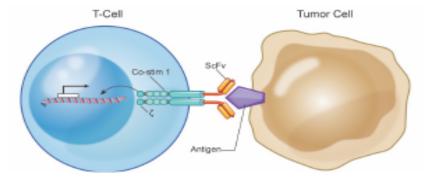
CAR T-cell therapy

CAR T-cell Therapy in Pediatric Leukemia: Current Status and Future Directions

Nirali N. Shah, MD

NIH Lasker Clinical Research Scholar NIH Distinguished Scholar Hematologic Malignancies Section Pediatric Oncology Branch National Cancer Institute September 25, 2023

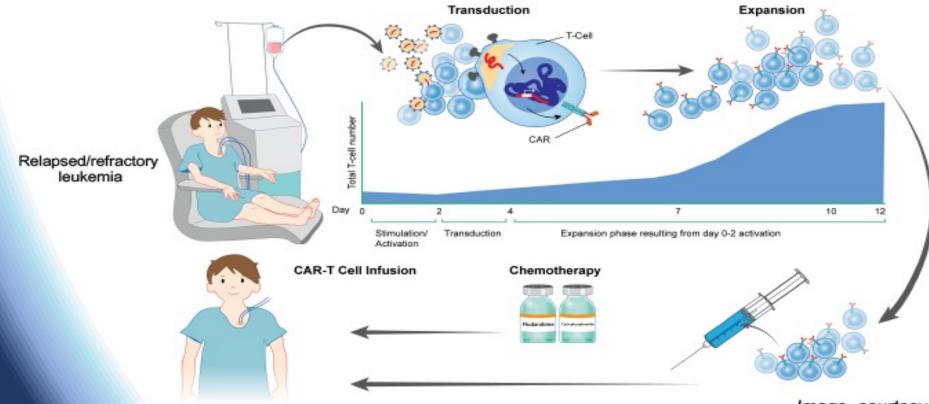
Objectives


Objectives

- Basic overview of the CAR T-cell program in children and young adults
- Current status of CAR T-cell therapy in pediatric ALL
- Review limitations and active efforts to address these challenges
- Discuss future directions

Adoptive cell therapy

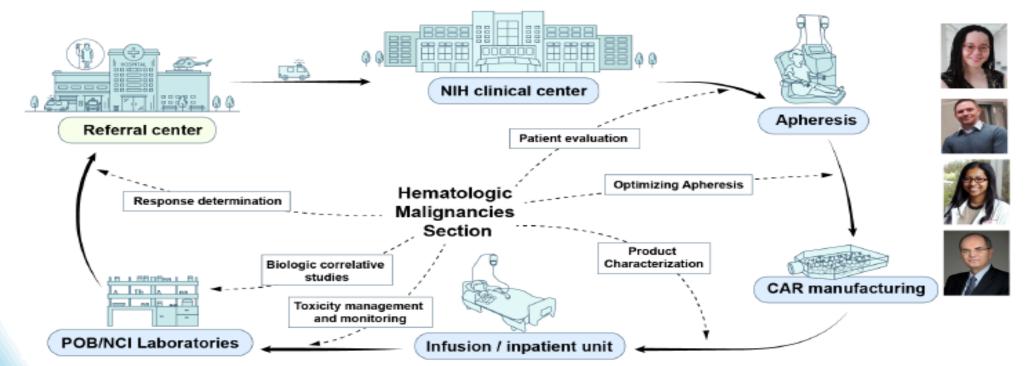
CAR T-cell therapy


Adoptive cell therapy

- Mechanism to overcome the inherent inhibition of endogenous T cells to target and eliminate cancer cells
- Engineered T cells provide enhanced specificity and efficacy to target cancer
- MHC independent recognition of cell surface antigens
 - CD19/CD22
- Built in co-stimulatory signaling domains
 - 4-1BB or CD28 with CD3z
- T-cell functionality coupled to antibody based antigen recognition

Schema

General trial schema



Image, courtesy of NIH Medical Arts

It takes a village

It takes a village...

July 2012: CD19 CAR December 2014: CD22 CAR May 2018: CD19/22 CAR March 2020: CD33 CAR (AML)

In collaboration with CCE, DTM, NCI, FNLCR, NIH

Novel immunothreapy

Extensive correlative studies are embedded in the infrastructure of these novel immunotherapies

- Cytokine profiling
- CAR T-cell trafficking, persistence and expansion
 - Blood, bone marrow and CSF
- Toxicity and response monitoring
 - Routine clinical laboratory evaluations
 - Anti-cytokine directed therapy
 - Prospective neurotoxicity evaluations
 - Patient reported outcomes
 - Adverse event monitoring
 - Imaging

- Leukemia biology
 - Evaluation of CD19/22 expression
 - Lineage switch
 - Immunophenotypic evaluations
 - Genomics
- Optimization Strategies
 - Manufacturing
 - CAR T-cell product analysis
 - Toxicity mitigation
 - Immunogenicity
- Highly collaborative network

