Epigenetics and Cancer

Mukesh Verma, Ph.D.

Chief, Methods and Technologies Branch Program Director, Epidemiology and Genomics Research Program DCCPS, NCI, NIH

Fig. Credit: https://horizondiscovery.com/en/applications/cell-line/epigenetics

The genetic information provides the blue print for the manufacture of all the proteins necessary to create a living organism, whereas the epigenetic information provides the instructions on how, where and when the genetic information will be used.

Epigenetic predisposition to angiogenesneis? Individual? Populations? Pharmacogenomics and pharmacoepigenomics (personalized medicine) Microenvironment, microbiome, and gene expression GWAS and EWAS

The choices you make can change your genes -- and those of your kids.

Adapted from Matouk and Marsden Cir Res 102:873

GLOBAL CANCER DEATHS

In 2019, more men than women died from cancers caused by known risk factors, in part because males tend to smoke and drink alcohol more than females. Men are also more likely to work in jobs that expose them to risk factors.

https://www.nature.com/articles/d41586-022-02355-x

GBD 2019 Cancer Risk Factors Collaborators Lancet 400, 563–591 (2022).

CANCER DEATHS BY TUMOUR TYPE

In men and women, among cancers caused by preventable risk factors, tumours of the lung, trachea and bronchus were the leading cause of death. Smoking was the biggest risk factor associated with those cancer deaths.

doi: https://doi.org/10.1038/d41586-022-02355-x

Data show that smoking, drinking alcohol and obesity are the biggest contributors to cancer worldwide.

Giorgia Guglielmi

nature briefing

Sign up for the *Nature Briefing* newsletter what matters in science, free to your inbox daily.

Email address

e.g. jo.smith@university.ac.uk

I agree my information will be processed in accordance with the Springer Nature Limited <u>Privacy Policy</u>.

Estimated Number of Persons Alive in the U.S. Diagnosed with Cancer by Site

Men (4.24 million)

Women (5.31 million)

DCCPS covers cancer continuum

Prevention Tobacco, physical activity, diet, sun, environment, HPV immunization

Early Detection Breast, cervical, colorectal cancer screening

Diagnosis Incidence, Stage at diagnosis

Treatment Trends in cancer treatment

Prevention

Life After Cancer Financial burden of cancer care, Cancer survivorship

End of Life Mortality, Person – years of life lost

Cancer recurrence Secondary cancer Prevention: restoring transcription, halting progression, or stopping metastasis

Cancer Development is a Multi-step Process

Exfoliated Cells are Good Source of DNA to Study Epidemiology

Paradigm shifts in genetics

1850 - 1900 : Proto-genetics

Mendelian inheritance Darwin, natural selection

1900 - 1950 : Age of genetics

1950-2000 : Age of DNA

: Age of epigenetics

2000 -

gene concept, mutation, genotype-phenotype

structure, genetic code, genome sequence

epigenetic code, epigenome, epigenetic medicine

CANCER GENOME LANDSCAPE

Number of somatic mutations in representative human cancers, detected by genome-wide sequencing studies

Published GWAS Etiology Hits (2010)

There's more to the genome than its sequence

Nucleosomes (Units of Chromatin)

DNA Histones H2a, H2b, H3, H4

> To neutralize charge and provide stability

H1 is a linker histone which binds to the DNA linking two adjacent nucleosomal cores

Nucleosome: two turns of DNA (146 base pairs) wrapped around an octomeric complex of two of each of histone types

Shores are 0-2kb from islands **Shelves** are 2-4 kb and enhancers are beyond shelves

DNA Methylation

Activated Oncogenes

Asad Umar. NCI

EPIGENETICS

Epigenetic alterations – changes induced in cells that alter expression of the information on transcriptional, translational, or post-translational levels without change in DNA sequence **Modifications of RNA-mediated** Methylation of modifications histones DNA 5-methylcytosine cytosine DNMT1 RNA-directed DNA methylation DNMT3a RNA-interference mediated DNMT3b chromatin remodeling H₃C • RNAi, siRNA, miRNA -3.0 3.0 SAM SAH Control Treated Genomic Imprinting acetylation - methylation Shores: less than 2 kb from the CpG island - phosphorylation Shelves: 2-4 kb from the CpG island - ubiguitination Remaining region: called OPEN SEA

Components of the Epigenome

Jones and Laird. Nat Rev Gen 21: 163

Figure 1: Modulation of covalent modifications on chromatin.

