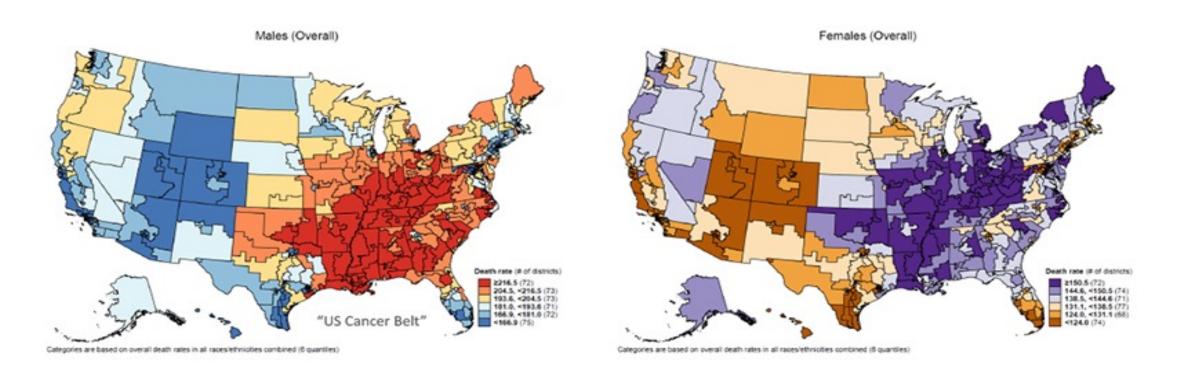
Cancer Health Disparities

TRACO, 2022

Analysis of Tumor Biology and Blood- or Urine-based Biomarkers to Advance Cancer Health Disparity Research

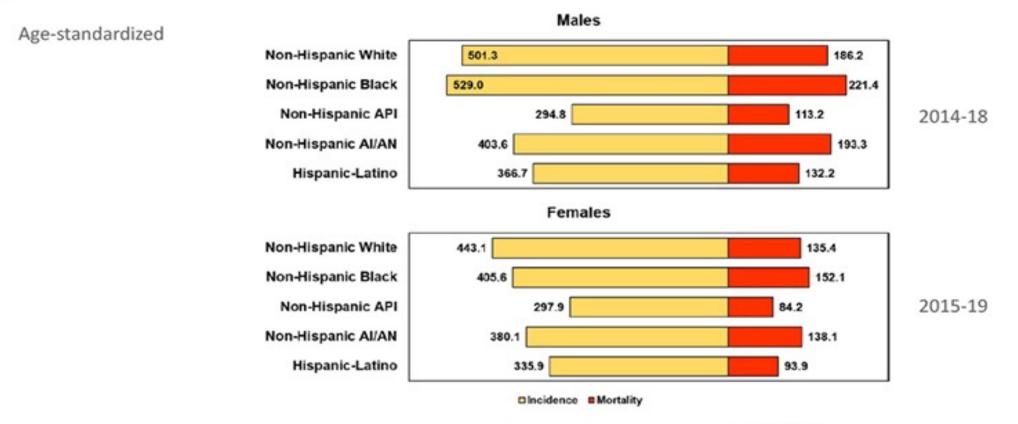
Stefan Ambs
Molecular Epidemiology Group
Laboratory of Human Carcinogenesis
Center for Cancer Research, NCI

Definition


Definition of Cancer Health Disparity

- Cancer health disparity is an unequal burden of cancer (incidence, mortality, survivorship and quality of life) among population groups
 - Race/ethnicity
 - Socioeconomic status
 - Geographic location
 - Gender

An important resource to study cancer health disparities is NCI's Surveillance, Epidemiology, End Results Program providing information on cancer statistics

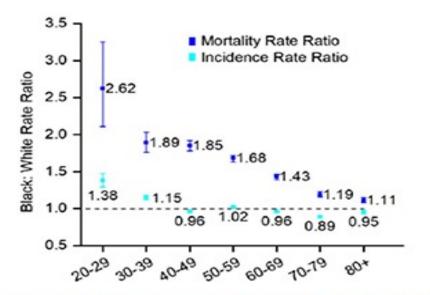

Congressional district death rates

Overall Cancer Death Rates by Congressional District in the US (2014-18)

Cancer incidence and death rates

Cancer Incidence and Death Rates by Population Group in the United States (SEER and National Center for Health Statistics data)

Cancer death rates


Cancer Death Rates by Population Group and Cancer Site

		RATE RATIO (95% CI)					
CANCER SITE BY SEX	NH WHITE	NH BLACK	NH AI/AN	NH API	HISPANIC-LATINO		
Death rate: 2015-2019							
All cancers combined							
Males	1	1.19 (1.18-1.20)	1.04 (0.20-1.88)	0.61 (0.60-0.61)	0.71 (0.68-0.71)		
Females	1	1.12 (1.12-1.13)	1.02 (0.30-1.74)	0.62 (0.62-0.63)	0.69 (0.67-0.70)		
Lung and bronchus							
Males	1	1.15 (1.14-1.16)	0.90 (0.40-1.40)	0.57 (0.56-0.58)	0.47 (0.42-0.48)		
Females	1	0.85 (0.84-0.86)	0.91 (0.44-1.38)	0.47 (0.46-0.48)	0.35 (0.29-0.35)		
Breast, female	1	1.41 (1.39-1.43)	0.90 (0.50-1.29)	0.59 (0.58-0.60)	0.69 (0.62-0.70)		
Prostate	1	2.13 (2.10-2.16)	1.18 (0.66-1.70)	0.48 (0.47-0.50)	0.88 (0.77-0.89)		
Colorectum							
Males	1	1.44 (1.42-1.47)	1.35 (0.76-1.94)	0.70 (0.68-0.73)	0.87 (0.76-0.89)		
Females	1	1.31 (1.29-1.33)	1.27 (0.77-1.77)	0.70 (0.68-0.72)	0.75 (0.65-0.77)		
Liver and IHBD							
Males	1	1.57 (1.54-1.60)	2.02 (1.23-2.81)	1.52 (1.48-1.56)	1.57 (1.39-1.60)		
Females	1	1.35 (1.31-1.39)	2.29 (1.66-2.93)	1.46 (1.41-1.52)	1.67 (1.42-1.72)		

API, Asian American and Pacific Islanders AI/AN, American Indian and Alaska Natives