Collaboration with NCI Flow Cytometry, POB (Naomi Taylor, Pam Wolters, Staci Martin), Center for Cellular Engineering, FNLCR

Pediatric ALL

CAR T-cells in Pediatric ALL

Pediatric ALL

Pediatric ALL: Outcomes for relapsed/refractory disease

- Acute lymphoblastic leukemia (ALL) is the most common childhood cancer
- "Poster-child" for success in cancer therapy due to cooperative group efforts
- 85-90% cure rates
- Those with relapsed/refractory disease have poor outcomes

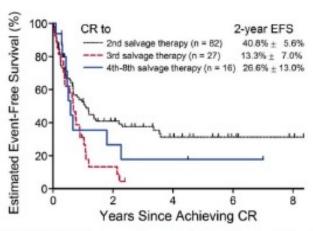
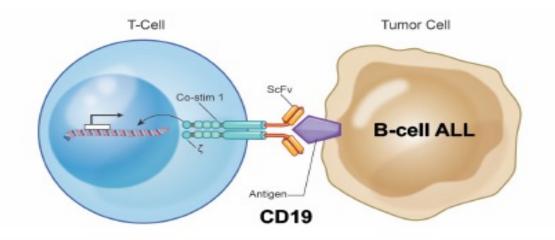
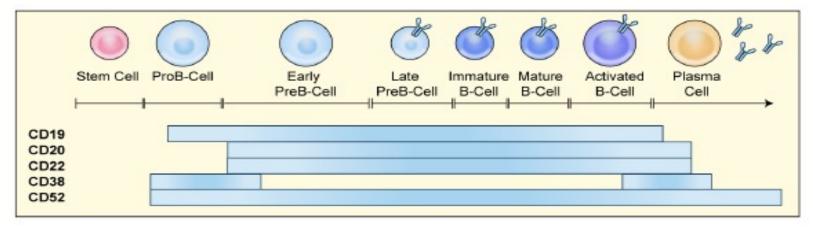


Fig. 2 Estimated 2 year event-free survival for patients who achieved complete remission after ≥2nd salvage attempt. CR complete remission, EFS event-free survival

Number of salvage attempt	CR rate (SE) [95% confidence interval]		Difference (Sun–Ko) (SE)
	1995-2004 (Ko et al.) [5]	2005-2013 (Sun et al.)	(testing proportion)
Second salvage attempt	44.44 % (4.78) [34.88, 54.32]	50.91 % (3.89) [43.02, 58.76]	0.0647 (0.0616) (-0.0561, 0.1855) p = 0.2955
Third salvage attempt	26.78 % (5.92) [15.83, 40.30]	36.99 % (5.65) [25.97, 49.09]	$\begin{array}{c} 0.1021 & (0.0818) \\ (-0.0583, \ 0.2624) \\ p = 0.2200 \end{array}$
Fourth through eighth salvage attempt	12.31 % (4.07) [5.47, 22.82]	30.77 % (6.40) [18.72, 45.10]	0.1846 (0.0759) (0.0358, 0.3333) p = 0.0140

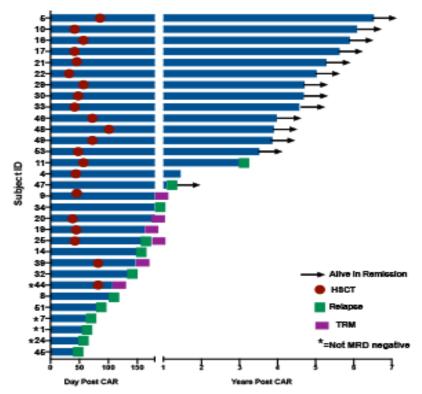

Sun/Whitlock, Leukemia, 2018


CR complete remission, SE standard error

Targeting CD19

Targeting CD19

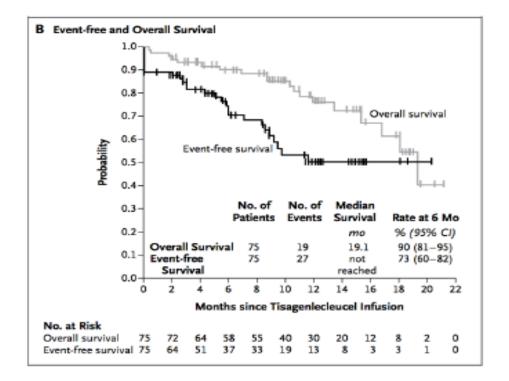
 CD19 ubiquitously found on B-cells



CD19 CAR

CD19 CAR (Pediatric Oncology Branch)

- July 2012
 - CD19-28ζ (now Yescarta)
- Lessons learned:
 - Cytokine release syndrome
 - CAR T-cell persistence
 - Importance of fludarabine/cyclophosphamide
 - Treatment of active CNS disease
 - Role of stem cell transplant
- Changed the paradigm for phase 1 trials re: response


Duration in Remission (n=31)

