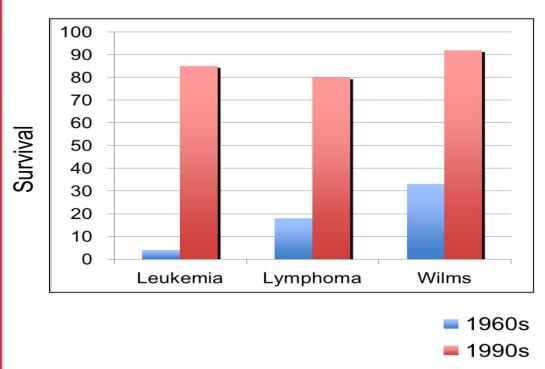
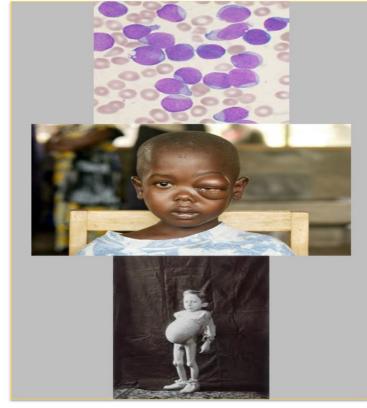

Genomics

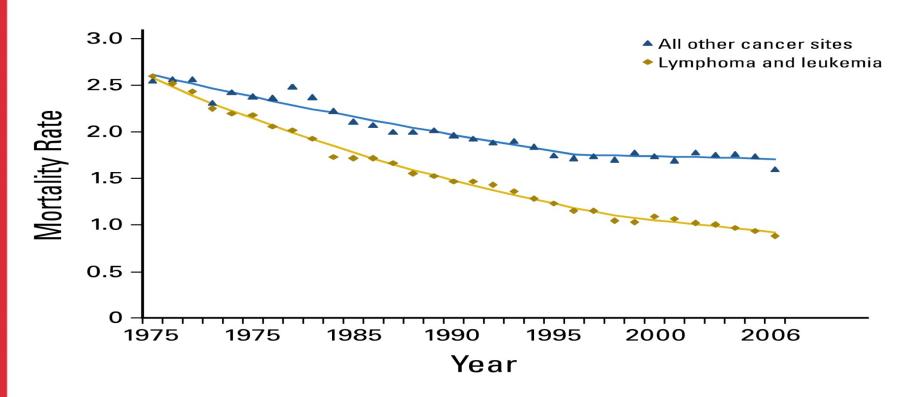

Outline


Outline

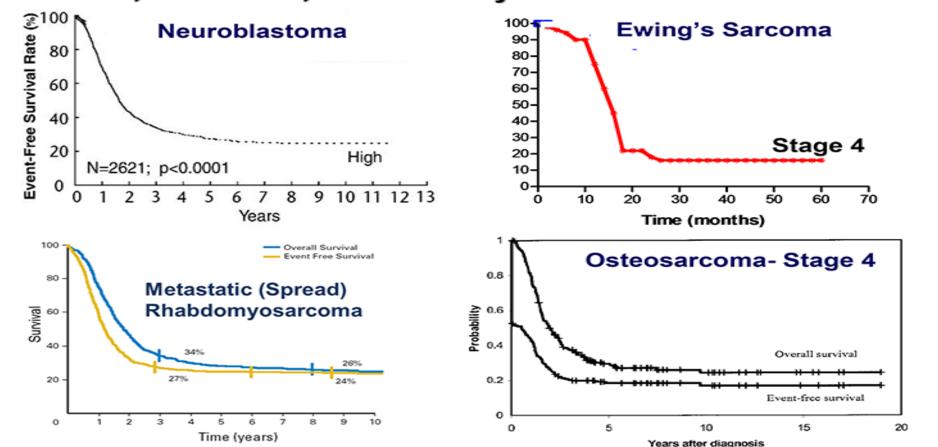
- Success and Challenges of Treating Pediatric Cancers
- Genomics
- Next-generation Sequencing
- Application of next-generation sequencing:
 - Diagnosis
 - Identification of molecular target
- Precision Therapy

Childhood cancer

Childhood cancer: The <u>beginning</u> of a modern medical success story



Courtesy: John Maris


Mortality rates

However in the past 16 years no improvement in mortality rates despite increased intensity of treatment

Pediatric cancers

Metastatic, Recurrent, & Refractory Disease Remains Incurable

Gene expression

The dramatic consequences of gene expression in biology

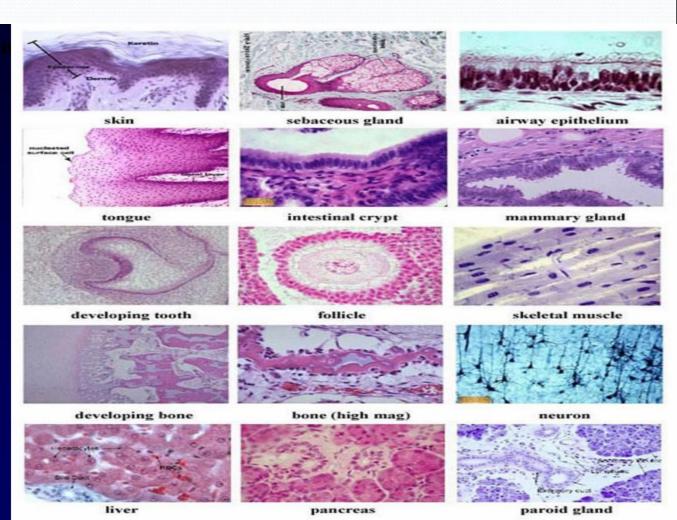
Anise swallowtail, Papilio zelicaon

Same genome

Different expression pattern
Different proteome
Different tissues
Different physiology