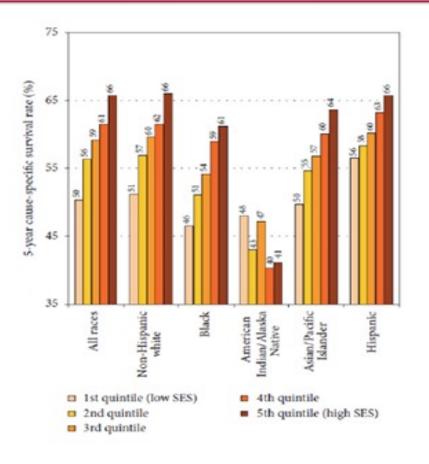
Breast cancer disparities

Excess Mortality Rates due to Breast Cancer are Highest among Young African American Women

DeSantis et al. CA Cancer J Clin 69: 438-51, 2019

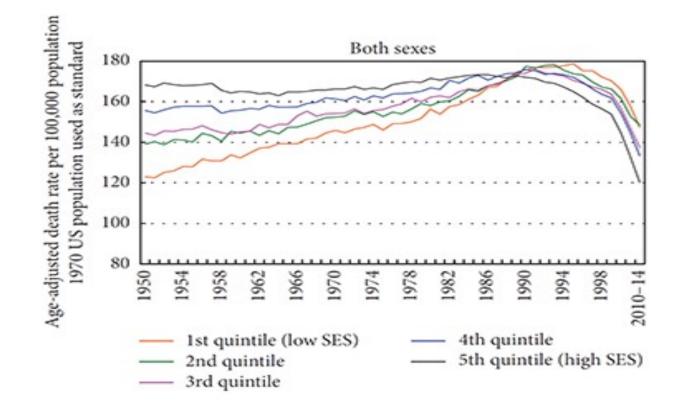
FIGURE 3. Rate Ratios Comparing Breast Cancer Incidence (2012-2016) and Mortality (2013-2017) Rates in Black and White Women by Age. White women served as the reference group, and rate ratios are based on unrounded rates. Error bars indicate 95% confidence intervals.

Cancer health disparities


Causes of Cancer of Health Disparities

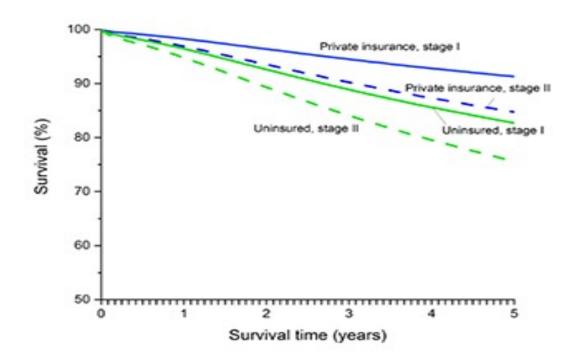
Cancer Health Disparity = Health Care Disparity

- Income and education influence health insurance coverage and access to appropriate early detection, treatment and palliative care
- Socioeconomic factors influence exposure to cancer risk factors: tobacco use, poor nutrition, physical activity, and obesity
- Poor and minority communities are targeted by tobacco companies and fast food restaurants, and have fewer opportunities for healthy nutrition and physical activity
- Cultural factors influence health behavior, attitudes toward disease, and choice of treatment
- Racial discrimination in health care settings is delaying treatment


Cancer survival by race/ethnicity

Five-Year Cancer Survival Rate for all Cancer Sites Combined by Sensus Tract Socioeconomic Index and Race/Ethnicity

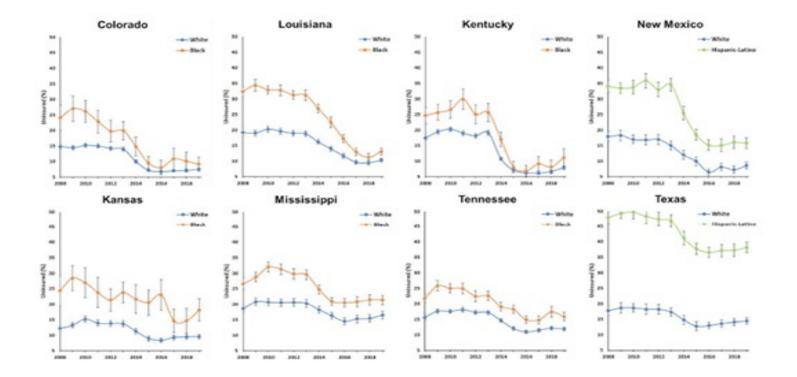
Socioeconomic deprivation index


Trends in All-Cancer Mortality by Area Socioeconomic Deprivation Index, United States, 1950 - 2014

Singh & Jemal, J Environ & Public Health 2017, ID 2819372

Colorectal survival

Disparities in Colorectal Cancer Survival by Insurance Status



Miller et al., CA Cancer J Clin, 72: 409-436, 2022

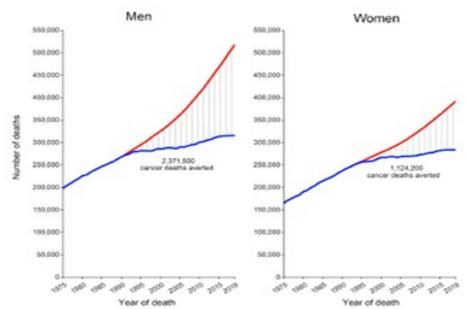
Cancer survival and Medicaid

Trends in Proportion of Individuals with no Health Insurance in Medicaid Expansion States (top) and Non-Expansion States (2008-2019)

Impact of Affordable Care Act (signed into law in 2010)

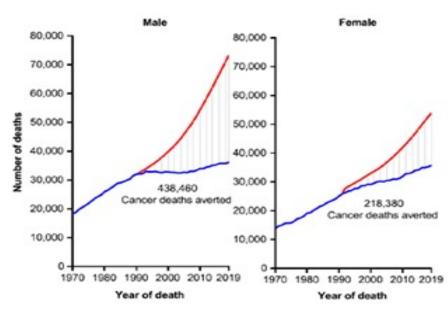
Islami et al. CA Cancer J Clin 2022;72: 112-143

Cancer survivors


Estimated Number of US Cancer Survivors by Disease Location (for 2022)

