reprogramming and cancer drug resistance CANCEE INSTITULD

Our approach: Mathematical model of the network of signaling pathways relevant
to PI13K-alpha inhibitors in ER+ PIK3CA mutant breast cancer

Network of Mathematical Network dynamics
signaling pathways model and decision-making

Cancer cell

;. Drug
~.sensitivity

PI3Ka
inhibitor : g
o)

RTK L™
r signaling _l
MAPK | PI3K
pathway [—>1 pathway
| 2 ER
AKT ><mTORc1 signaling
pathway pathway
I__I
é O Y VY \ 2

Apoptosis Proliferation

dl

Zaiiudo, Steinway, & Albert (2018).
Curr. Opinion in Syst. Biol. 9, 1-10.




J.G.T. Zaiudo g BROAD
Math models of biological networks: metastatic NSTITUTE
reprogramming and cancer drug resistance

Breast cancer network model

DANA-FARBER

CANCLER INSTITULL

We built a network that captures the current knowledge of response/resistance to
PI3Ka inhibitors in (ER-positive PIK3CA-mutant )

Neratinib l l 7 l MAPK
pathway
|—<> HER2/HER3 IGFIR K> ESR1 FOXA1 PBX1
Trametinib
PTEN .RTK
6 Y Y signaling
MAPK €< RAS > PIBK [ Alpelisib Fulvestrant
A f . mTORC1
|—* o Everolimus | | patasertib ER-dependent pathway
PDK1 || mTorc2 KA | PIM - l Sty
+ P r l KMT2D —4 + PI3K
sGk1 | PDK1,, mTORC2, MYC pathway
1VI o Palbociclib ER
AKT ; :
— A 4 é 7 signaling
< 'l p21/p27 CDK4/6 cyclin D
Tsc K-
<> T O é ¢ * AKT
o 6 pathway
<> <> <> N By cycE/CDK2 cycD/CDK4/6
| Foxos [ i A
— l Apoptosis
Y
EIF4F S6K Rb
£ Proliferation
Y Q ¢ \ A Q
BIM BAD BCL2 MCL1 |« Translation —  E2F
l l Drugs
Y Y Y Y -
Apoptosis Proliferation w etal. (2017)
Cancer Convergence 1, 5.
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We used the model to systematically search for PI13Ki resistance mechanisms

———————————— |
|
i <---  PI3K, PIP3, |
MAPK, HER2/3 | __ , SRR l
ERettentores '
¢ _______ ER transcription,
* MYC
mTORC1, TSC,
PIMFSCGKLES] 5| PRAS40, EIF4F,
AKT, FOX03 i
S6K, translation

I

/

o

SR I . Y

1
: cycD/CDK46, cyclinD, CDK46,
!'| p21/p27, cycE/CDK2, Rb, E2F

T . . O PI3K pathway [ mTORC1 pathway
Red: ngh activity [0 MAPK pathway [ ER signaling

Blue: Low activity O AKT pathway O Apoptosis
O Proliferation

New predictions: knockdown of FOXO3 reduces sensitivity to PI3K inhibition
and is a potential resistance mechanisms.

JGT Zaiiudo et al. (2017)
Cancer Convergence 1, 5.
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We experimentally confirmed that FOXO3 KD decreases sensitivity to PI3K
inhibitors and is a potential resistance mechanism

MCF7

FOXO3 KD (CRISPR screen)
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Cancer Research 81,

2000 —
w
€
5 1000
S
- 900
©
Q
o
200 ] °
T T
DMSO Alpelisib
2 35 sgRNA NT
3
L
8 2 A A A
I p<10”-4 p<10”-4 p<10”-6
T | Py esion4 T pIONS
£
S 1
2
=
o
S 0° = = =
Alpelisib Alpelisib Taselisib
(1 uM) (3 uM) (0.1 pM)
Treatment

4603-4617 (2021)




J.G.T. Zafiudo ZBROAD
FOX03 KD and rESiSta nce to P|3Ki Math models of biological networks: metastatic z

INSTITUTE

E DANA-FARBER
CANCLR INSTITULL

reprogramming and cancer drug resistance

FOXO3 knockdown result is surprising given its pro-survival role in feedback regulation

PI3K inhibition results in enhanced estrogen receptor The brain microenvironment mediates resistance in
function and dependence in hormone receptor-positive  luminal breast cancer to PI3K inhibition through HERS3
breast cancer activation

Science Translational Medicine 2015 Science Translational Medicine 2017

FOXO3 has pro-survival (feedbacks) and effects

Our model captures that the tumor suppressor effect can dominate

pro-survival = = -

) T T —
0 L
RTK PI3K :
signaling| 4 pathway [~ L 2K { ER
Q + ‘L I o{p2iip27 signaling ﬁ
MAPK AKT 3 mTORC1
| pathway pathway pathway
L A
FOXO3 -
* é Q \ 4 JGT Zafiudo et al.
- Apoptosis Proliferation Cancer Research 81,
4603-4617 (2021)
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We systematically searched for synergistic combinations with PI3Ka inhibitors
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New predictions: synergy with the inhibition of anti-apoptotic proteins MCL1
and BCL2 (BH3 mimetics).