From: Targeting the cancer epigenome for therapy

Mapping human epigenomes

Genome vs. epigenome – why is it important?

- Age
- Diet
- Disease
- Lifestyle
- Environment

• Areas of interest:

- · Molecular basis of disease
- · Biomarker identification
- · Diagnostics development
- · Drug targeting

You only need to sequence your genome once, but you need to determine your epigenome multiple times... https://www.youtube.com/watch?v=JMT6oRYgkTk

Key toxic substances affecting the epigenome

- Arsenic Induces genetic and epigenetic changes
- Benzene Benzene and its metabolic product hydroquinone alter methylation profiles and contribute to <u>leukemia</u>

Cadmium Induces <u>hypermethylation</u> of selected genes in <u>lung cancer</u>

Chromium Induces <u>hypermethylation</u> in <u>lung cancer</u>

Nickel Alters <u>chromatin structure</u> and induces <u>histone acetylation</u>

PFOS Affects prenatal methylation and regulation of GSTP1 and LINE/SINE sequences

PAHC Alters histone H3 acetylation in breast cancer model

Uranium Contributes to leukemia

PFOS, Perfluorooctane sulfonate PAHC, Polycyclic aromatic and halogenated compounds

Aldehyde and nitric oxide, present in cigarette smoke induce phosphorylation of histones resulting in decreased histone deacetylase 2 activity

Maternal Smoking during Pregnancy and DNA-Methylation in Children at Age 5.5 Years: Epigenome-Wide-Analysis in the European Childhood Obesity Project (CHOP)-Study.

<u>Rzehak P¹, Saffery F</u> <u>Verduci E⁶, Riva E⁶,</u>

Author information

Abstract

Mounting evidence profile in the blood assessed by Epige DNAm signatures of children at age § biological role by e children of the mul Transl Psychiatry. 2016 Mar 29;6:e765. doi: 10.1038/tp.2016.32.

The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood.

Mansell T^{1,2}, Novakovic B^{1,2}, Meyer B^{1,2}, Rzehak P^{1,3}, Vuillermin P^{1,2,4,5}, Ponsonby AL^{1,2}, Collier F^{4,5}, Burgner D^{1,2}, Saffery R^{1,2}, Ryan J^{1,2,6,7}; BIS investigator team.

Collaborators

Author inform

Abstract

Compelling evider genes, insulin-like methylation. This

Epigenetic Biomarkers

- Environmentally inducible
- Tissue- and cell-specific
- Factors that may affect the plasticity of human epigenome

Exogenous risk factors

- Lifestyle factors
 - Smoking
 - $\circ~\mbox{Alcohol consumption}$
 - Physical activity
 - Diet
- Environmental Pollutants

Endogenous factors

- Aging
- Oxidative stress
- Inflammation
- Metabolic disorders
- Hormone disorders

Epigenetics and behavior (including emotions)

Happiness Genes: Unlock the Positive Potential Hidden in Your DNA by James D. Baird and Laurie Nadel, in which we are told, "Happiness is at your fingertips, or rather sitting in your DNA, right now! The new science of epigenetics reveals there are reserves of natural happiness within your DNA that can be controlled by you, by your emotions, beliefs and behavioral choices."