Male		Female	
Prostate	3,523,230	Breast	4,055,770
Melanoma of the skin	760,640	Uterine corpus	891,560
Colon & rectum	726,450	Thyroid	823,800
Urinary bladder	597,880	Melanoma of the skin	713,790
Non-Hodgkin lymphoma	451,370	Colon & rectum	710,670
Kidney & renal pelvis	376,280	Non-Hodgkin lymphoma	394,180
Oral cavity & pharynx	311,200	Lung & bronchus	367,570
Testis	303,040	Uterine cervix	300,240
Leukemia	300,250	Ovary	246,940
Lung & bronchus	287,050	Kidney & renal pelvis	230,960
All sites	8,321,200	All sites	9,738,900

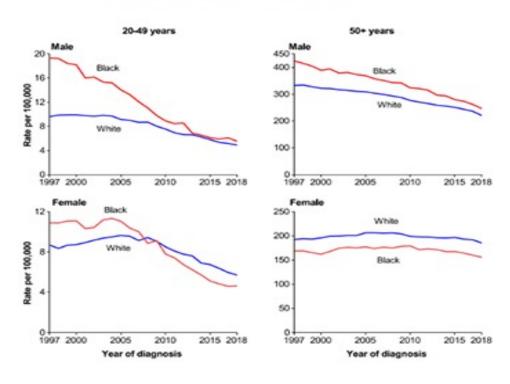
Cancer averted deaths


Number of Cancer Deaths Averted for Men and Women in the US

Whole Population

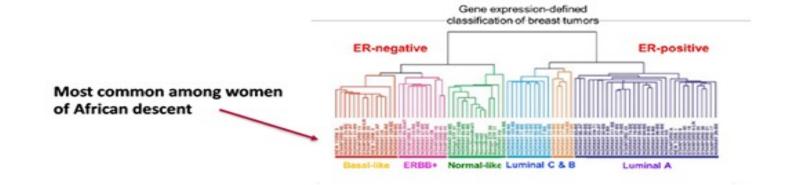
Siegal et al. CA Cancer J Clin 2022;72: 112-143


African Americans


Giaqunito et al., CA Cancer J Clin 2022, 72: 202-29

Smoking prevalence

Trends in Adult Smoking Prevalence among US African Americans and European Americans


Trends in Lung Cancer Incidence

Breast cancer

Is Biology Contributing to Cancer Health Disparities? Example: Breast Cancer

- Race/ethnic disparity in prevalence of estrogen receptor (ER)-negative and triple-negative breast cancer in the US (Carey et al., JAMA 2006, 295: 2492 – 2502)
- Breast cancer patients in West Africa commonly present with high grade and triple-negative disease (Huo et al., JCO 2009, 27: 4514 – 21)

Recombination deficiency

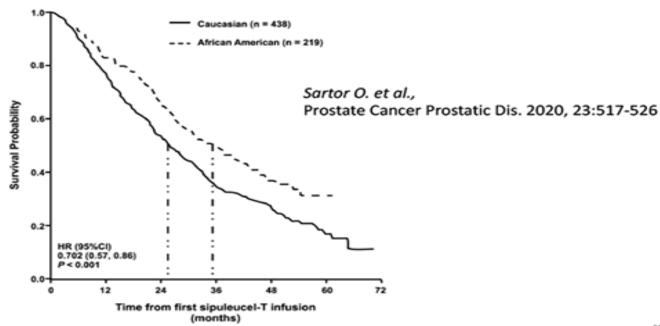
CCR Publication

https://doi.org/10.1038/s43018-019-0009-7

nature

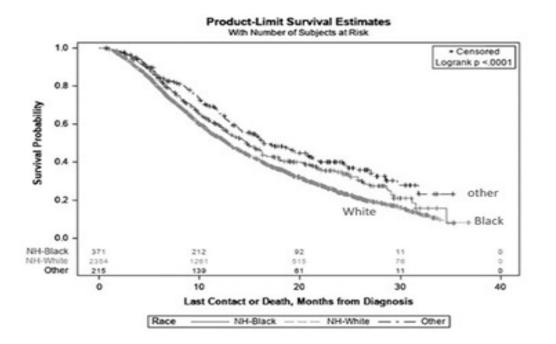
Higher prevalence of homologous recombination deficiency in tumors from African Americans versus European Americans

Sanju Sinha^{1,2,3,5}, Khadijah A. Mitchell^{0,1,5}, Adriana Zingone¹, Elise Bowman¹, Neelam Sinha^{2,4}, Alejandro A. Schäffer², Joo Sang Lee², Eytan Ruppin² and Brid M. Ryan^{0,1,4}


To improve our understanding of longstanding disparities in incidence and mortality in lung cancer across ancestry, we performed a systematic comparative analysis of molecular features in tumors from African Americans (AAs) and European Americans (EAs). We find that lung squamous cell carcinoma tumors from AAs exhibit higher genomic instability—the proportion of non-diploid genome—aggressive molecular features such as chromothripsis and higher homologous recombination deficiency (HRD). In The Cancer Genome Atlas, we demonstrate that high genomic instability, HRD and chromothripsis among tumors from AAs is found across many cancer types. The prevalence of germline HRD (that is, the total number of pathogenic variants in homologous recombination genes) is higher in tumors from AAs, suggesting that the somatic differences observed have genetic ancestry origins. We also identify AA-specific copy-number-based arm-, focal- and gene-level recurrent features in lung cancer, including higher frequencies of PTEN deletion and KRAS amplification. These results highlight the importance of including under-represented populations in genomics research.

Better survival with Sipuleucel T

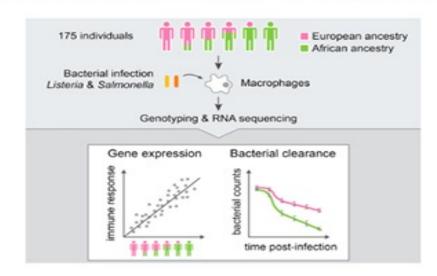
Better Survival of African-American than European-American Men with Metastatic Prostate Cancer when Treated with the Sipuleucel T Cancer Vaccine


Outcome from Proceed trial/registry: 1902 patients [221 African-American (AA)] with metastatic castration-resistant prostate cancer received ≥ 1 Sipuleucel infusions with long-term follow up.

Adaptive immunotherapy: Activated dendritic cells that recognize the prostate cancer antigen, prostatic acid phosphatase, are reinfused into patients.