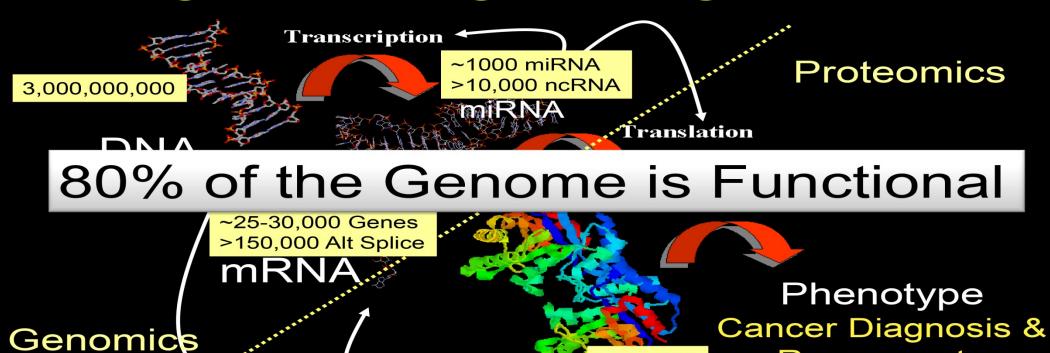
Gene expression

...but the complexity and divers


Same genome or DNA →

•Different expression pattern

•Different proteome

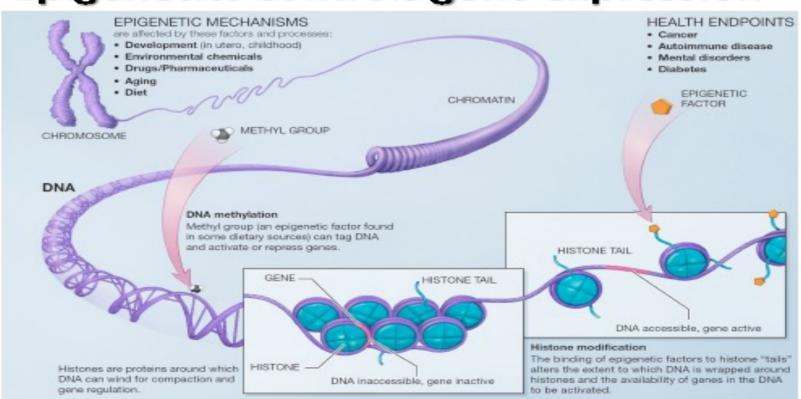

•Different tissues

•Different physiology

Gene expression

Biology is driven by the simultaneous expression of large numbers of genes acting in concert

>500,000

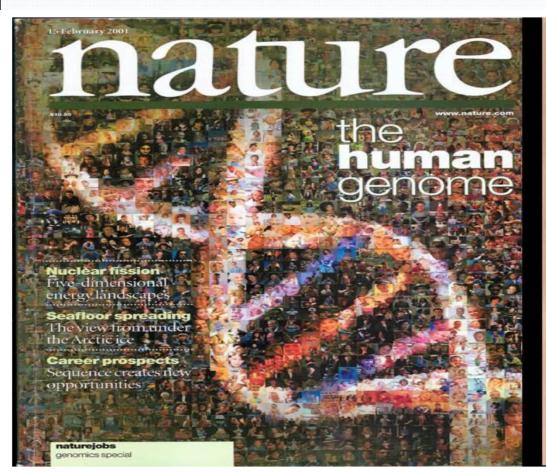

Protein

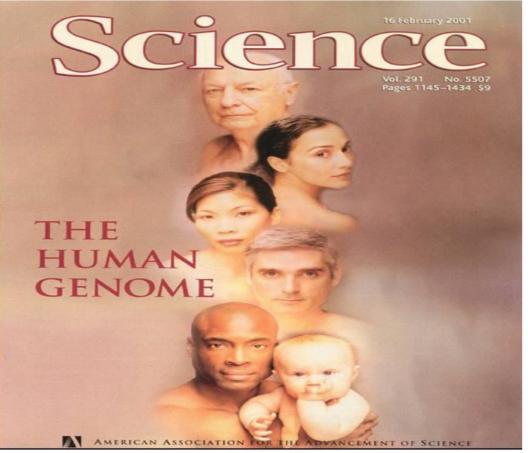
Response to

Treatment

Epigenetics

Epigenetics controls gene expression

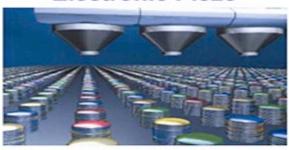

nuas/Varinnaniundu ningawlea genanies/ ligure


Gene measurement

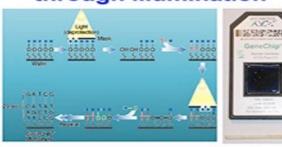
Challenge: how to measure/detect genes and their products in a massively parallel way?

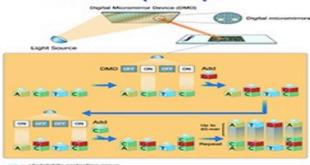
- High-throughput technologies
- Computational power

Human genome

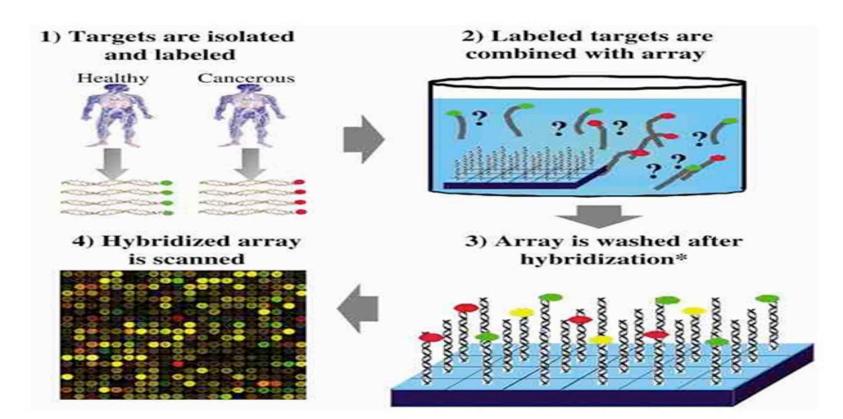

First generation tools

1st generation genomic tool: microarrays


Mechanical


Electronic Piezo

Lithographic masks and de-protection through illumination



Digital micromirrow device (DMD)

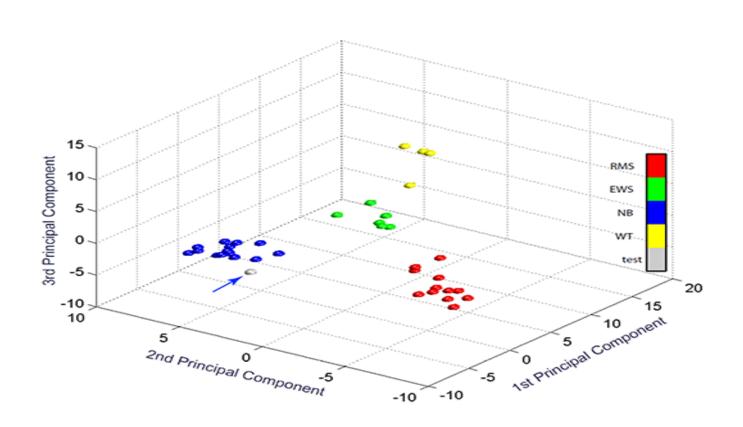
Microarrays

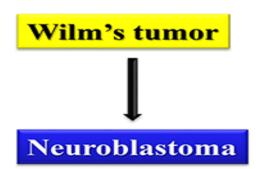
Microarrays – technologies of hybridization