Shah NN et al., J Clin Oncol, In Press

Clinical updates

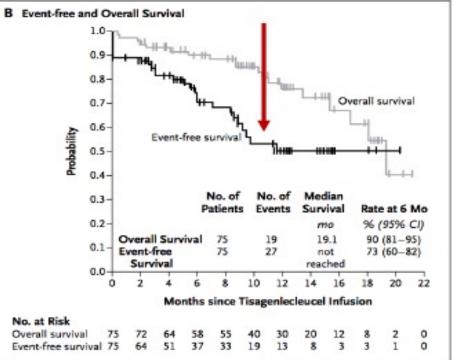
CD19 CAR clinical updates (Kymriah)

- 81% Complete remission rate
 - Children with relapsed/refractory B-cell ALL
 - CD19/4-1BB (Children's Hospital of Philadelphia)
 - Tisagenlecleucel
- Event Free Survival:
 - 6 months: 73%
 - 12 months: 50%

Maude SL, et al. NEJM 2018

FDA approvals

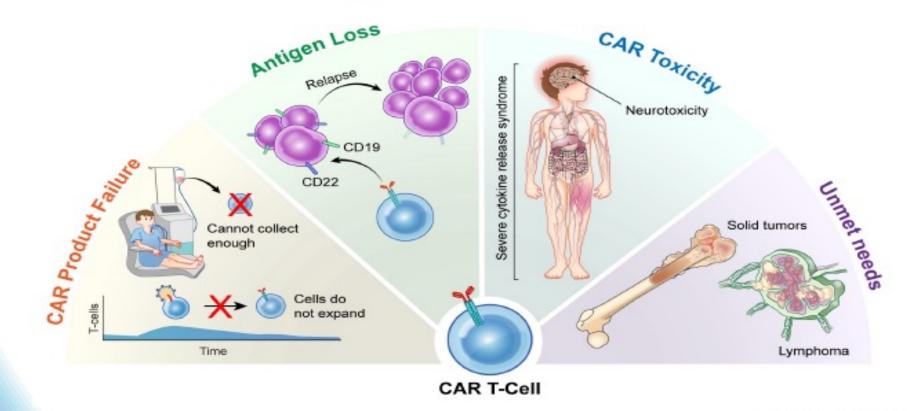
FDA approvals: CD19 CAR T-cells


Kymriah® (tisagenlecleucel):

- Pediatric B-ALL (up to age 25)
- Adults with Large B-Cell lymphoma
- Yescarta® (axicabtagene ciloleucel):
 - Adults with Large B-cell lymphoma
- Tecartus[™] (brexucabtagene autoleucel):
 - Mantle Cell lymphoma

CURE

Will CD19 CAR T-cells be the CURE?



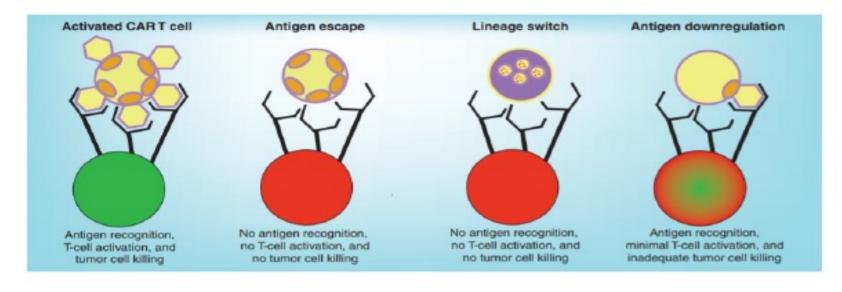
https://emilywhiteheadfoundation.org/

Current challenges

Current challenges

Shah NN, Nat Rev Clin Oncol

Current limitations

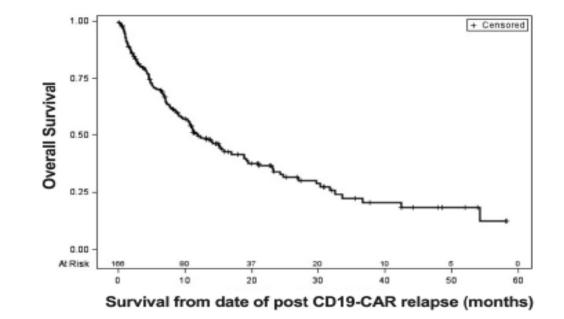

Current limitations

- <u>Relapse</u>: With or without the surface antigen (CD19)
 - Problem 1 (CD19+): Second CAR infusions generally don't work as well
 - Problem 2 (CD19 neg): If you don't see it, you can't treat it
- Manufacturing: If you can't make it, you can't use it
- <u>Toxicity</u>: Need to survive it
- <u>Disease</u>: Going beyond ALL

CD19 loss

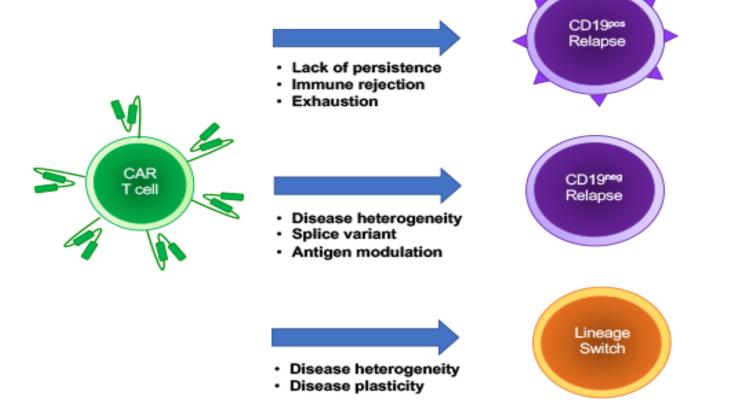
Catch me if you can!!!