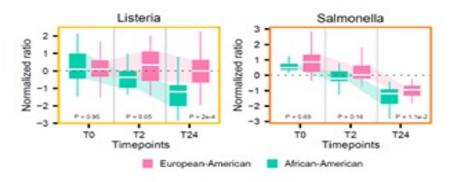
NSCLC

Race/Ethnicity-Related Differences in Survival Among Advanced-Stage Non-Small Lung Cancer Patients who Received Immunotherapy



Gupta et al. J Immunotherapy 2022, 45: 132-137

Genetic ancestry


Genetic Ancestry and Natural Selection are Drivers of Population Differences in the Immune Response to Pathogens

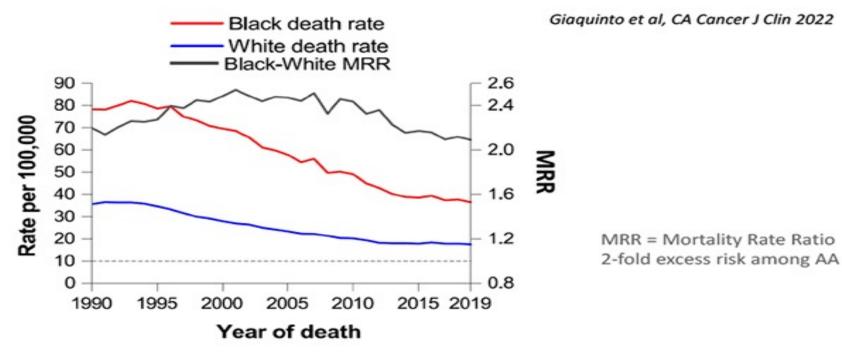
Nédélec et al. (Barreiro lab), Cell 2016, 167: 657-69

CD14-positive blood monocytes were differentiated into macrophages

- ~ 10% of macrophage-expressed genes show ancestry-associated differences in the gene regulatory response to infection
- African ancestry predicts a stronger inflammatory response and reduced intracellular bacterial growth
 - Large proportion of response genes is under genetic control

Research priority

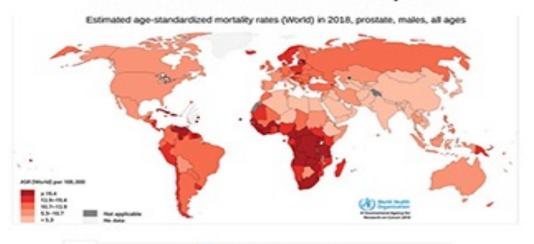
Research Priority


We seek an increased understanding of the causes for the survival health disparity in prostate and breast cancer between African American and European American men and women

 Key approaches are the analysis of tumor biology and the investigation of candidate risk factors

Mortality disparity

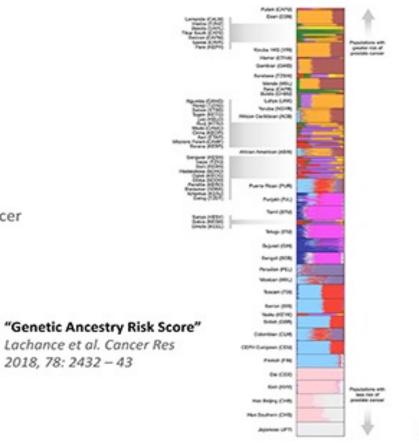
Mortality Health Disparity for Prostate Cancer in the United States


African-American (or black/AA) versus European-American (or white)

Global prostate cancer

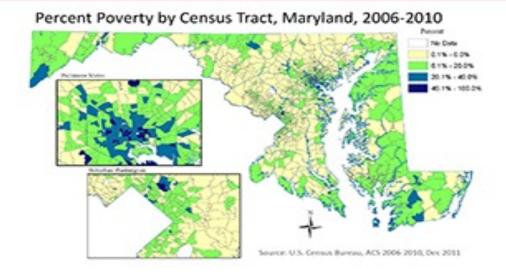
Global Burden of Prostate Cancer

Global Prostate Cancer Mortality Rates



Genetic ancestry

Ranking of Prostate Cancer Risk by Genetic Ancestry

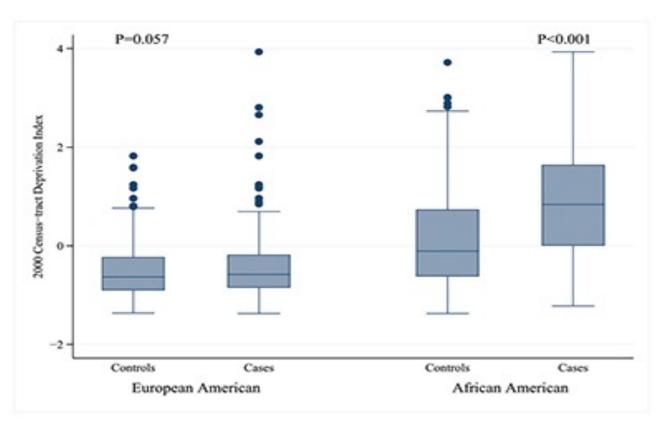

- Admixture mapping identifies 8q24 as a locus of increased risk for African-American (AA) men to develop prostate cancer (Freedman et al., PNAS 2006, 103: 14068 – 73)
 - Risk alleles are more common among AA men, conferring the highest population attributable risk among men of African ancestry (Nat Genet 2007, 39: 638 – 44 & 954 – 6)
- → West African ancestry confers an increased risk of prostate cancer

Neighborhood

Neighborhood Deprivation Index

- Neighborhood socioeconomic deprivation was measured using Neighborhood Deprivation Index (NDI; Messer et al., 2006, PMID: 17031568)
- Census-tract level data were drawn from the 2000 Census using participants' addresses

PCA: Extracted a single factor representing the shared variance from deprivation indicators

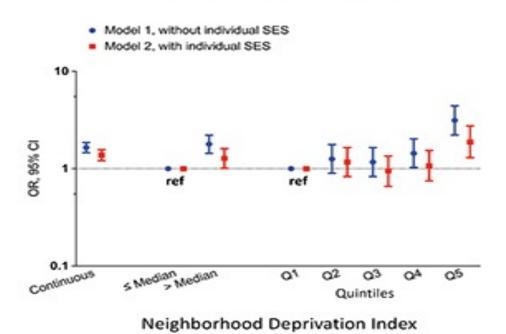

Variables retained in NDI					
% households in poverty	% female headed households with dependent children				
% households on public assistance	% households earning <\$30,000/year				
% percent households with no car	% males and females unemployed				