 Twin Research and Human Genetics

 page 1 of 13 © The Author(s) 2015 © doi:10.1017/thg.2015.74

 Epigenome-Wide Association Study of Aggressive Behavior

 Jenny van Dongen,^{1,2} Michel G. Nivard,¹ Bart M. L. Baselmans,^{1,2} Nuno R. Zilhão,¹ Lannie Ligthart,¹ BIOS Consortium,³ Bastiaan T. Heijmans,⁴ Meike Bartels,^{1,2} and Dorret I. Boomsma^{1,2}

 ¹Opartment of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands

 ²Michel G. Nivard,¹ Bart M. L. Baselmans,^{1,2} Nuno R. Zilhão,¹ Lannie Ligthart,¹ BIOS Consortium,³ Bastiaan T. Heijmans,⁴ Meike Bartels,^{1,2} and Dorret I. Boomsma^{1,2}

 ¹Opartment of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands

 ²Michel G. Nivard,¹ Bart M. L. Baselmans,^{1,2} Nuno R. Zilhão,¹ Lannie Ligthart,¹

 Biolos Consortium,³ Bastiaan T. Heijmans,⁴ Meike Bartels,^{1,2} and Dorret I. Boomsma^{1,2}

 ¹Department of Biological Psychology, VU Amsterdam, The Netherlands

 ²Michel G. Nivard,¹ Bart M. L. Baselmans,^{1,2} Nuno R. Zilhão,¹ Lannie Ligthart,¹

 ¹Department of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands

 ¹Department of Biological Psychology, Consortium (a full list of authors is provided in the Supplementary Material, ¹Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands

 Aggressive behavior is highly heritable, while environmental influence

Transl Psychiatry. 2016 Mar 29;6:e765. doi: 10.1038/tp.2016.32.

The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood.

Mansell T^{1,2}, Novakovic B^{1,2}, Meyer B^{1,2}, Rzehak P^{1,3}, Vuillermin P^{1,2,4,5}, Ponsonby AL^{1,2}, Collier F^{4,5}, Burgner D^{1,2}, Saffery R^{1,2}, Ryan J^{1,2,6,7}; BIS investigator team.

Collaborators (11)

Author information

Abstract

Compelling evidence suggests that maternal mental hea genes, insulin-like growth factor 2 (IGF2) and H19, are in methylation. This study aimed to determine the associati differentially methylated regions (DMRs) of IGF2 (DMR0 offspring. Maternal depression, anxiety and perceived st Infant Study (n=576). DNA methylation was measured in

Chapter 29

Epigenetic Regulation in Biopsychosocial Pathways

Kristin Litzelman and Mukesh Verma

Abstract

Cancer Prevention Fellow

Theory and empirical evidence suggest that psychological stress and other adverse psychosocial experiences can contribute to cancer progression. Research has begun to explore the potential role of epigenetic changes in these pathways. In basic, animal and human models, exposure to stressors or to the products of the physiological stress response (e.g., cortisol) has been associated with epigenetic changes, such as DNA

Research Article

For reprint orders, please contact: reprints@futuremedicine.com

CROSS-GENERATIONAL EFFECTS

Cross-generational effects of alcohol dependence in humans on *HRAS* and *TP53* methylation in offspring

Shirley Y Hill^{*,1}, Gre ¹Department of Psychiatry, U ²Center for Neuroscience, U ³Departments of Anesthesic 15213, USA * Author for correspondence

Toxicoepigenomics and Cancer: Implications for Screening

Mukesh Verma

Abstract

Scientists have long considered genetics to be the key mechanism that alters gene expression because of exposure to the environment and toxic substances (toxicants). Recently, epigenetic mechanisms have emerged as an alternative explanation for alterations in gene expression resulting from such exposure. The fact that certain toxic substances that contribute to tumor development do not induce mutations probably results from underlying epigenetic mechanisms. The field of toxicoepigenomics emerged from the combination of epigenetics and classical toxicology. High-throughput technologies now enable evaluation of altered epigenomic profiling in response to toxins and environmental pollutants. Furthermore, differences in the epigenomic backgrounds of individuals may explain why, although whole populations are exposed to toxicants, only a few people in a population develop cancer. Metals in the environment and toxic substances not only alter DNA methylation patterns and histone modifications but also affect enzymes involved in posttranslational modifications of proteins and epigenetic regulation, and thereby contribute to carcinogenesis. This article describes different toxic substances and environmental pollutants that alter