 CD19 loss or down regulation represents the primary form of treatment failure



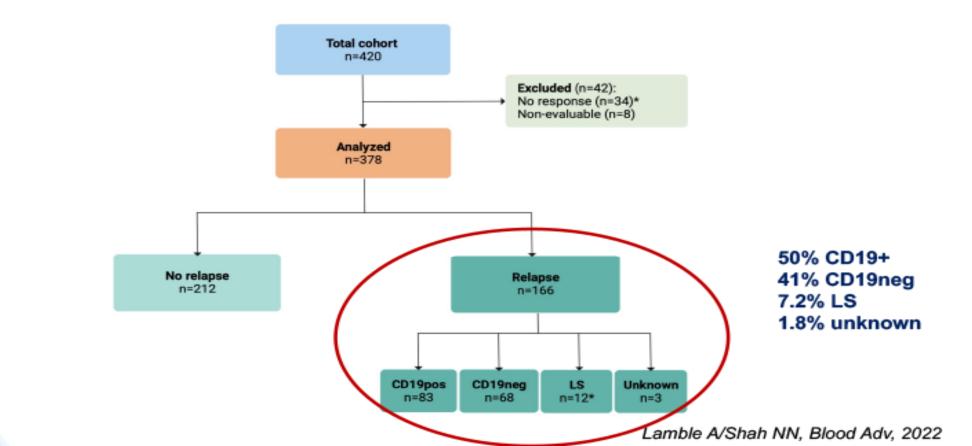
Majzner R., Cancer Discovery, 2018

Outcomes

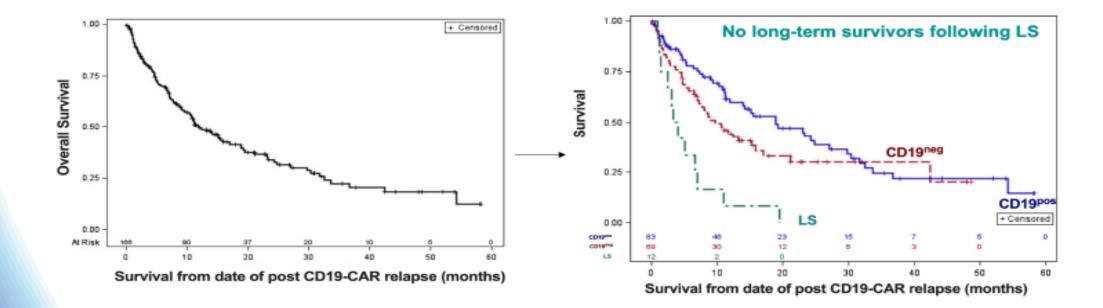

Outcomes for post CD19 CAR relapse are poor

- Retrospective, multicenter study of 420 children and young adults receiving CD19 CAR T-cells
 - 166 (39.5%) with relapse
- Median overall survival (OS):
 11.9 months (95% CI: 9.0-17.9 mo)
- 12 month OS: 49.4%
- Salvage options, limited
 - Particularly for CD19^{neg} relapse

Etiology


Etiology for relapse differs across the various phenotypic presentations

Lamble A/Shah NN, Blood Adv, 2022

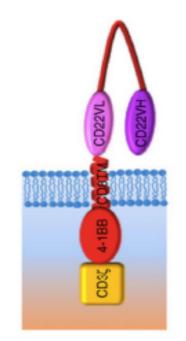

Relapse

The nitty-gritty of relapse phenotype

Relapse phenotype

Relapse phenotype impacts outcomes

Alternative antigen

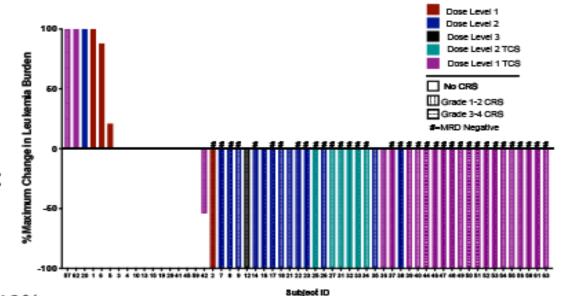

Targeting an alternative antigen may help circumvent CD19 loss

CD22 CAR T-cells

CD22 CAR T-Cells

- CD22 CAR:
 - m971 scFV
 - 4-1BB co-stimulatory domain
- CD22 CAR T-cells (NCI) highly active
 - Phase I, 3+3 dose escalation trial
 - NCI construct (m971/4-1BB)
 - CD22+ ALL or NHL
 - Ages 3-30 years
 - Lymphodepletion:
 - Fludarabine 75 mg/m² + Cyclophosphamide 900 mg/m²
 - First patient infused December 2014
 - Now: 80 patients enrolled to date