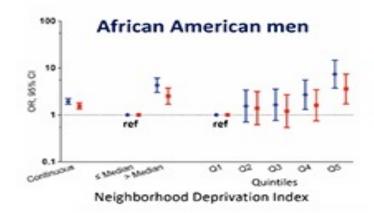
Work by Catherine Pichardo

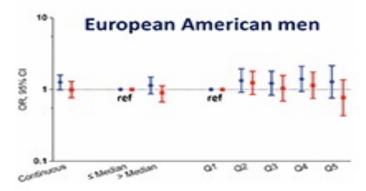
Lower NDI values = less deprivation, Higher NDI values = greater deprivation

Prostate cancer diagnosis

Neighborhood Deprivation Associates with a Prostate Cancer Diagnosis

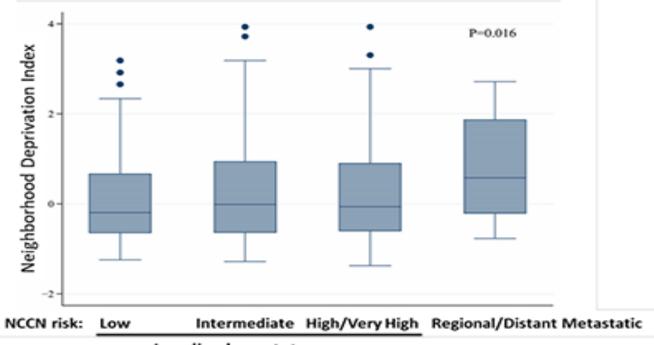

Pichardo et al., JAMA Network Open, 2023, 6:e2251745


Neighborhood deprivation


Neighborhood Deprivation Associates with a Prostate Cancer Diagnosis

Multivariate logistic regression analysis with two models

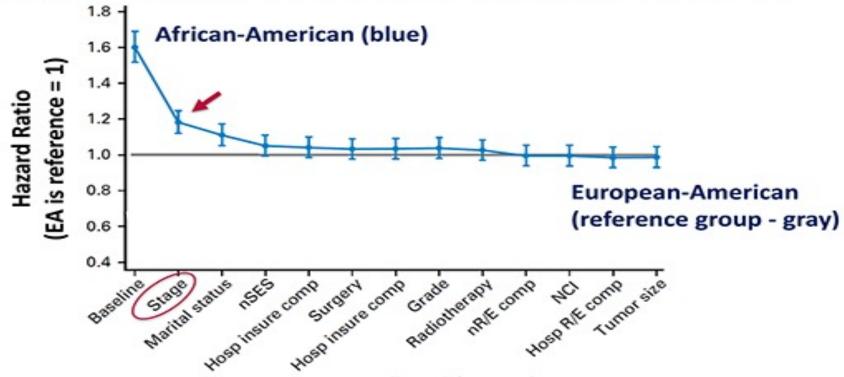
All men combined



Disease progression

Association of Neighborhood Deprivation with Risk of Disease Progression and Regional/Distant Metastasis

Pichardo et al., JAMA Network Open, 2023, 6:e2251745



Localized prostate cancer

Prostate cancer survival

Causes of the Prostate Cancer Survival Health Disparity

Advanced stage disease among African-American men is a key driver

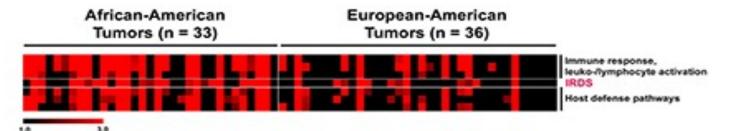
Health disparity

What is the Cause of the Prominent Role of Advanced Stage Disease in the Survival Health Disparity?

- Access to health care leading to a delayed diagnosis
- Aggressive tumor biology in African-American men

Interferon signature

A Prevalent Immune-Inflammation and Interferon Signature in Prostate Tumors of African-American Men


Inflammation Signature reported by us: Wallace....Ambs, Cancer Res 2008, 68: 927-36

Up-regulated in African-Americans

- IFNy, INDO, PTPN22, STAT1
- CCL4, CCL5, CCL8, CCL19, CXCL9, CXCL11, CXCR4, CCR7
- IL-15 & 16
- ISG15, ISG20, IFI16, IFI27, IFI44 & 44L,
 IFIT1, IFIT3, IFITM(1/2/3), IRF1 & 8
- MX1 & 2, OAS1 & 2, OASL
- TAP1 & 2

Many are viral infection response genes

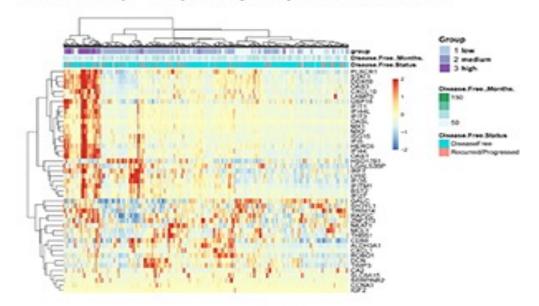
"Viral Mimicry" Signature

Interferon Signature(s)	AA	EA	Permutated P value*	FDR (%)*
Interferon-related DNA damage resistance signature (IRDS)	22/33 (67%)	12/36 (33%)	1.6x10 ⁻⁴	3.7

Ming Yi, ABCC-NCI, using Pathway-level Comparative Analysis

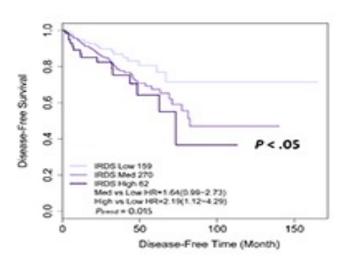
IRDS signature

 Weichselbaum et al., PNAS 2008, 105: 18490-5


Wei Tang

Tang et al., Clin Cancer Res. 24, 5471-81, 2018

Early disease recurrence


Interferon Signature (IRDS) is Associated with Early Disease Recurrence in the TCGA Prostate Cancer Cohort

Expression of 45 IRDS genes identifies prostate tumors with low (159), medium (270), and high (62) expression of this signature. TCGA cohort (n = 491): mainly European-American men