Wilms tumor

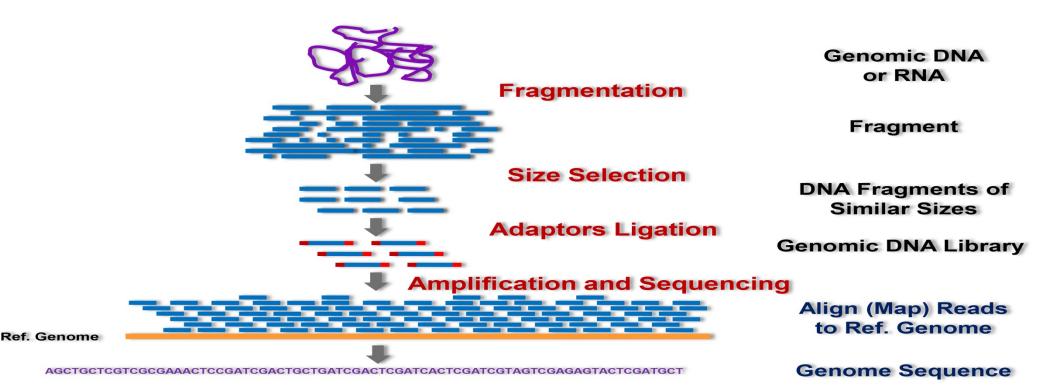
MRI: 9 x 8 x 9 cm mass in upper pole left kidney, tumor in Left renal vein and inferior vena cava



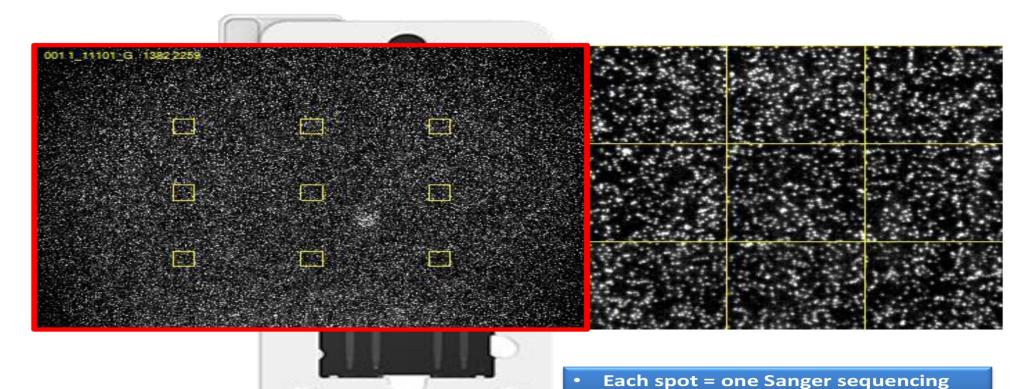

Initial diagnosis: Wilm's tumor

Cancer diagnosis

Diagnosis of cancers using gene expression profiles

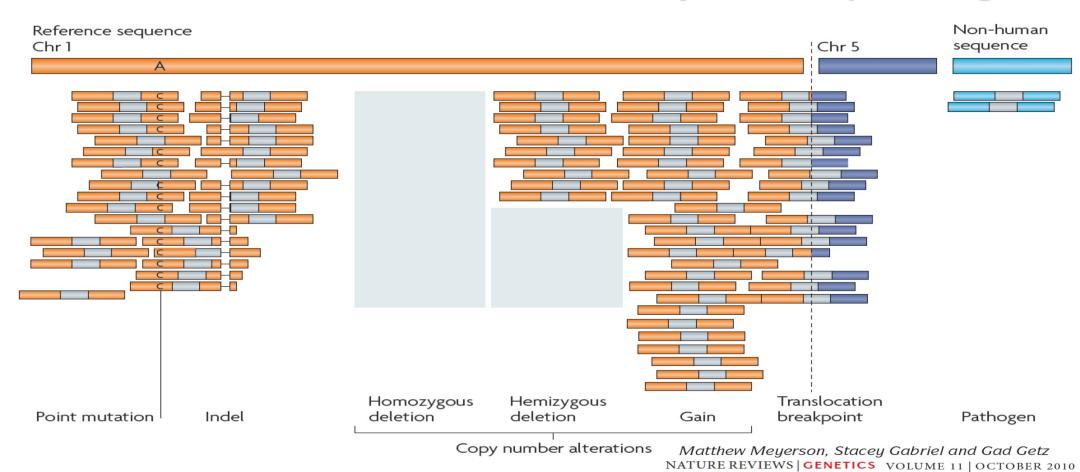


- Patient was switched to high risk neuroblastoma treatment included stem cell transplant
- Doing well 1 yr after diagnosis

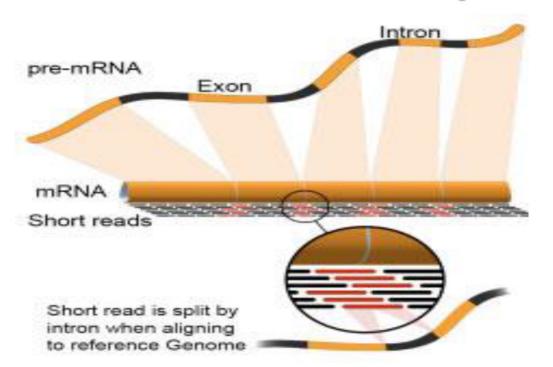

Next-generation sequencing

Next-Generation Sequencing

Massively Parallel Sequencing


Massively Parallel Sequencing

Hundred of millions spot in a flow cell

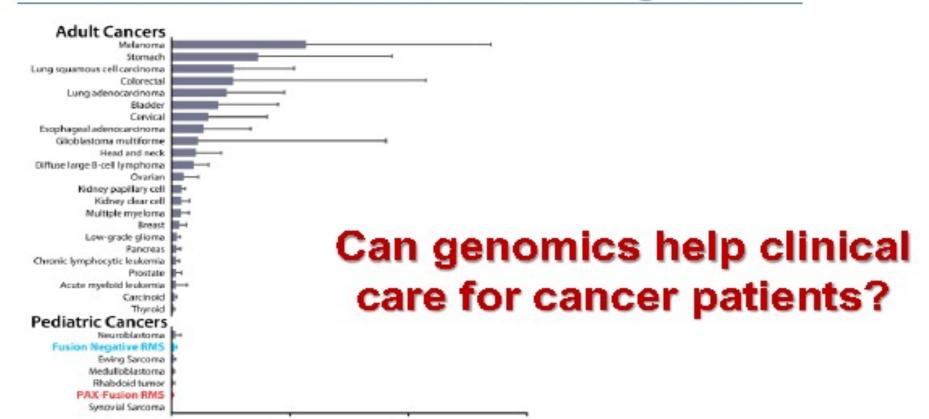

Genomic Alterations

Genomic alterations detected by DNA sequencing

Genomic Alterations

Genomic Alterations Detected by RNA Transcriptome Sequencing

- Digital Gene Expression
- Expressed Mutations
- Alternative Splicing Events
- Expressed Fusion Transcripts
- RNA editing
- Novel Transcripts
- Non-coding RNAs