Anti-CD22 CAR T-Cell

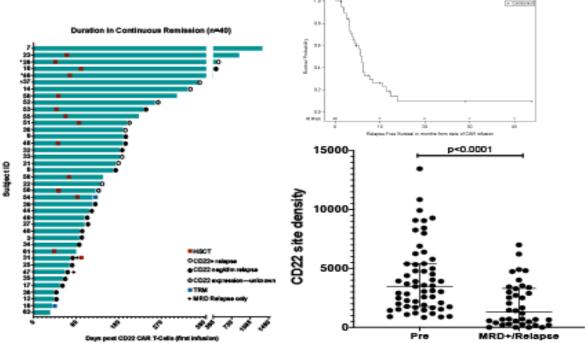


CD22 CAR T-cells are highly active

CD22 CAR T-cells are highly active in patients with relapsed/refractory disease

70% complete remission (CR) rate

- 40 of 58 patients
- 87.5% minimal residual disease (MRD) negative
- 76% CR at expansion dose
 - 19 of 25; <u>MRD neg CR: 94.7%</u>
- Effective also in those who did not respond to prior CD19-targeted strategies



- Toxicity:
 - Cytokine release syndrome grades 3/4: 10%
 - Neurotoxicity: mild

Remission reduction

Remission induction used as a bridge to HSCT to prevent antigen modulation as cause of relapse

- Antigen modulation a frequent cause of relapse
 - CD22 site density lower than CD19
- AlloHSCT acceptable practice for curative intent in patients with r/r ALL
 - Increased number of patients who have relapsed after CD19 CAR and not had a prior HSCT

Shah et al., Journal of Clinical Oncology, 2020

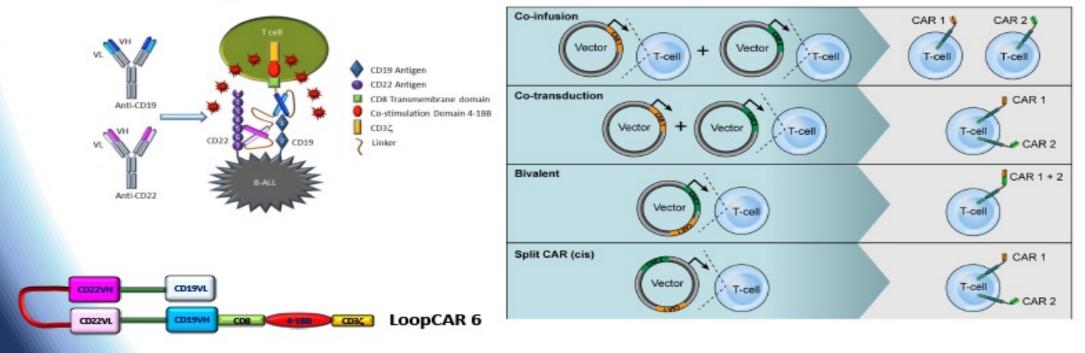
Breakthrough therapy

Breakthrough therapy designation

For the treatment of pediatric and young adult patients, 3-30 years of age with CD22 positive B-cell ALL that is refractory or in second or later relapse, and either CD19 negative or relapsed/refractory to CD19 targeting

os://ccr.cancer.gov/news/article/fda-grants-breakthrough-therapyagenation-for-new-car-t-cell-therapy-for-b-cell-acute-lymphoblastic-leukemia

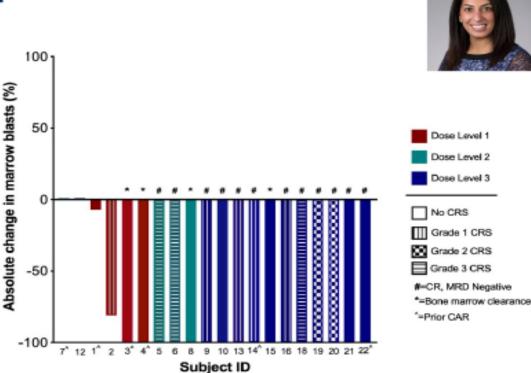
FDA, August 2019


Antigen targeting strategies

Combinatorial/simultaneous antigen targeting strategies will be needed to prevent antigen escape

Combinatorial treatment strategies

The foundation of ALL therapy is based in combinatorial treatment strategies


So... why would immunotherapy be any different?