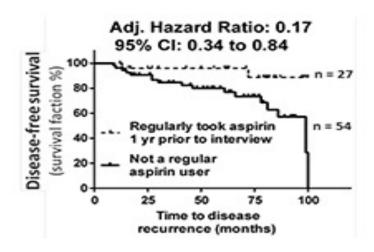
The Cancer Genome Atlas (TCGA) dataset

High IRDS expression in prostate tumors is associated with decreased disease-free survival

Tang et al., Clin Cancer Res. 24, 5471-81, 2018

Clinical Implication

Clinical Implication of the Interferon Signature


• Tumors with an interferon-stimulated gene (ISG) signature are highly susceptible to inhibition of adenosine deaminase acting on RNA (ADAR1) (Gannon et al., Nature Communications 2018, 9: e5450; Liu et al., Nature Medicine 2019, 25: 95-102)

ADAR1 function: RNA A-to-I editing by ADAR1 has been proposed to prevent cytoplasmic RNA sensors of the innate immune system, such as MDA5 and PKR, from erroneously recognizing endogenous dsRNA as foreign. ADAR1 loss: leads to an aberrant interferon response.

Aspirin

Aspirin Use May Prevent Advanced Disease and Disease Recurrence in African-American Men

- Increased disease-free survival among African-American aspirin users in NCI-Maryland Prostate Cancer Study
 - Smith et al., Cancer Epidemiol. Biomarkers Prev. 2017, 26: 845-53
- Decreased prostate cancer mortality among African-American aspirin users in Southern Community Cohort Study
 - Tang et al., Cancer Epidemiol. Biomarkers Prev. 2021, 30: 539-544

Immune oncology markers

Immune-Oncology Markers Grouped by Pathway

Apoptosis	Autophagy	Chemotaxis	Promote Tumor Immunity	Suppress Tumor Immunity	Vasculature
Gal9	ADA	CCL17	CX3CL1	CXCL1	CXCL1
TNFRSF12A	CAIX	CCL19	CXCL9	CXCL5	CXCL5
TWEAK	HO1	CCL20	CXCL10	CXCL11	CXCL9
MMP7		CCL23	CXCL11	CXCL13	CXCL10
CD40L		CCL3	CXCL13	CD4	CXCL11
TRAIL		CCL4	CD4	CD5	CCL23
CASP8		CX3CL1	CD5	CCL17	IL8
FASLG		CXCL1	CD8A	CCL19	IL12
GZMA		CXCL10	CD27	CCL20	MCP4
GZMB		CXCL11	CD28	IL4	Gal1
GZMH		CXCL13	CD40	IL5	Gal9
TNFRSF21		CXCL5	CD70	IL6	MMP12
		IL8	CD83	IL8	MCP1
		MCP1	CD244	IL10	CAIX
		MCP2	CD40L	IL18	TNFRSF12A
		MCP3	TRAIL	MCP4	TWEAK
		MCP4	CRTAM	Gal9	ADGRG1
			ICOSLG	MMP7	ANG1
			IL12RB1	CSF1	ANGPT2
			IL6	Gal1	DCN
			IL7	LAMP3	EGF
			IL18	LAPTGFbeta1	FGF2
			KLRD1	MICAB	HGF
			NCR1	MMP12	NOS3
			TNFRSF4	PDCD1	PDGFsubunitB
			TNFRSF9	PDL1	PGF
			TNFSF14	PDL2	PTN
					TIE2
					VEGFA
					VEGFC
					VEGFR2

Proteome defined activity

Association of Neighborhood Deprivation with Serum Proteome-defined Activity Scores for Six Biological Pathways (among Controls)

Characteristic	Model statistics	87.%	1,,	RNISE	F statistics:	Protee	ANOVA 5 95% COP	Profes
Wodel 1 (multivariate ANOV	4)							
WO:A	0.441	NA	66.0, 4120.3	NA.	10.33	<.001	NA	NA .
Pilisi blook	0.705	NA	66.0, 4.644.0	NA.	9.32	<.001	NA	NA.
Lautey Histolling trace	0.967	NA	66.0, 4604.0	NA	11.24	<.001	NA	NA.
Ray largest root	0.556	NA	11.0,774.0	NA.	39.09	<.001	NA	NA.
Pothways								
Autophagy	86	3.25	NA.	0.496	2.388	.007	0.012 (-0.015 to 0.060)	.176
Chemotius	NA.	11.96	NA.	0.353	9.555	<.001	0.048 (0.015 0.081)	.005
Information	86	5.85	NA.	0.353	4.378	<.001	0.037 (0.003 to 0.070)	.031
Promotion	NA.	9.90	NA.	0.415	7.731	<.001	0.03 (-0.006 to 0.071)	-316
Suppression	NA.	11.12	NA.	0.333	8.893	<.001	0.038 (0.007 to 0.069)	.018
Vinculature	NA.	11.86	N/A	0.335	9.465	<.001	0.026 (-0.005 to 0.058)	.304
Wedst 2 (multivariate ANO)	#)·							
Willia A	0.395	NA	114 0, 4388.4	NA.	6.74	<.001	NA	N/A
Pillai trace	0.805	NA	114.0,4396.0	NA.	6.24	<.001	NA	NA.
Lawley-Hictorilling-trace	1.090	NA	114 0, 4356.0	NA.	7.26	<.001	NA	N/A
Boy largest root	0.571	NA	766.00	NA.	23.01	<.001	NA	NA.
Puthways								
Autophogy	NA.	4.50	NA.	0.496	1.890	.012	0.027 (-0.025 to 0.076)	.306
Chemotoris	NA.	13.9	44	0.349	6.501	<.003	0.050 (0.013 to 0.004)	.006
Information	NA.	7.3	N/A	0.153	3.189	<.003	0.031 (-0.006 to 0.067)	.304
Pronuction	NA.	11.2	NA.	0.415	5.067	<.001	0.007 (-0.035 to 0.051)	317
Suppression	NA.	12.4	NA.	0.332	5.726	<.001	0.021 (-0.013 to 0.054)	.228
Vinculature	NA.	11.0	NA.	0.335	6.015	<.000	0.024 (-0.012 to-0.059)	.109

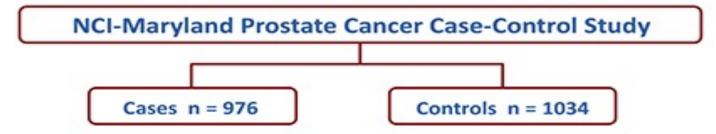
Abbreviations, ANCNIA, analysis of variance, NA, not applicable, NDI, national deprivation index, RMSE, root mean square error.

cancer (first degree relatives, yes/no), diabetes (yes/no), body mass index at study entry (continuous), self-reported sor-loot included in stratified analyses, African American, Curopean-American), smaking status (current, former, nevers), and West African amountly (continuous). Model Suddocrafty adjusted for educational level (high school or less, some college, college, professional school, minimig), includiual income (-510 000, 510 000, 529 999, 500 000, 590 000, -590 000).