Next-generation sequencing

Next-generation sequencing: a platform for many applications to study genome and epigenome

- No need of prior knowledge for probe design as in microarrays.
- Parallel sequencing at basepair resolution—massive-throughput
 - Then: ~13 years for the 1st human genome using Sanger sequencing by 20 centers in 7 countries
 - Now: multiple human genomes in 2 days using a NGS sequencer.
- A single platform for different kinds of genomic and epigenomic information
 - DNA and RNA sequencing
 - Genome modification, e.g. methylation
 - Chromatin accessibility, e.g. ATAC-seq
 - Chromatin 3D organization, e.g. Hi-C
 - Protein-DNA interaction, e.g. ChIP-seq

Pediatric cancer mutations

Pediatric Cancers Have A Low Number of Somatic and Actionable Mutations At Initial Diagnosis

Clinomics for precision medicine

Personalized Medicine and Imaging

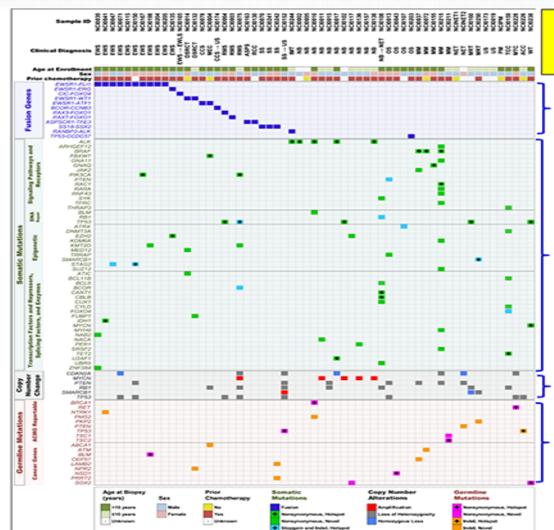
Clinical Cancer Research

MultiDimensional ClinOmics for Precision Therapy of Children and Adolescent Young Adults with Relapsed and Refractory Cancer: A Report from the Center for Cancer Research

Wendy Chang^{1,2,3}, Andrew S. Brohl^{1,4}, Rajesh Patidar¹, Sivasish Sindiri¹, Jack F. Shern^{1,2}, Jun S. Wei¹, Young K. Song¹, Marielle E. Yohe^{1,2}, Berkley Gryder¹, Shile Zhang¹, Kathleen A. Calzone⁵, Nityashree Shivaprasad¹, Xinyu Wen¹, Thomas C. Badgett^{1,6}, Markku Miettinen⁷, Kip R. Hartman^{8,9}, James C. League-Pascual^{2,8}, Toby N. Trahair¹⁰, Brigitte C. Widemann², Melinda S. Merchant², Rosandra N. Kaplan², Jimmy C. Lin¹, and Javed Khan¹

Clin Cancer Res. May 2016

Protocol Number: 10-C-0086


<u>Title:</u> "Comprehensive Omics Analysis of Pediatric Solid Tumors and Establishment of a Repository for Related Biological Studies" or Omics protocol

Study design

Study Design

- Pilot study to determine the utility and feasibility of performing comprehensive genomic analyses to identify <u>clinically actionable mutations</u> in pediatric and young adult patients with metastatic, refractory or relapsed solid tumors
- 59 patients enrolled to the pediatric oncology branch,
 Center for Cancer Research (CCR), NCI (2010-2014)
- Age 7 months-25 years
- •20 diagnostic categories (non-CNS, solid tumors)
- Comprehensive multi-omics exome germline & tumor,
 RNAseq tumor & Illumina Omni SNP arrays of tumor

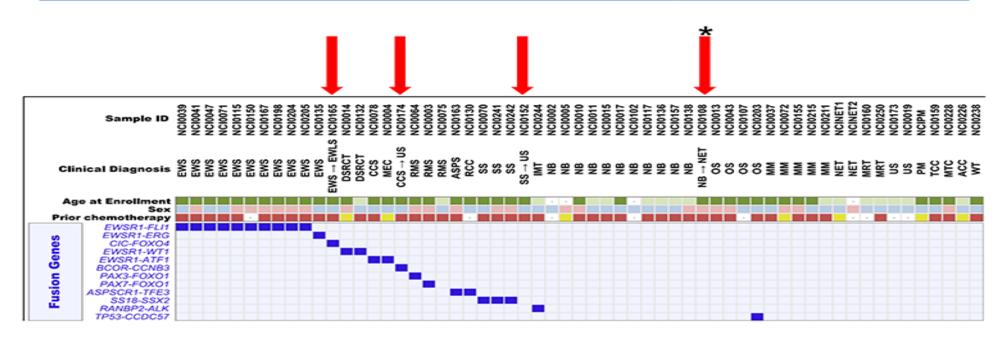
Multi-omics integrated landscape

Multi-Omics Integrated Landscape

RNAseq Diagnostic, Driver, Actionable

DNAseq and RNAseq Somatic: Driver, Actionable

DNA copy number & RNAseq Somatic: Driver, Actionable


DNAseq

Germ line: Disease causing,

Actionable

Fusion genes

Presence or absence of fusion genes and/or expression profiles confirms diagnosis or leads to revision of diagnosis

Germline mutations

~10% of Pediatric and Adolescent Young Adults with Cancers have Actionable Germline Mutations some Therapeutically

Sample	Diagnosis	Gene	Mutation	Disease	Hotspot Notes		ACMG gene	
NCI0072	мм	АТМ	p.Y380fs	Ataxia-Telangiectasia and Cancer Predisposition Syndrome	No	Frameshift Insertion of Tumor Suppressor Gene	Yes	
NCI0010	NB	BRCA1	Q1313X	Hereditary Breast and Ovarian Cancer Syndrome	Yes	Pathogenic, Reportable	Yes	
NCI0010	NB	PMS2	p.K356fs	Lynch Syndrome and Mismatch Repair Cancer Syndrome	No	Frameshift Deletion of Tumor Suppressor Gene	Yes	
	NET	PTEN	p.R14fs	PTEN Hamartoma Tumor Syndrome	No	Frameshift Deletion of Tumor Suppressor Gene	Yes	
	MTC	RET	M918T	Multiple Endocrine Neoplasia 2B	Yes	Pathogenic, Reportable	Yes	
NCI0152	SS → US	TP53	R175H	Li-Fraumeni Syndrome	Yes	Patient Tumor has LOH of Wild-Type TP53 on Other Allele	No	
NCI0226	ACC	TP53	A159K	Li-Fraumeni Syndrome	Yes	Tumor has LOH of Wild-Type TP53 on Other Allele, Novel, 2 Base Non-Frameshift Substitution, c.358_359delGCinsTT	No	
\rightarrow	мм	TSC1	p.S828R	Tuberous Sclerosis Type 1, Lymphangioleiomyomatosis, Focal Cortical Dysplasia, and Everolimus Sensitivity	No	Nonsynonymous SNV, Autosomal Dominant, Patient also has a Germline TSC2 Mutation	No	
—	мм	TSC2	p.T246A	Tuberous Sclerosis Type 2, and Lymphangioleiomyomatosis	Yes	Nonsynonymous SNV, Autosomal Dominant, Patient also has a Germline TSC1 Mutation	No	