Highly-active

Highly-active in r/r pre B-ALL

- 20 patients
 - 16 (80%) with eradication of marrow disease
 - 12 (60%) with complete CR
 - Discrepant responses in EMD
- · Response was dose-dependent:
 - 14/16 (87.5%) at ≥ 1 x 10⁶ transduced CAR T-cells
- CAR-naïve patients had improved response: 10/14
 - But CAR pre-treated patients also skewed towards the first (? Ineffective DL)
- · CRS severity was generally low
 - 1 patient with ICANS (grade 3)
- Limited efficacy in extramedullary disease
- With limited CD22 targeting, a novel bicistronic construct will be forthcoming this summer

Stem cell transplantation

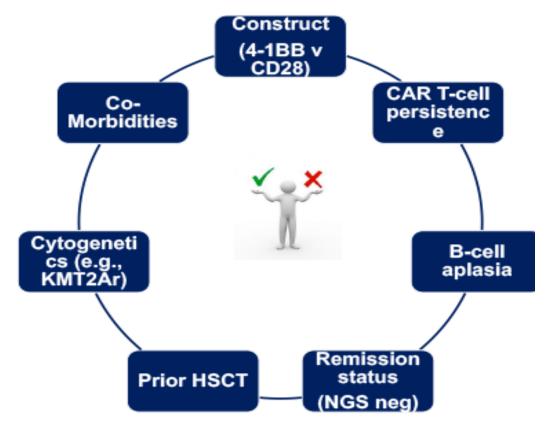
What is the role for allogeneic hematopoietic stem cell transplantation in CAR T-cell therapy?

HSCT

What is the role of HSCT following CD19 CAR T-cell therapy?

- CD19 targeted CAR T-cell therapy can lead to a long-term durable remission in a fraction of pediatric patients with B-ALL
- HSCT has an important role for consolidation and long-term cure in patients with high-risk or relapsed B-ALL
- HSCT is associated with both short-term and long-term risks
- Salvage options for patients relapsing after CD19 CAR T-cell therapy are limited

Prospective studies


Prospective studies are needed to define the role for post-CAR consolidative HSCT

Benefit of HSCT

- NCI: CD19/28ζ
- Seattle: CD19/41BB
- MSK (peds): CD19/28ζ

No Benefit or Unknown

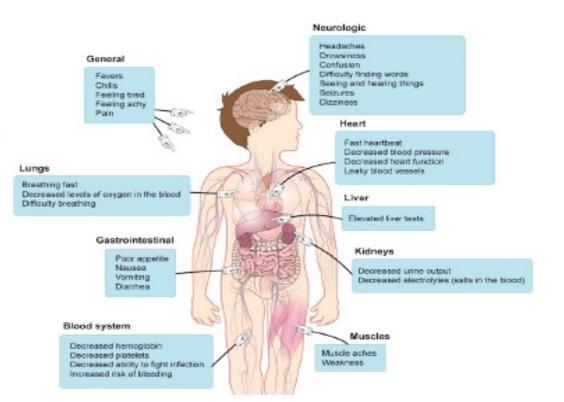
- Novartis/CHOP: CD19/41BB
- MSK (adult): CD19/28ζ


Novel toxicities

Novel toxicities will be seen with novel CAR T-cell constructs and targets

Secondary inflammatory phases

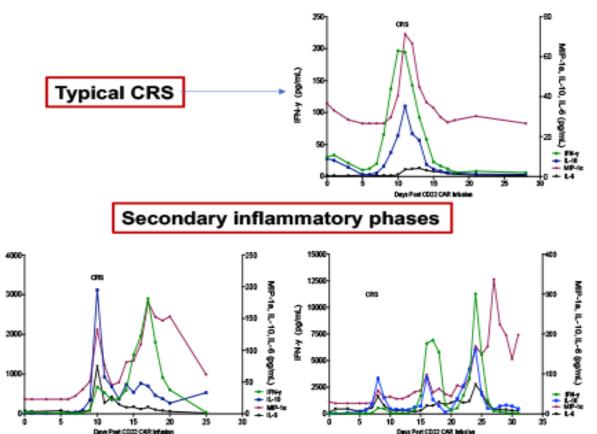
Secondary inflammatory phases seen in select patients treated with CD22 CAR T-cells


- Clinical manifestations
 - Cytopenias
 - Hepatic dysfunction
 - Elevated inflammatory markers (ferritin, sCD25),
 - Coagulopathy (hypofibrinogenemia)
- Symptoms often occur after clinical resolution from CRS
- Indications for tocilizumab administration often were not met during 2° symptoms

Cytokine release syndrome

Cytokine Release Syndrome

- Supraphysiologic inflammatory process seen with CAR T-cell expansion
- Range from mild to severe (lifethreatening)
- Neurotoxicity particularly worrisome
- Tocilizumab (anti-IL6 receptor Ab) FDA approved for the treatment of CRS

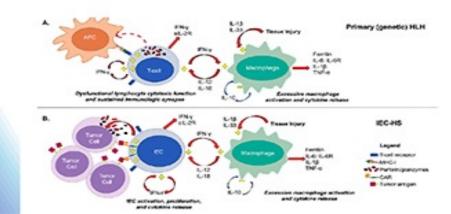

Secondary phases

Secondary inflammatory phases seen in select patients treated with CD22 CAR T-cells