^{*} NOT was derived from principal components analysis using 2000 census tract for 4 dimensions of socioeconomic status et al. attained lines, employment, occupation, and poverty, standard and to mean (Sci) 0.(1). The index was operationalized as continuous (where higher scores indicate greater depression). Model I multiple ANOVA adjusted for age at study entry (continuous), agains use (preshod, family feators) of producte.

Nopresent estimates of each pathway modeled independently.

Inflammation

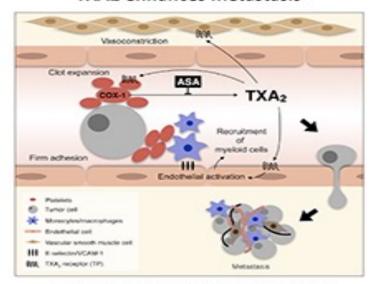

A Precision Medicine Study of How Inflammation May Underlie the Excessive Burden of Prostate Cancer in Men of African Ancestry

DoD Impact Award W81XWH-18-1-0588: Collaborative study with Clayton Yates (Tuskegee University), Michael Cook (DCEG/NCI) and the Prostate Cancer Transatlantic Consortium (CaPTC)

Hypothesis: Systemic low-grade inflammation is a prostate cancer risk factor in men of African descent, and correlates with West African ancestry and exposures, a distinct tumor biology, and aggressive disease.

Prostate cancer studies

Resource for the Prostate Cancer Studies



- Comparable numbers of African-Americans and European-Americans
 - Ancestral origin: self-reported and determined with ancestry-informative markers
- Population-based controls
- Survey data, blood, urine, and fresh-frozen tumor specimens
 - Survival follow up (disease-free, disease-specific, overall)
- Completed National Comprehensive Cancer Network Risk Score classification for all cases
- Established a Neighborhood Deprivation Index for all men by linking their address to census track demographic, economic and population data (followed Messer et al. 2006 guidelines)

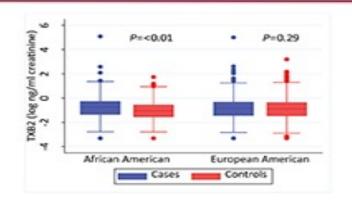
Thromboxane A2

Hypothesis: Inflammation-related Thromboxane A2 (TXA2) Signaling is Increased in African-American Patients and is a Risk Factor by Increasing Metastasis

TXA2 enhances metastasis

Lucotti et al., JCI 2019;129:1845-1862

Maeve Bailey-Whyte

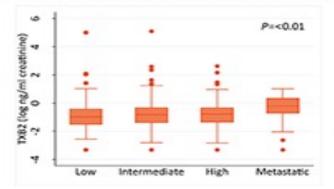


Measured the stable TXA2 metabolite, 11-dehydrothromboxane B2 (TXB2), in urine samples

(collaboration with Ginger Milne, Vanderbilt U)

Thromboxane B2

Urinary Thromboxane B2 (TXB2) Levels in African American and European American Men and Their Association with Prostate Cancer and Metastasis



Urinary TXB2 is high in men with metastatic prostate cancer

Kiely...Ambs, JNCI, 114: djab129, 2022

NCCN Risk Score Classification

TBX2 and metastatic disease

High Urinary Thromboxane B2 (TBX2) Associates with Metastatic Disease in the NCI-Maryland Study

Association of high urinary	TXB2 with National Comprehensive
Cancer Network Risk Score	for metastatic prostate cancer

NCCN Risk Score Low	OR (95% CI) Ref	P value
Intermediate	1.49 (0.98-2.26)	0.06
High/Very High	1.34 (0.80-2.26)	0.27
Regional/Metastatic	2.60 (1.08-6.28)	0.03

High TXB2: > median

*Unconditional logistic regression adjusted for age at study entry, BMI (kg/m2), diabetes (no/yes), aspirin (no/yes), education (high school or less, some college, college, professional school), family history of prostate cancer (first-degree relatives, yes/no), self-reported race, smoking history (never, former, current), treatment (0=none, 1=surgery, 2=radiation, 3=hormone, 4=combination).

TBX2 and lethal disease

Thromboxane B2 (TXB2) associates with lethal disease in African-American men

Association of urinary TXB2 with prostate cancer-specific survival			
	African-American European-America		
TXB2 level	HR (95% CI)	HR (95% CI)	
≤ Median	Ref.	Ref.	
> Median	4.74 (1.62 -13.9)	1.12 (0.34 -3.66)	
Continuous data	1.59 (1.07 -2.36)	1.35 (0.90 -2.01)	

Kiely...Ambs, JNCI, 114: djab129, 2022

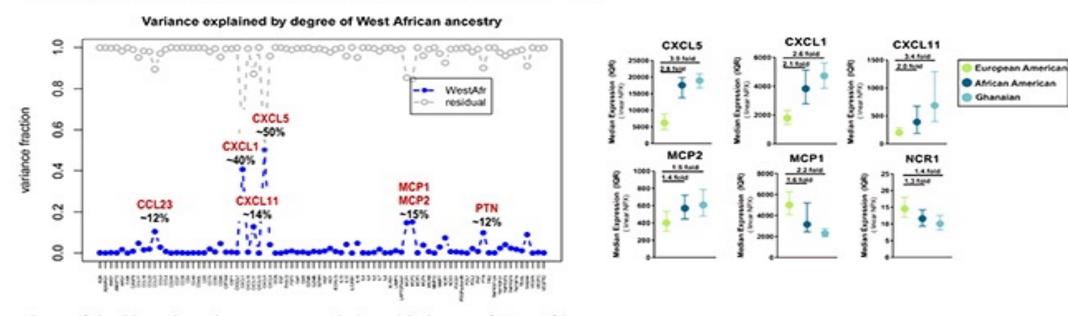
Conclusion

Conclusion

- Platelet-derived, pro-metastatic thromboxane A2 may enhance lethal prostate cancer in African American men
 - driver: systemic inflammation?

