Pancreatic cancer

TRACO-2022

Pancreatic Cancer: From Bench to Bedside

Christine Alewine, M.D., Ph.D.
Clinical Translation Unit
Laboratory of Molecular Biology
Center for Cancer Research

Cancer incidence and mortality

Pancreatic Cancer Incidence and Mortality

Estimated Deaths Siegel R et. al., CA Cancer J Clin, 2022 Males Females Lung & bronchus 68,820 21% Lung & bronchus 61,360 21% Prostate 34,500 11% Breast 43,250 15% Colon & rectum 28,400 Colon & rectum 24,180 Pancreas 25,970 23,860 Pancreas Liver & intrahepatic bile duct 20,420 6% Ovary 12,810 Leukemia 14,020 4% Uterine corpus 12,550 Liver & intrahepatic bile duct Esophagus 13,250 10,100 Urinary bladder 12,120 4% Leukemia 9,980 3% Non-Hodgkin lymphoma 11,700 Non-Hodgkin lymphoma 8,550 4% Brain & other nervous system 10,710 3% Brain & other nervous system 7,570

- 3rd leading cause of cancer death in the United States
- Median 5-year survival is 11.5%

322,090

100%

Estimated 62,210 new diagnoses and 49,830 deaths in 2022

All Sites

287,270

100%

Incidence is increasing

All Sites

Risk factors

Risk Factors

Ryan, Hong and Bardeesy, NEJM, 2014

Variable	Approximate Risk	
Risk factor		
Smoking ³	2-3	
► Long-standing diabetes mellitus⁴	2	
 Nonhereditary and chronic pancreatitis⁵ 	2-6	
 Obesity, inactivity, or both⁶ 	2	
Non−O blood group ⁷	1-2	
Genetic syndrome and associated gene or genes — %		
Hereditary pancreatitis (PRSS1, SPINK1)8	50	
Familial atypical multiple mole and melanoma syndrome (p16)9	10-20	
Hereditary breast and ovarian cancer syndromes (BRCA1, BRCA2, PALB2) ^{10,11}	1-2	
Peutz-Jeghers syndrome (STK11 [LKB1])12	30-40	
Hereditary nonpolyposis colon cancer (Lynch syndrome) (MLH1, MSH2, MSH6) ¹³	4	
Ataxia-telangiectasia (ATM)14	Unknown	
Li-Fraumeni syndrome (P53)15	Unknown	

^{*} Values associated with risk factors are expressed as relative risks, and values associated with genetic syndromes are expressed as lifetime risks, as compared with the risk in the general population.

Pancreatic cancer types and stage

Pancreatic Cancer: Types and Stage at Diagnosis

- Adenocarcinoma (~90%)
- Neuroendocrine (<5%)
- Rare exocrine tumors

Prognosis and stage

Prognosis is better for patients with early-stage disease

American Cancer Society, Cancer Facts and Figures 2022

Lack of early detection

Why can't we detect pancreatic cancer earlier?

- Early symptoms are non-specific
- Current imaging methods rarely detect small lesions
- Difficulty in identifying specific biomarkers
 - Pancreatic Cancer is relatively rare (12.1/ 100,000 persons)
 - Test with 100% sensitivity and 99% specificity => 83 false positive for every real case
- Retroperitoneal positioning of the pancreas makes biopsy difficult
- Risk vs. benefit of removing suspicious pre-cursor lesions

Progression

Progression Model of Pancreatic Carcinogenesis

Pancreatic Intraepithelial Neoplasia

High-risk populations

Screening in High-Risk Populations

- Families with known genetic mutations that predispose to pancreatic cancer
- Persons with multiple close relatives who developed pancreatic cancer
- Over age 50 with newly diagnosed diabetes
- Chronic pancreatitis

Surveillance protocol

Annual surveillance with EUS and/or MRI/MRCP, often alternating between the two methods (surveillance interval was modified when concerning lesions were detected)

Familial disease

Progress in Screening Patients with Familial Disease- CAPS

Surgery plus chemotherapy

Early Stage Disease: Surgery + Chemotherapy

Neoadjuvant chemotherapy (chemo BEFORE surgery) is currently being tested in clinical trial and may provide additional survival advantage