30004

1000-

- Clinical manifestations
 - Cytopenias
 - Hepatic dysfunction
 - Elevated inflammatory markers (ferritin, sCD25),
 - Coagulopathy (hypofibrinogenemia)
- Symptoms often occur after clinical resolution from CRS
- Indications for tocilizumab administration often were not met during 2° symptoms



Immune effector cell

Immune Effector Cell associated HLHlike Syndrome (IEC-HS)

Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-Like Syndrome

Melissa R. Hines¹, Tristan E. Knight², Kevin O. McNerney³, Mark B. Leick⁴, Tania Jain⁵, Sairah Ahmed⁶, Matthew J. Frigault⁴, Joshua A. Hill², Michael D. Jain⁶, William T. Johnson⁹, Yi Lin¹⁰, Kris M. Mahadeo¹¹, Gabriela M. Maron¹², Rebecca A. Marsh¹³, Sattva S. Neelapu⁶, Sarah Nikiforow¹⁴, Amanda K. Ombrello¹⁵, Nirav N. Shah¹⁶, Aimee C. Talleur¹⁷, David Turicek¹⁸, Anant Vatsayan¹⁹, Sandy W. Wong²⁰, Marcela V. Maus⁴, Krishna V. Komanduri²⁰, Nancy Berliner²¹, Jan-Inge Henter²², Miguel-Angel Perales²³, Noelle V. Frey²⁴, David T. Teachey²⁵, Matthew J. Frank²⁶, Nirali N. Shah^{16,*}

Table 1

EC-HS: Definition and Identification

Definition of IEC-HS	The development of a pathological and biochemical hyperiorflammatory syndrome independent from OEs and IGANS that (1) manifests with fluctures of macrophage activation, BEU (2) is at the biothable to 10C threasy, and (3) is associated with pro- gression or new once of cytopenias, hyperformitismena, coapalogicity with hypothtriangeneering, and (or transminity.	
Criteria for Identifying IEC-HS	Clinical Laboratory Manifestations	
Most common manifestations'	Required: elevated ferritin (>2 × UUN or baseline (at time of infusion)) and/or rapidly rising (per clinical assessment)	
	Otset with resolving/resolved CIS or worsening inflammatory response after initial improvement with CIS-directed therapy ¹	
	Hepatic transaminase elevation' (>5 × U.N.(if baseline was normal) or >5 × baseline if baseline was abrormal)	
	Hypofileinoprovnia («150 mg/dL or «1LN) ¹	
	Hemophagocytosis in bone marrow or other tissue?	
	Cytopenias (new onset, worsening, or refractory*)	
Other manifestations that may be present	Lactate dehydrogenase elevations (>ULN)	
	Other coagulation abnormalities (eg. elevated PT/PTT)	
	Direct hyperbilisationenia	
	New-coset spiesomegaly	
	Fever(new* or persistent)	
	Neuronoxicity	
	Pulmonary manifestations (eg, hypoxia, pulmonary infitrates, pulmonary edema)	
	Renal insufficiency (new cost)	
	Hypertrighyerridemia (fasting level, ~265 mg/d/)	

ULN indicates upper limit of normal; ULN, lower limit of normal.

* Diagnosis was made only when not attributable to alternative etiologies, including CKS, infection and/or disease progression.

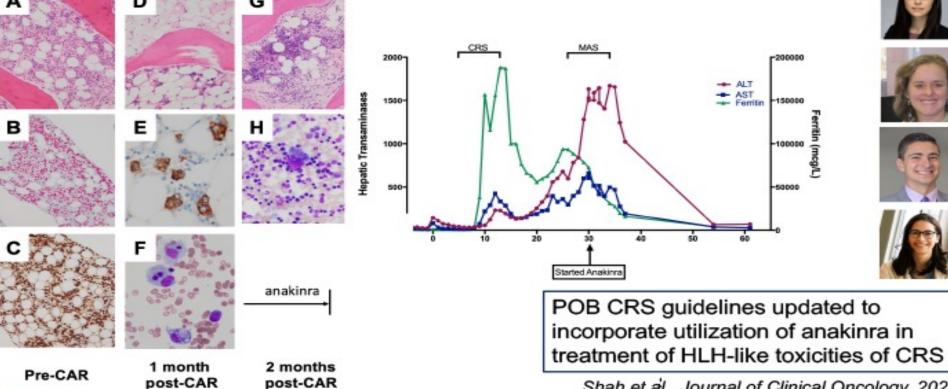
¹ Constellation of findings typically simultaneously (eg. all within 72 hours).

¹ Although most cases of EC-HS have been seen with antecedent OKS, this may not always be the case, and emerging experience will shed light on how EC-HS may power.

3 Consistent with grade 3 bepatic transaminase elevations according to Common Terminology for Adverse Events version 5.0.

1 According to HU6-2004.

⁴ Generally at least 1 lineage will be a grade 4 cytopenia (platelets, neutrophils, hemoglobin)


* As distinguished from CRS onset or recrudescence.