Tumor mutations

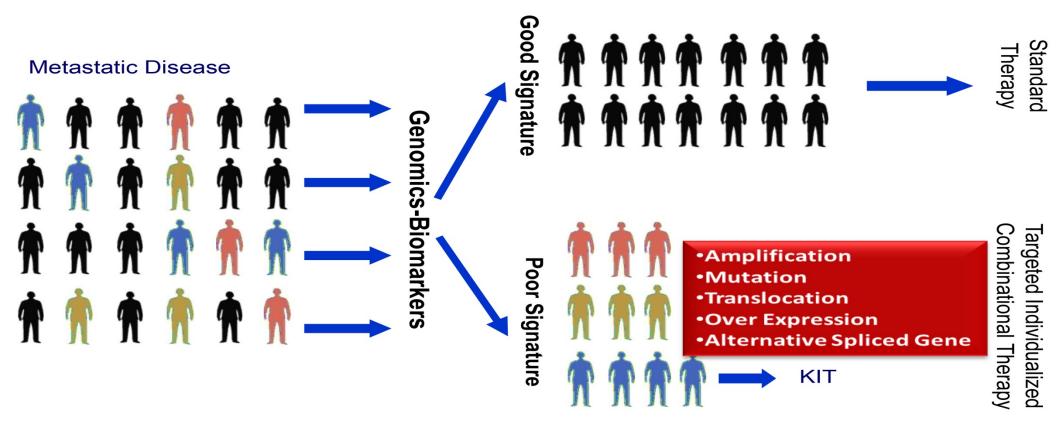
Approximately 50% of Pediatric and Adolescent Young Adults with Cancers have Actionable Tumor Mutations

Sample	Diagnosis	Gene	Stage	Modality	AA Change	Level	Drug	Clinical Trial: Pediatric	FDA Approval in Adults	Exact Mutation vs. Hotspot
NCI0041	EWS	IDH1	Relapsed	WESWTS	p.R132C	2a	IDH1 inhibitors	No	No	Exact
NCI0167	EWS	PIKSCA	Refractory	WESWTS	p.D1017G	2a	PISK/AKT/ mTOR inhibitors	Yes	Yes	Exact
NC#0071	EWS	CDKN2A	Relapsed	SNP Array/WTS	Homozygous loss	3	CDK4/6 inhibitor	No	No	-
NCI0047	EWS	STAG2	Relapsed	WESWTS	p.E984X	3	PARP inhibitors	Yes	No	-
NCI0150	EWS	STAG2	-	WESWTS	p.R216X	3	PARP inhibitors	Yes	No	Hotspot
NCI0244	IMT	ALK	Relapsed	WTS	RANBP2-ALK fusion	2а	Crizotinib	No	Yes	Exact
NCI0244	IMT	ALK	Relapsed	WESWTS	p.l1171T	2a	Ceritinib	No	Yes	Exact
NCI0037	MM	BRAF	Relapsed	WESWTS	p.V600E	1	Vemurafenib, Debrafenib	Yes	Yes	Exact
NCI0072	MM	BRAF	Diagnostic	WESWTS	p.V600E	1	Vemurafenib, Dabrafenib	Yes	Yes	Exact
NCI0215	MM	BRAF	Relapsed	WESWTS	p.V600E	1	Vemurafenib, Dabrafenib	Yes	Yes	Exact
NCI0155	MM	GNAQ	Relapsed	WESWTS	p.Q209L	1	Temsirolimus, Trametinib, Vorinostat	No	Yes	Exact
NCI0215	MM	GNA11	Relapsed	WESWTS	p.S268F	2a	Trametinib	No	Yes	-
NCI0211	MM	TSC1	Relapsed	WESWTS	p.S828R	3	Everolimus	No	Yes	-
NCI0211	MM	TSC2	Relapsed	WESWTS	p.T246A	3	Everolimus	No	Yes	
NCI0160	MRT	SMARC81	-	SNP Array/WTS	Homozygous loss	3	EZH2 inhibitors	No	No	-
NCI0250	MRT	SMARC81	Refractory	WESWTS	p.R40X	3	EZH2 inhibitors	No	No	-
NCI0228	MTC	RET	Relapsed	WESWTS	p.M918T	2a	Vandetanib	Yes	Yes	Exact
NCI0002	NB	ALK	-	WESWTS	p.R1275Q	2a	Crizotinib	Yes	Yes	Exact
NCI0010	NB	ALK	Relapsed	WESWTS	p.F1174V	2a	Crizotinib	Yes	Yes	Exact
NCI0017	NB	ALK	Relapsed	WESWTS	p.F1174L	2a	Crizotinib	Yes	Yes	Exact
NCI0138	NB	ALK	Relapsed	WESWTS	p.Y1278S	2a	Crizotinib	Yes	Yes	Exact
NCI0017	NB	CDKN2A	Relapsed	SNP Array/WTS	Homozygous loss	3	CDK4/6 inhibitor	No	No	-

notebou	Sample	Diagnosis	Gene	Stage	Modality	AA Change	Level	Drug	Clinical Trial: Pediatric	FDA Approval in Adults	Exact Mutation vs. Hotspot
ı	NCI0011	NB	MYCN	Relapsed	SNP Array/WTS	Amplification	3	inhibitors	No	No	-
1	NCI0102	NB	MYCN	-	SNP Array/WTS	Amplification	3	bromodomain inhibitors	No	No	-
1	NCI0136	NB	MYCN	Relapsed	SNP Array/WTS	Amplification	3	bromodomain inhibitors	No	No	-
]	NCI0138	NB	MYCN	Relapsed	SNP Array/WTS	Amplification	3	bromodomain inhibitors	No	No	-
ŧ	NONET2	NET	PTEN	-	WES/WTS	p.R14fs	2a	PI3K/AKT/mTOR inhibitors	Yes	No	-
1	NONET2	NET	CDKIN2A	-	SNP Array/WTS	Homozygous loss	3	CDK4/6 inhibitor	No	No	-
1	NCI0013	os	PTEN	Relapsed	WES/WTS	p.K80fs	2a	PISK/AKT/mTOR inhibitors	Yes	No	-
]	NCI0075	RMS	РЖЗСА	Relapsed	WES/WTS	p.P104Q	2a	PI3K/AKT/ mTOR inhibitors	Yes	Yes	Exact
1	NCI0075	RMS	MYCN	Relapsed	SNP Array/WTS	Amplification	3	bromodomain inhibitors	No	No	-
]	NCI0238	WT	MYCN	Relapsed	WES/WTS	p.P44L	3	bromodomain inhibitors	No	No	-