Immune oncology markers

Immune-Oncology Markers Grouped by Pathway

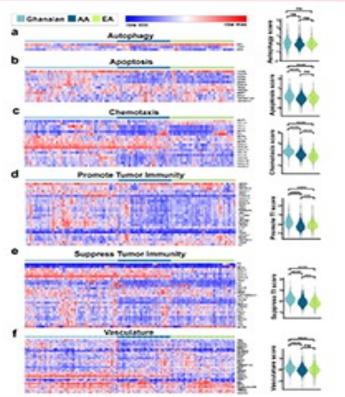

Apoptosis	Autophagy	Chemotaxis	Promote Tumor Immunity	Suppress Tumor Immunity	Vasculature	
Gal9	ADA	CCL17	CX3CL1	CXCL1	CXCL1	
TNFRSF12A	CAIX	CCL19	CXCL9	CXCL5	CXCL5	
TWEAK	HO1	CCL20	CXCL10	CXCL11	CXCL9	
MMP7		CCL23	CXCL11	CXCL13	CXCL10	
CD40L		CCL3	CXCL13	CD4	CXCL11	
TRAIL.		CCL4	CD4	CD5	CCL23	
CASP8		CX3CL1	CD5	CCL17	IL8	
FASLG		CXCL1	CD8A	CCL19	IL12	
GZMA		CXCL10	CD27	CCL20	MCP4	
GZMB		CXCL11	CD28	IL4	Gal1	
GZMH		CXCL13	CD40	IL5	Gal9	
TNFRSF21		CXCL5	CD70	IL6	MMP12	
		IL8	CD83	IL8	MCP1	
		MCP1	CD244	IL10	CAIX	
		MCP2	CD40L	IL18	TNFRSF12A	
		MCP3	TRAIL	MCP4	TWEAK	
		MCP4	CRTAM	Gal9	ADGRG1	
			ICOSLG	MMP7	ANG1	
			IL12RB1	CSF1	ANGPT2	
			IL6	Gal1	DCN	
			IL7	LAMP3	EGF	
			IL18	LAPTGFbeta1	FGF2	
			KLRD1	MICAB	HGF	
			NCR1	MMP12	NOS3	
			TNFRSF4	PDCD1	PDGFsubunitB	
			TNFRSF9	PDL1	PGF	
			TNFSF14	PDL2	PTN	
					TIE2	
					VEGFA	
					VEGFC	43
					VEGFR2	

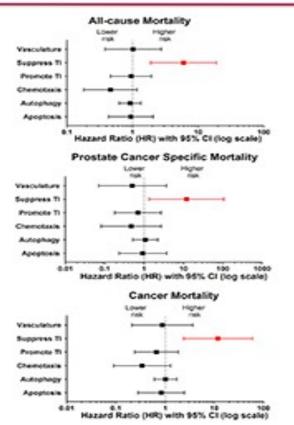
Chemokines

Levels of some Chemokines Strongly Correlate with Degree of West African Ancestry

NCI-Maryland Cohort: healthy male volunteers

African American (n=374) and European American (n=454)




45 out of the 82 markers show some association with degree of West African ancestry; association remained significant for 42 after stringent Bonferroni multicomparison adjustment

Tumor immunity suppression

Suppression of Tumor Immunity is Associated with Decreased Survival among Men with Prostate Cancer

Minas et al. Nature Communications, 2023, 13:1759

Tumor immunity score

High Suppression of Tumor Immunity Score Associates with Metastatic Prostate Cancer

Suppression of Tumor Immunity associates with National Comprehensive Cance	r
Network Risk Score for prostate cancer aggressiveness	

	Total	AA	EA
NCCN Risk Score	OR (95% CI)*	OR (95% CI)*	OR (95% CI)*
Low	Ref	Ref	Ref
Intermediate	1.04 (0.68-1.59)	0.89 (0.46-1.70)	1.18 (0.65, 2.13)
High/Very High	1.47 (0.87-2.48)	1.33 (0.59-2.98)	1.72 (0.83, 3.54)
Regional/Metastatic	3.79 (1.59-9.04)	5.90 (1.43-24.34)	3.16 (0.95, 10.50)
P value for Trend	0.004	0.019	0.040

Note: Bolded data indicate significant associations in the logistic regression analysis.

*Logistic regression adjusted for age at study entry, BMI (kg/m2), diabetes (no/yes), aspirin (no/yes), education (high school or less, some college, college, professional school), family history of prostate cancer (first-degree relatives, yes/no), self-reported race (not included in the stratified analysis), income (less than \$10k, \$10-30K, \$30-60K, \$60-90k, greater than \$90k), smoking history (never, former, current), treatment (0=none, 1=surgery, 2=radiation, 3=hormone, 4=combination).

High suppression of tumor immunity is defined by the median score in the NCI-Maryland control population (\$\times\$ median vs. > median)

Summary

Summary

- Our findings support the hypothesis that tumor-associated and systemic inflammation is a prostate cancer risk factor among men of African descent and promotes a distinct immune environment and disease progression
 - Immune environment in the circulation may increase the odds of metastasis
 - Signature may have both an ancestral and environmental cause (possible geneenvironment interaction involving a virus, Minas...Ambs, Commun Biol, 1: 191, 2018)
 - but may lead to a favorable response to immune therapies
- Regular aspirin use may prevent lethal prostate cancer in African-American men

Acknowledgement

Acknowledgement

Members of the Molecular **Epidemiology Section 2017-2021**

Current

Amy Zhang

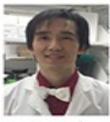
Brittany Lord

Gati Panigrahi

Maeve Bailey-Whyte

Margaret Pichardo

Tiffany Dorsey



Tsion Minas

Former

Ajao

Daniel Lee

Francine

Prachi

Obadi Obadi

Wei Tang

Baker

Collaborators

Collaborators

- Clayton Yates, Tuskegee University
- Michael Cook, DCEG/NCI
- Jay Fowke and Bill Blot, Vanderbilt University
- Chris Loffredo, Georgetown University
- Ludmila Prokunina-Olsson, DCEG/NCI
- George Stark and Eric Klein, Cleveland Clinic
- Rick Kittles, City of Hope
- and many thanks to our UMD contractor (PI Dean Mann and his team)
- Gretchen Gierach and CCR Flex award team