Hines/Shah, Transplantation and Cellular Therapy, 2023

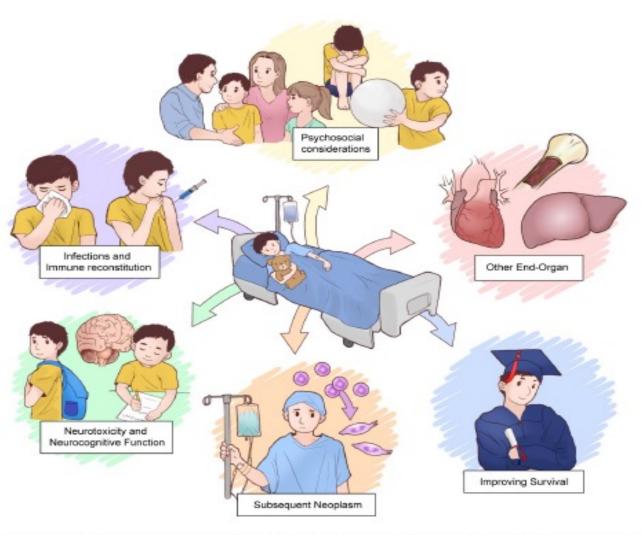
Novel toxicities

Novel toxicities necessitate unique approaches: Anakinra targeting of IL-1 signaling reduced carHLH symptoms

Shah et al., Journal of Clinical Oncology, 2020

Beyond ALL

Going beyond ALL...


- 60% of children and young adults with AML will not achieve long-term durable remission
- CD33 is an established target for AML
 - CD33 CAR construct developed in the POB (Qin/Fry)
- Phase I dose escalation study of CD33 CAR T-cells in children and young adults with r/r AML
 - Bridge to HSCT given concern for CD33 expression on hematopoietic precursors
- Trial updates:
 - First multicenter phase 1 CAR T-cell trial where manufacturing was done at NCI Frederick
 - Dose level 1 completed, 3 patients treated to date

Acute effects

What do we know about subacute or other long-term effects?

Beyond the storm

CAR T-cell Therapy: Beyond the Storm

https://ncifrederick.cancer.gov/events/conferences/car-t-cell-therapy-beyond-storm

Consortium

Beyond the Storm consortium

- Multi-center, multi-disciplinary group of care providers who are all well-versed in early implementation of CAR T-cell therapy
- Retrospective/prospective protocols to study subacute/late effects of CAR T-cell toxicities in children and young adults

Future directions

Areas of active research and future directions

- CAR T-cell highly effective in B-cell malignancies, however opportunities to further optimize this strategy remain
 - Relapse treatment and prevention
 - Antigen modulation
 - Toxicity management (acute and late effects)
 - Extending this therapy to other diseases
 - CAR T-cell manufacturing and design
 - Timing

Acknowledgements

Acknowledgements

Hematologic Malignancies Section Haneen Shalabi Monica Epstein Bonnie Yates Sara Silbert Lauren Little Keagan Lipak

Toni Foley Marieta Ollivierre Elizabeth Holland Cynthia Harrison

Taylor Lab

Naomi Taylor Marie Pouzolles Chris Chien Vicky Giordani Josquin Moraly Alka Dwivedi Mehdi Benzaoui Justin Mirazee Taisuke Kondo

NCI Flow Cytometry **Constance Yuan** Hao-Wei Wang

Pediatric Oncology Branch

Lori Wiener Pam Wolters Staci Martin **Brigitte Widemann** John Glod oanne Derdak

NIH CCE

David Stroncek Steve Highfill Hannah Song Anh Dinh Minh Tran **Jianjian Jin** Ping Jin Naoza Collins-Johnson

CC DTM, Apheresis Team

Cathy Cantilena Kamille West Dinora Garcia Monica Ford NCI DCTD James Doroshow Rachelle Salomon CD33 CAR Team

Frederick National Lab

Jon Inglefield Yanyu Wang

NCI Tech Transfer

Jim Knabb Laurie Whitney

NCI OSRO/Protocol Support

Rita Misra Alicia Peluso Shy Shorer Syeda Raza

NIH Collaborators

Amanda Ombrello (NHGRI) Veronique Nussenblatt (NIAID) Gregoire Altan-Bonnett (NCI) Joseph Rocco (NIAID)

Mentorship committee

POB: Brigitte Widemann, Naomi Taylor NCI: James Gulley, James Kochenderfer DSP: John Tisdale

Extramural Collaborators

Crystal Mackall (Stanford) Terry Fry (U. Colorado) Daniel (Trey) Lee (UVA) Sneha Ramakrishna (Stanford) NMDP

A special thanks to all our patients, particularly those who are no longer with us, their families and referring teams. Their memory lives on in our work.

NCI CDSL

Eytan Ruppin Michael Gertz

NIH Distinguished Scholars Program

Gaurav Narula (TATA Mem.) Rahul Purwar CARNation Consortium