Need healthy population (pathologically disease free) (cohort) with information about

Exposure (Chemicals, Radiations, Infectious Agents, Toxic substance) Family History Diet and Life Style Medication

Need easily collected biospecimens (non-invasive technologies) and analytic tools

Need follow up (for longitudinal studies) for several years

Challenge: Expensive, data sharing

Advantage: Essential to identify risk factors for cancer

Special Populations in EGRP

African-American men & women

South American women

Asian-American & Asian men & women

Latin-American/Hispanics

African men & women

Alaskan & Hawaiian Natives

Middle-Eastern populations

American-Indian, incl. Navajo

Rural South

Chinese

The Cohort Consortium (CoCo)

- 62 cohorts, over 4 million individuals
- Membership: cohort studies worldwide with >10,000 subjects, blood samples and questionnaire data on important cancer risk factors
- The Cohort Consortium was formed by NCI to address the need for large-scale collaborations for
 - Rapid identification and confirmation of common polymorphisms and cancer susceptibility (GWAS)
 - Studies of GxG and GxE interactions in the etiology of cancer.

ECHO

To evaluate how exposure to a range of environmental factors in early development influences health of children and adolescents

	NIH National Institutes of Health				Search NIH NIH Employee Intranet	Staff Directory En Español	
	Health Information	Grants & Funding	News & Events	Research & Training	Institutes at NIH	About NIH	
	ENVIRONMENTAL INFLUENCES ON CHILD HEALTH OUTCOMES (ECHO) PROGRAM						
	Environmental influence Child Health Outcomes	es on			Related Inf	ormation	
34 PIs 79 Cohorts >50,000 Pregnancies Mother and child data		NIH officially launch with more than \$15 About the F Understanding the a priority for the Na launched a new sev Outcomes (EUCHO) p	the ECHO program omillion in awards ECHO Program effects of environmental ex ational Institutes of Health. ven-year initiative called the program. While the goals of	 Mission: Enhance the health of children for generations to come Goal: Understand effects of broad range of early environmental exposures on child health and development Approach: Nationwide observational study to inform solutions to five common pediatric outcomes with major public health impact 			
 Allergy a Pre-, Per Neurolog Obesity 	nd upper ain ri-, Post-nata gical disorder	ways disea I s		WER AIRWAY OBESITY	DEVELOPMENT HEALTH		

Developmental Life Stages

Preconception/Prenatal	Anything prior to labor				
Perinatal	Labor through discharge (or < 1 month?)				
Infancy	1 month through 11 months, 30 days				
Early Childhood	12 months through 59 months				
Middle Childhood	60 months through 11 years, 11 months				
Adolescence	12 years through 18 (or 21?) years				

ılk

[RFP FY17]

Serial samples of the same individuals

Placenta, cord blood, nail, hair, saliva, urine Maternal blood, milk before and after pregnancy

ECHO-wide Cohort Protocol

16S amplicons, Metagenomic and Metatranscriptomic Cytokine profiling Metabolomics Proteomics Genomics Exposure data integration Phenotypic data integration
Advantages of ECHO Research Design

- <u>Longitudinal cohorts</u> opportunity to examine repeated measures
 - -in utero
 - early in life
 - other transition periods
- Look across <u>multiple tissues</u> in same person
- Unifying/<u>harmonizing epigenetic data</u> with other data (including other omics data)
- Potential for single cell analysis
- Across generation

Phil Sharp

Most	permanent
------	-----------

Most dynamic

Deletion Point mutations Amplification	Chromatin Changes	Transcription
Chromosomal Translocation (Ig rearrangement)	Promoter Methylation Silencing	Factor Changes
Genetic	Epigenetic	Cell-cycle Regulated Changes