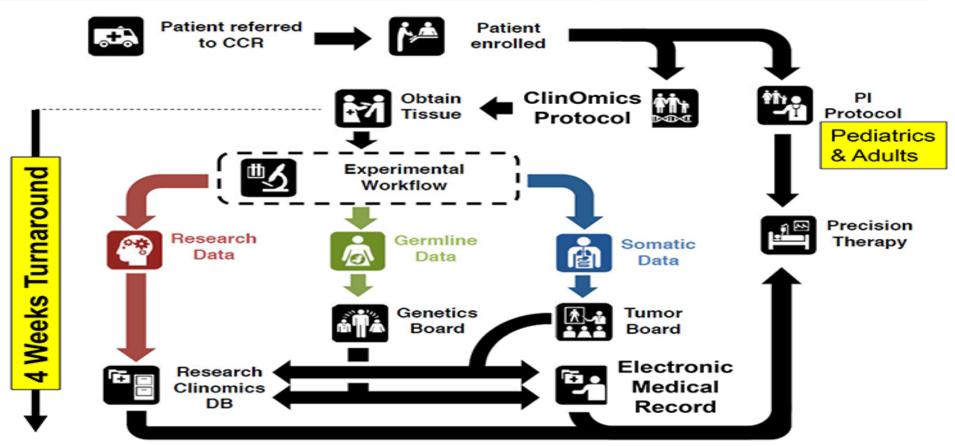
NCI-Adult MATCH Criteria for Matching Mutation to Drug

Level 1	Gene variant approved for selection of an approved drug (BRAF V600E and vermurafenib). The variant will be Level 1 in all tissues open to treatment with the approved drug.						
Level 2a	Gene variant is an eligibility criteria for an ongoing clinical trial for that treatment.						
Level 2b	Gene variant has been identified in an N of 1 responses (TSC1 and everolimus) for that treatment						
Level 3	Preclinical inferential data (in vivo and in vitro models) that provide biological evidence sufficient to support the use of a variant for treatment selection, e.g. • Models with variants respond to treatment and models without variant do not respond to treatment • Gain of function mutations demonstrated in pre-clinical model, e.g. D769H variant of ERBB2 results in increased tyrosine kinase-specific activity and up regulates pathway signaling (does not require treatment evidence) • Loss of function genes, tumor suppressor or pathway inhibitor (e.g. NF1) any variant that produces a stop codon including frameshift or demonstrated loss of function in pre-						

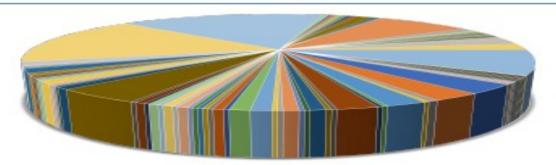

Summary

Summary

- Demonstrated the importance and feasibility of performing multidimensional ClinOmics in the clinical setting in real time
- ~50% of children with pediatric or AYA patients with relapsed or refractory cancers have actionable somatic mutations
- ~ 10% have actionable germline mutations
- Importance of performing parallel germline sequencing; some therapeutically actionable (e.g. DNA repair, PTEN, TSC1, TSC2, HRAS, RET, ALK)
- Increased tumor burden in relapsed tumors; implications for immunotherapy
- Single agent pediatric MATCH like trials are planned by COG-NCI


Future Trials

Genomics Enabling Precision Therapy-The Future for Pediatric Trials


ClinOmics program

CCR ClinOmics Program-CLIA

Patient diagnoses

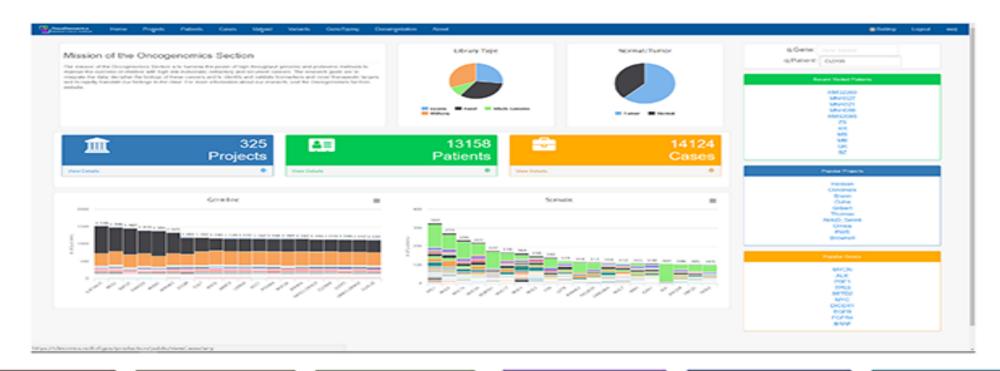
396 Patients of 93 diagnoses

- E. Amaplantic Antirecytoma.
- III. Amagliantic P90A
- In Bliefster carriers
- Cholangiocarcinoma
- Dermatofilmosancema pretuberance
- E Diffuse intrinsic pantine glicera
- M Glant Cell Obtamazones
- In torody 2 Office-development
- Elimesive well differentiated seasmess cell carcinoma
- Melanama
- S Mesothelions Pleural
- III Metastatic Panamatic Meuropeologyina Cardinoma
- M Multiple Raro Turnots
- * Neuralitemmetado I
- (iii Outreceancema
- E Papillary turnor of the pineal region
- # Poorly differentiated cardinoma thing vs. flymic)
- E Renal cell carriegna
- IK Small Cell Cancer of rectum
- M Temporal high greate givers
- E Decal restancers

- (E Acute lymphobiastic leakemia
- In Amaplastic Special process
- (E Aneurysmail Elbross histocytoma
- I Breast cancer
- (III Chardona
- I Descripted Pillinomariosis
- (Effection et rial number
- In Ewing's services IN Called black bearing
- 1-14eastic Analosarcoma
- Kenstouceethema