Neoantigen qualities

LETTER

doi:10.1038/nature24462

Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer

Vinod P. Balachandran^{1,2,3}, Marta Łuksza⁴, Julia N. Zhao^{1,2,3}, Vladimir Makarov^{5,6}, John Alec Moral^{1,2,3}, Romain Remark⁷, Brian Herbst², Gokce Askan^{2,8}, Umesh Bhanot⁸, Yasin Senbabaoglu⁹, Daniel K. Wells¹⁰, Charles Ian Ormsby Cary¹⁰, Olivera Grbovic-Huezo², Marc Attiyeh^{1,2}, Benjamin Medina¹, Jennifer Zhang¹, Jennifer Loo¹, Joseph Saglimbeni², Mohsen Abu-Akeel⁹, Roberta Zappasodi⁹, Nadeem Riaz^{6,11}, Martin Smoragiewicz¹², Z. Larkin Kelley^{13,14}, Olca Basturk⁸, Australian Pancreatic Cancer Genome Initiative⁸, Mithat Gönen¹⁵, Arnold J. Levine⁴, Peter J. Allen^{1,2}, Douglas T. Fearon^{13,14}, Miriam Merad⁷, Sacha Gnjatic⁷, Christine A. Iacobuzio-Donahue^{2,5,8}, Jedd D. Wolchok^{3,9,16,17,18}, Ronald P. DeMatteo^{1,2}, Timothy A. Chan^{3,5,6,11}, Benjamin D. Greenbaum¹⁹, Taha Merghoub^{3,9,18} & Steven D. Leach^{1,2,5,20}§

- Abundant CD8⁺ T Cell Infiltrate
- Neoantigen quality promotes T Cell Activity in Long-term survivor

Combination chemo

30-20-

No. at Risk

9 12 15

 nab-Pacitizarii-Gernoltabine
 431
 357
 369
 169
 108
 67
 40
 27
 16
 9
 4
 1
 1
 0

 Gernoltabine
 430
 340
 129
 124
 69
 40
 26
 15
 7
 3
 1
 0
 0

18 23 24 27 30 33 36 39

Treatment for Advanced Pancreatic Cancer is Combination Chemo

HR047 (95N CI 048-0-92) p=0-012 (unstratified log-sank)

34

Number at risk Nasolipesonuli 117 Intretecas plus

flaoroussell and

Florecoactant 119

Pancreatic subtypes

Transcriptomic profiling of PDAC has identified "subtypes"

Bailey et. al., Nature, 2016

Classical subtype

Classical subtype responds better to chemotherapy

"Deep" = the tx shrinks the tumor a lot

Multiple subtypes

Multiple transcriptomic subtypes may occur within the same tumor

Environmental subtype regulation

Transcriptomic subtypes are plastic and regulated environmentally

- An intermediate subtype exists
- Environmental cues influence subtype

PDAC malignant cell state diagram n=7.078 cells

high

Intermediate

Co-expressor

Gene alterations

Gene Alterations in Pancreatic Cancer

Preclinical models

Preclinical models of PDAC

1) Standard cell lines

Implant subq into mice

- Highly cellular tumors don't resemble human disease
- Models fail to predict response to therapy

2) KPC spontaneous autochthonous model

- Patient-derived xenograft (PDX)
- Predictive of patient response to treatment
- NSG mice required
- 5) Tissue slice culture
- Transient, non-renewable
- Intact immune/ stromal TME

4) Organoids

- Predictive of patient response to treatment
- Cannot be used to evaluate immunooncology drugs or stromal modulators

Stroma

KRAS

KRAS makes a mean tumor Neutrophil microenvironment (TME) CXCR1/2 inhibitors CXCL1, CXCL2, CXCL5 CXCR2 CXCL3 M1 macrophage Receptor GM-CSF recruitment tyrosine kinase MDSC M1 polarization (pro-inflammatory) ICAM1 TCR-based therapies GDP M1 macrophage MHC TCR KRA5 GTP Monocyte KRA5 PD-L1 PD-1 M2 polarization PD-L1/PD-1 CD8+T cell (anti-inflammatory) inhibitors. KRAS-mutant M2 macrophage. cancer cell IL-10 0 TGFB Tolerogenic DC

Fig. 3 | The influence of mutant KRAS on the tumour immune microenvironment. Activating KRAS mutations have

Resistance

Stroma makes PDAC resistant to treatment

- Factors secreted by CAFs help cancer cells survive
- ECM collapses blood vessels limiting drug delivery to tumors

Hwang et. al., Cancer Res., 2008

Provenzano et. al., Cancer Cell, 2012

Cancer associated fibroblasts

Cancer-associated fibroblasts (CAFs) support tumor metabolism

Hedgehog signaling

Inhibition of Hedgehog Signaling Depleted Stroma, **Enhanced Drug Delivery and Improved Survival in Mice**

SHH inhibitor

SHH inhibitor ineffective in clinic

CAF destruction

Destruction of CAFs => more metastatic, poorly diffentiated tumors

Extracellular matrix

Enzymatic Targeting of ECM Enhances Therapeutic Response

Provenzano et. al., Cancer Cell, 2012

PEGPH20

PEGPH20 in Clinic

- Phase 1
 - PEGPH20 caused blood clots
 - Must give with blood thinner
- Arms:
 - Gem + nab-p
 - Gem + nab-p + PEGPH20
- Phase 2
 - Patients with advanced PDAC
 - No benefit in the whole study population (negative study)
 - Hyaluronin(HA) high patients had better outcome
- Phase 3
 - Patients with HA high metastatic PDAC
 - · No survival benefit

Stromal target

Carefully choose your stromal target!