JGT Zaiiudo et al. (2017)
Cancer Convergence 1, 5.




Synergy with PI3Ka inhibitors
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We experimentally showed that BH3 mimetics and PI3Ka inhibitors are
synergistically efficacious, and the BH3 mimetic needed is cell-line-specific

Relative growth rate

Synergistic efficacy score (B obs)
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JGT Zaiudo et al.
Cancer Research 81,
4603-4617 (2021)
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BCL-XL expression explained the differential sensitivity to BH3 mimetics and
updated model reproduced the cell line-specific behavior

MCF7 - Experiments T47D - Experiments
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inhibitor
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T47D - Model
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JGT Zafiudo et al.

Cancer Research 81,
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Mathematical models and experimental work to identify potential resistance
mechanisms and drug combinations for PI3Ka inhibitors in ER+ PIK3CA™'t breast cancer

Experimentally confirmed model’s predictions: FOXO3 knockdown as a potential
resistance mechanism, PI3Ka inhibitors + (tumor-specific) BH3 mimetics as an

efficacious drug combination

JGT Zaiiudo et al. Cancer
Research 81, 4603-4617 (2021)

A Build network-based B Identify potential C Test potential resistance D Refine model based
mathematical model of resistance mechanisms mechanisms and drug on model/experiment
PI13Ka inhibitor drug and drug combinations combinations in ER* PIK3CA discrepancies and
response in breast cancer based on model mutant cell lines cell line-specific effects
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inhibitor sensitivity factors and drug combinations

We built an updated version of the model incorporates:
(1) cell-line-specific aspects
(2) discrepancies found by our experiments
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Steps in constructing a mathematical model of a signaling network

Response to PI3Ka inhib. in Phenomenon:
ER+ PIK3CA mut BC Identify cancer process
\ 4
Response/resistance to PI3Ka inhib. Identify nodes and and

(in vitro, in vivo, clinical literature).
Tissue-specific interactions (breast

regulatory functions for each node

cancer) 3
Known resist. mechanisms, Addition of deregulated elements
clinically relevant drugs in BC (e.g. mutations) and external stimuli (e.g. drugs)
A

Proliferation, Apoptosis
in response to PI3Ka inhib., resist.
mech., other drugs

Simulate information propagation,
Determine cellular outcomes

Potential PI3Ka inhib. resist. ‘ :
mechanisms, drug combos Prediction
PI3Ka inhib. response in cell lines ¥ - _
with predicted resist. mechanisms, Validation e oote) e &

drug combos Opinion in Syst. Biol




Synergy with PI3Ka inhibitors

J.G.T. Zaiudo

Network models of ER+ breast cancer identify PI3Ka
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BH3 mimetics and PI3Ka inhibitors are as synergistically efficacious (or more) than
other known synergistic combinations, and cause more apoptosis

MCF7
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Drug combination
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MCL1 + BCLXL/BCL2
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JGT Zafiudo et al.
Cancer Research 81,
4603-4617 (2021)
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Mechanics of Neutrophil Migration in 3-D environments

dHL.60 cell

30 min

collagen

* Built custom migration chamber for directed 3-D neutrophil migration in collagen gels

* Developed automated label and label-free cell tracking methods for tracking > 20,000 cells

2 Francois et al. Science Advances. 2021



3-D neutrophil migration is dependent on ability
to deform local environment and turn

Mag. Incr.
Disp. (um) 4 1.25 2.5

Findings
Low-Density 3-D Environments: Neutrophils rely on ability to deform surroundings

High-Density 3-D Environments: Neutrophils rely on ability to turn

Proteins involved in cell contractility, and turning crucial for neutrophil migration in 3-D
environments

3 Francois et al. Science Advances. 2021
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P53 dynamics can alter cell fates

P53 recognizes cellular stress
- DNA damage
- unusual growth signals
- oncogene activation
- hypoxia

- etc.

Different p53 dynamics linked to fate

- Pulsatile -> DNA damage repair

- Sustained -> Senescence



Cellular stress signals in tumors
can illicit iImmune responses

Immune system can respond to
tumor cells after cellular stress

Innate and adaptive responses

- Priming of adaptive immune cells
- Amplification of innate immune response

- Innate and adaptive immune cell
mediated killing §o x—

Major cellular stress sensor is p53

Can p53 dynamics in cancer cells alter immune responses?

6 Demaria et al. Nature. 2019



Time course analysis of gene expression in
MCF-7 cells after DNA damage
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Do p53 dynamics induce the expression of immune response related
genes? Yes!
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Are some of these immune response genes p53-dependent? Yes!

Do p53-dependent immune response gene expression dynamics differ
with pulsatile or sustained p53 expression? Yes!
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Over-representation of genes belonging to gene ontologies
expected to be involved in DNA damage pathways
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Results and Current/Future Work

Preliminary results

* Differential DNA damage responses in cancer cells result in expression of p53-dependent

Immune response genes

Current/Future work

* Experimentally validate gene expression dynamics of CSF-1, PAI-1, TNFRSF10B, and FAS

* Investigate functionally consequences of differential expression dynamics for immune cells
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