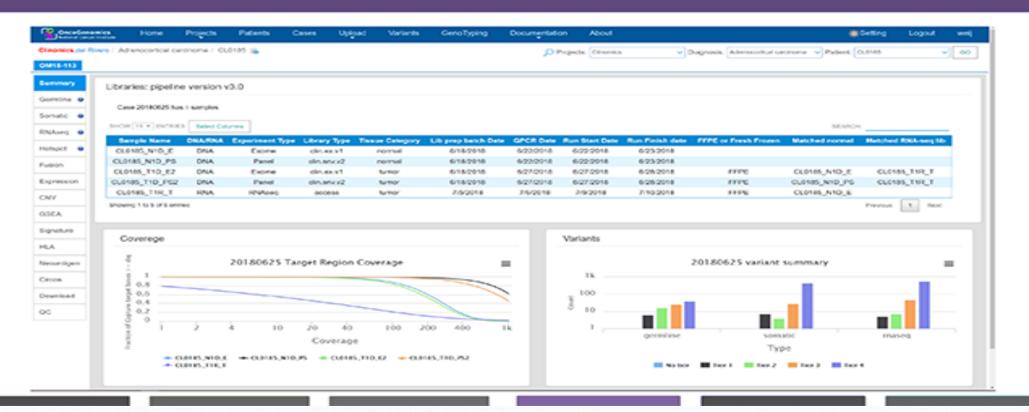
- (ii) Meso thelioma Tunica Vaginalio
- (# Mysogapillary Ependymoma
- (II Overlan Serous Cardinomas C Pilospile Astrocytoma
- (ii Programe concer
- (# Small Cell Carcinoma of the every hypercalcemic type (SCCCHE)

- (II.Acute myeloid leabersia
- · Amaplantic meninglema (II. Autrocytoma
- In Carellmoid, BRACL positive
- (II Clear cell sancoma
- Desmoplastic small round sell turns
- w Extrapolysonary head Led Cancer
- (A Gillerine)
- :: Hepatacebular carnor
- **Wileft Corobollar Sarcoma**
- IN Medullary Thyroid Cancor metastatic
- OR Metaetartic Anal Carcinema
- @ Multirodular and Vacualating Neuronal Tumor
- (A Newsoendectine carcinoma
- @ Noonars Tenograpsial glant call harson
- G-Overior Totatores
- @ Plearacephic Santhassirosytoma (ii) Recomment glicerouscend tumor
- (KSmall cell endonsettium

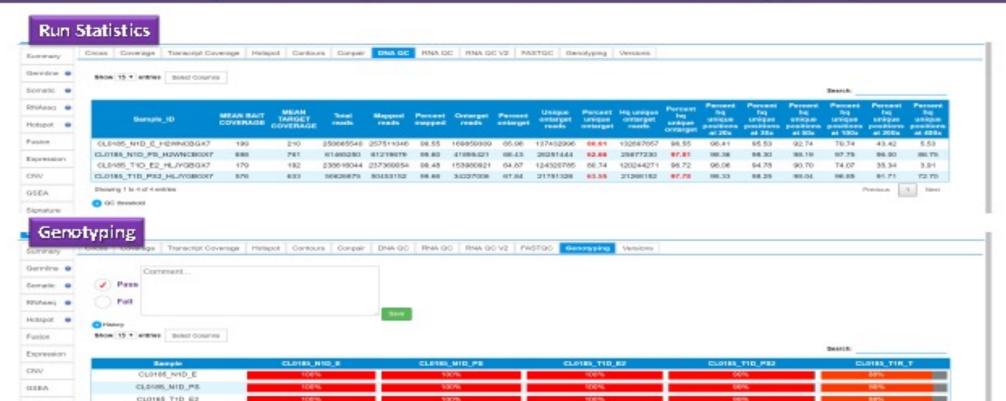

- C. Ampullary cancer
- In Assettavitic Oligoslavelnogitarea
- EL Atypical Central Neurocytome
- 1 Carolinosarcoma of the Pelyls
- III Colon runner
- In Diffuse Astrocytisms, Grade III
- E Ecolomphilia In traffitiadities cancer
- IX Cilconstructors
- 1: Heostopellular cardinoma
- III Lung Ademocratelments
- In Meduliobiastoma
- E Mesothelions Peritornal
- DE MANTANTANCE MICT
- Et Multiple partiesens
- Di Meuroendocrine Tumor

- El Parecreartic carecur
- If Pleastern newsofthcome C Recurrent Mediath Machania
- El Sesal I well briadnises
- (ii Sympolial sancome
- E Undifferentiated serverse

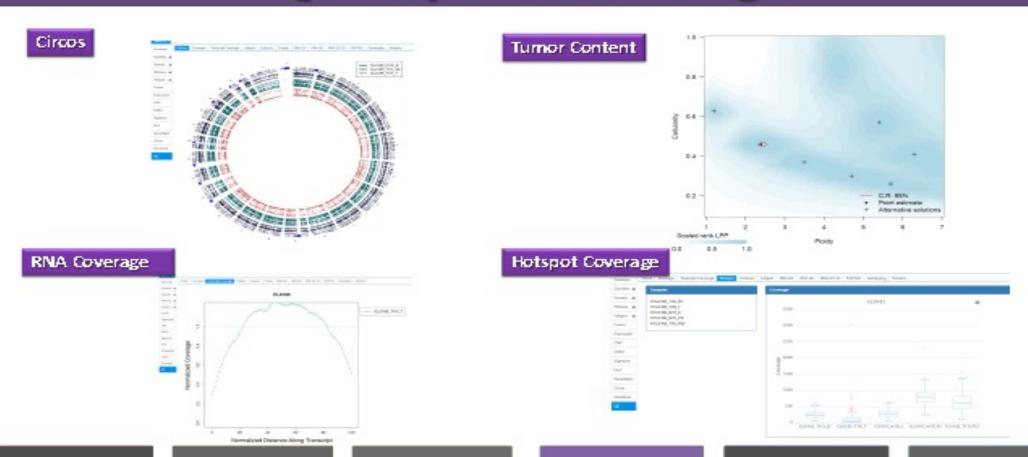
ClinOmics Data Portal


ClinOmics Data Portal

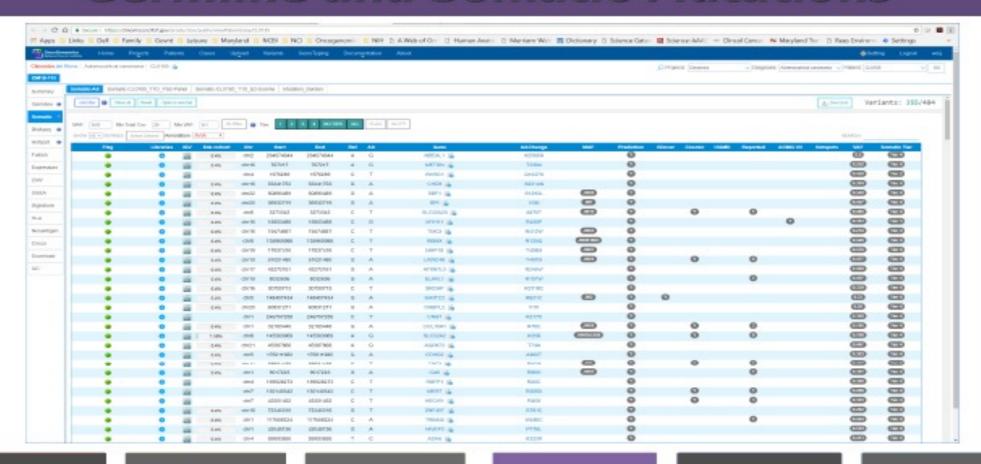
https://clinomics.ncifcrf.gov/production/public/