Stromal-targeting may not (always) have beneficial therapeutic response

Tumor-Stromal interaction is complex and caution is required for therapeutic approaches targeting stroma

Stromal subtypes

Stroma-Specific Subtypes in Pancreatic Cancer

CAF subtypes

CAFs come in subtypes of varying function and origin

Adapted from: Elyada et. al., Canc.Disc., 2019 & Biffi et al, Canc.Disc., 2019

Immunotherapy

Advent of immunotherapy in PDAC

PDAC and immunotherapy

PDAC does not respond to single agent immunotherapy agents

Anti-PD1 Cohort-Tumor Type	N*	ORR %	mPFS (mo)	mOS (mo)	
Overall	471	14	2.2	11.3	
Mesothelioma (MPM)	25	20	5.5	18.7	
Nasopharyngeal Carcinoma	27	26	6.5	16.5	
Neuroendocrine Carcinomas	16	6	4.5	21	
Ovarian Epithelial FTC/PPC	26	12	1.9	13.8	
Pancreatic ACA	24	0	1.7	3.9	
Prostate ACA	23	17	3.5	7.9	
Salivary Gland Carcinoma	26	12	3.8	13.2	
SCLC	24	33	1.9	9.7	,
0 10040 1.05 0					

Ott et al 2019, J. Clin. Onc.

Immunotherapy combinations

Table 1. Selected completed clinical trials of immunotherapy in patients with pancreatic cancer^a.

...or to combinations (so far)

Trial identifier number and study name	Phase	Population	N	Investigational treatment	Comparator treatment	Results	Reference
NCT02734160	1	mPDAC, ≤2 lines	32	${\sf Galunisertib}({\sf TGF}\beta i) + {\sf Durvalumab}$	-	DCR 25%; mOS 5.72 months (95% CI, 4.0-8.4)	26
NCT00112580	2	LA and mPDAC	27	Ipilimumab	-	ORR 0% per RECIST, 1 delayed PR	23
NCT02558894	2	mPDAC, 2nd line	65	Arm A: Durvalumab + Tremelimumab	Arm B: Durvalumab	Arm A: ORR 3.1%; mOS 3.1 months (95% Cl, 2.2-6.1) Arm B: ORR O%; mOS 3.6 months (95% Cl, 2.7-6.1)	25
NCT02879318 Canadian CTG PA.7 trial	2	mPDAC, 1st line	180	Arm A: Gem/NP + Durvalumab + Tremelimumab	Arm B: Gem/NP	Arm A: mOS 9.8 months Arm B: mOS 8.8 months HR = 0.94 (90% CI, 0.71-1.25; P = 0.72)	ClinicalTrials.gov
NCT02077881	2	mPDAC, 1st line	135	Indoximod (IDO i) + Gem/NP	-	ORR 46.2%; mOS mOS 10.9 months	27
NCT03250273	2	mPDAC, ≥2nd line	30	Entinostat (HDACi) + Nivolumab	1.5	ORR 16.7%; mOS 3.9 months (95% Cl, 1.9-9.4)	Clinical Trials, gov
NCT01417000	2	mPDAC, ≥1st line	90	Arm A: Cy/GVAX + CRS-207	Arm B: Cy/GVAX	Arm A: mOS 6.1 months Arm B: 3.9 months HR = 0.59 (95%Cl, 0.36-0.97; P = 0.02)	28
NCT02826486 COMBAT trial	2	mPDAC, 2nd line	43	Motixafortide (CXCR4 i) + Pembrolizumab + NAPOLI-1 chemo	-	ORR 21.7%; DCR 63.2%; mOS 6.6 months (95% CI, 4.5-8.7 months)	33
NCT03214250 PRINCE	2	mPDAC, 1st line	93	Arm A: Gem/NP + Nivolumab Arm B: Gem/NP + Sotigalimab (aCD40 agonist) Arm C: Gem/NP + Sotigalimab + Nivo	Historical 1-y OS of 35% for Gem/NP	Arm A: 1-y OS 57%, P = 0.007 Arm B: 1-y OS 51%, P = 0.029 Arm C: 1-y OS 41%, P = 0.236	29
NCT01836432 PILLAR trial	3	BR or LA PDAC, neoadjuvant	303	Arm A: Algenpantucel-L + SOC chemo + RT	Arm B: SOC chemo + RT	Arm A: mPFS 14.3 months Arm B: mPFS 14.9 months HR = 1.02 (95% Ct, 0.66-1.58; P = 0.98)	30
NCT02923921 SEQUOIA trial	3	mPDAC, 2nd line	567	Arm A: FOLFOX + Pegilodecakin (peg-flL10)	Arm B: FOLFOX	Arm A: mOS 5.8 months Arm B: mOS 6.3 months HR = 1.05 (95% CI, 0.86-1.27)	31
NCT02436668 RESOLVE trial	3	mPDAC, 1st line	424	Arm A: Gem/NP + Ibrutinib (BTK i)	Arm B: Gem/NP	Arm A: mOS 9.7 months Arm B: mOS 10.8 months HR = 1.1 (95% CI, 0.9-1.3)	32

Cold tumor

Why is PDAC a "cold" tumor?

- Low tumor mutational burden (TMB)
- Effector T cell are rare within stroma close to cancer cells (few TIL)
- Nutrient poor, hypoxic and acidic TME hinders proliferation and function of TIL
- Decreased number and function of dendritic cells (DCs)
- Heavy infiltration of immune-suppressing myeloid cells

Immune suppression

Novel immunotherapies

Novel immunotherapies- an active area of investigation

- Make "cold" tumor hot by combining with agents that stimulate immune response
 - Radio frequency ablation
 - Tumor vaccine
 - Oncolytic virus
- Block the macrophage "don't eat me" signal
- Novel engineered cell therapies
 - Including NK cells
- Combine with anti-cytokines and/or stromal modulating agents

11/28/22

Precision medicine

Precision medicine for Pancreatic Cancer

PDAC

Know Your Tumor: Precision Medicine for PDAC

- N = 640 patients accrued
- Adequate samples for sequencing in >90%
- "50% with actionable mutations (27% highly actionable)"
 - DNA repair genes (BRCA, ~8%)
 - Cell cycle genes (CCND1/2/3, CDK4/6, ~8%)
- · Effect of matched therapy
 - N = 18
 - PFS 4.1 vs. 1.9 m (HR 0.47, p = 0.03)

Waterfall plot

Precision Medicine Targets in PDAC

Profile	Give	Incidence			
MSI	immunotherapy	<2%			
BRCA mut	platinum chemo, olaparib maintenance	~5-12%			
NTRK fusion	larotrectininb	<<1%			
KRAS G12C	sotorasib?	1%			

Cisplatin+Gem in BRCA mutant PDAC

KRAS

KRAS: the no longer undruggable target

Fig. 3. Distribution of KRAS mutations in pancreatic cancer. The analysis was done using publicly available data from the cBioPortal database [48,49] that includes 665 KRAS mutant tumor samples from four large scale pancreatic cancer studies [50-53].

Luo et al, Seminars in Onc, 2021

KRASc12d inhibitor

The KRAS^{G12D} inhibitor MRTX1133 elucidates KRAS-mediated oncogenesis

Hallin et al 2022, Nat. Med.

Fig. 1 | MRTX1133 potently inhibits both the active state and the inactive state of KRAS and has anti-cancer activity in KRAS bearing human tumor xenograft models. a, Crystal structure of KRAS in complex with MRTX1133 and the GTP analog GMPPCP. b, Anti-tumor activity of MRTX1133 in various KRAS bearing mutant and KRAS non-mutant xenograft models. Intraperitoneal injections of MRTX1133 were administered twice daily at a dose of 30 mg per kg body weight. The percentage change in tumor size from baseline was calculated at about day 14. \otimes 2022, Hallin, J. et al.

SUMMARY

Summary

- Patients with pancreatic cancer have poor outcomes and few therapy choices
- Most pancreatic cancer is driven by mutation of KRAS oncogene
- Early detection remains an elusive goal for pancreatic cancer
- Screening programs are effective for those with known genetic risk
- PDAC has a unique TME that is paucicellular, stroma dense, immune-suppressive, poorly vascularized and hypoxic
- CAFs support to tumor cell growth and proliferation but also restrain metastasis
- Vigorous work to identify effective immune therapy for PDAC remains in progress
- New KRAS inhibitors likely to herald a new era in PDAC treatment

Questions?