Patient Summary

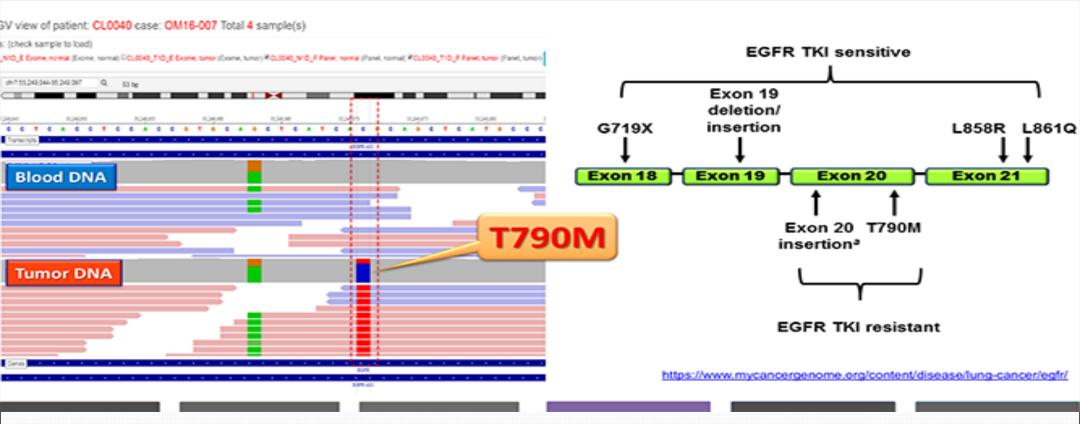
Patient Summary Page


QC report

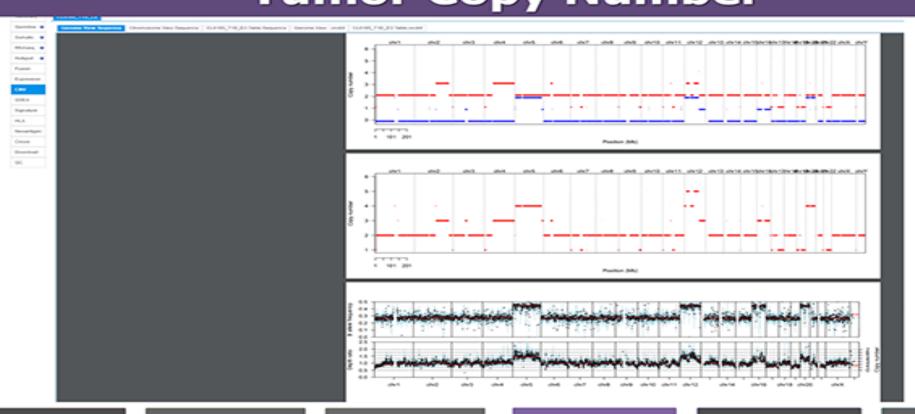
QC Report: Sequencing Statistics & Genotyping


QC Report: Coverage

QC Report: Coverage


Germline and somatic mutations

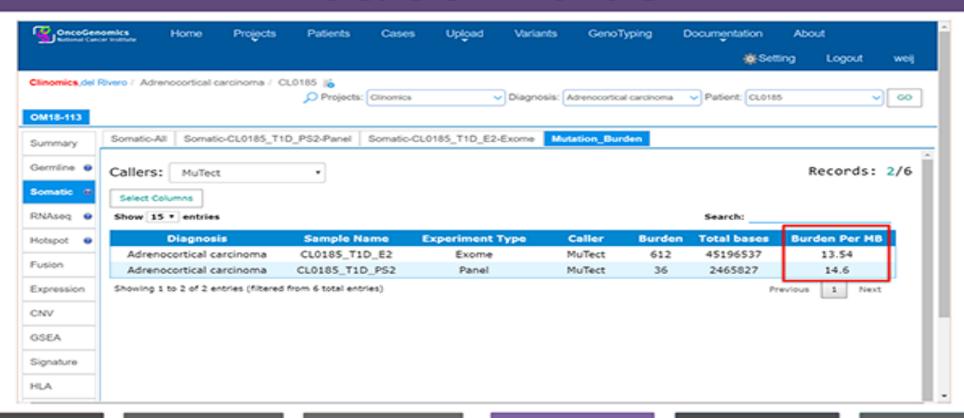
Germline and Somatic Mutations


EGFR mutations

EGFR mutations in NSCLC

Tumor Copy Number

Tumor Copy Number


Mutation Signatures

Mutation Signatures for Tumor

Mutation Burden

Mutation Burden

Fusion Gene Detection

Fusion Gene Detection from RNA-seq experiments

Useful Genomic Information

Other Useful Genomic Information

- HLA typing (Tissue typing)
- Neoantigen prediction
- Gene expression
- Gene Set Enrichment Analysis (GSEA)
- Survival analysis if outcome data is available

Conclusions:

Next generation sequencing (including whole genome, exome and transcriptome) determines the complete genomic and epigenetic portrait of cancers at the base pair level.

Integrated analyses of the cancer can identify biologically relevant diagnostic, prognostic biomarkers and novel targets for precision medicine.

Acknowledgements

Acknowledgements

Genetics Branch

- Paul Meltzer
- · Javed Khan

Wet Lab

- Young Song
- Jennifer Walling
- Chaoyu Wang
- Leslie Brents*
- Dan Edelman
- Robert L. Walker
- Marbin Pineda
- Keith Killian*
- Hongling Liao*
- Holly Stephenson*

Bioinformatics/II

- Rajesh Patidar*
 - Xinyu Wen
 - Sivasish Sindiri
 - Hsein-Chao Chou*
 - Scott Goldweber*
 - Yuelin (Jack) Zhu
- Sean Davis
- Jimmy Lin*

Laboratory of Pathology

- Ken Aldape
- Fred Barr
- Mark Raffeld
- Liqiang Xi
- Manoj Tyagi
- Trinh Pham
 - Snehal Patel*

Yu Jin Lee

Tina Pham

Sushma Nagaraj

Vineela Gangalapudi 🔹 Joseph W. Chinquee

AVIA Team

- Hue Vuong
- Uma Mudunri
- Jack Collins