Genetic mutations of epigenetic modifiers in cancer

The epigenetic machinery

Baylin and Jones (2016)

Public ded.gov US National Library of Medicine National Institutes of Health	PubMed V	Advanced]	Search
Format: Abstract -						Send to -
Epigenetics. 2016 Nov 28:0. [E	pub ahead of print]					
LINE-1 methylation with mortality.	n status in prost	ate cancer and n	ion-neoplastic	tissue adjacent t	o tumor in asso	ciation
Fiano V ¹ , Zugna D ¹ , Grasso	C1, Trevisan M1, Delse	<u>dime L², Molinaro L², Gilli</u>	io-Tos A ¹ , Merletti F ¹ ,	Richiardi L ¹ .		
Author information						
Abstract	n coome to be accor	iated with prostate car	near babaviar. Wa i	pyestigated LINE 1 ma	thulation in prostato (cancor and
non-neoplastic tissue ad	acent to tumor (NTA	Γ) in association with r	nortality from prost	ate cancer. We selected	d 157 prostate cance	er patients
with available NTAT from	two cohorts of patie	nts diagnosed betwee	n 1982-1988 and 1	993-1996, followed up	until 2010. An associ	iation
between LINE-1 hypome	thylation and prostate	e cancer mortality in tu	imor was suggestee	d [hazard ratio per 5% d	decrease in LINE-1 n	nethylation
levels: 1.40, 95% confide	ence interval (CI): 0.9	5-2.011 After stratifica	tion of the patients	for Gleason score, the	association was pres	sent only for
those with a Gleason sco	ore of at least 8. Amo	ng these, low (<75%)	vs. high (>80%) LIN	E-1 methylation was a	ssociated with a haz	ard ratio of
4 68 (95% CI: 1 03-21 3/	I) LINE-1 methylation	in the NTAT was not	associated with pro	ostate cancer mortality	Our results are cons	sistent with
the hypothesis that tumo	r tissue global hypom	ethylation may be ze	ate event in prostate	cancerogenesis and is	s associated with tur	nor
progression		Ci	,			

Tumor tissue global hypomethylation may be a late event in prostate <u>cancerogenesis</u> and is associated with tumor progression.

Ó

DNA Methylation and Carcinogenesis

Integrin Signaling Network and Epigenetic Regulation

a Methylation content

8888888	888 888
8 8888 8 8 8	8888888 8888888
8888888	8888 888
8888888	8888 888
8888888	888 888
8 8888 8 8 8	888 888
8888888	888 888
8 888 888	8888 8 8 8

b Methylation level

8 8888	8	88	888 888
8 8888	8	88	888888
8 8888	0	88	88888888
8 8888	0		2000 0 0 0 0
0 0000	0	00	0000 0 0 0 0
0 0000	0	00	
8 8888	0	00	
8 2000	ŏ	88	****
8 8888	0	88	8888 8888

d Level profile

				1						
	O	000	0	0	0	00	00	0	0	0
0	0	000	0	0	0	.00	00	0	0	0
			-	-	-	-			-	-
	8	200	8	8	8	- 88	22	8	8	8
•	۲	~~~	-	~	•	~	7	~	-	-
	0	000	0	0	0	00	00	0	0	0
0	0	0000	0	0	Ö.	00	00	0	0	0
	2	200	0	8	8	- 22	22	8	8	2
•	۲		0	2	•	~	~	•	-	•
	0	000	0	0	•	00		0	0	•
-8	ð	880	ŏ	ð	8	- 88	88	ð	ŏ	ð
	0	000	0	0	0	00	DD.	0	0	0
•	0	0000	0	•	•	00	p	•	0	•
	0	~	-	6	-	~	h	-	-	-
-*	ŏ	000	ŏ	ð	8	- 88	x	ð	ŏ	8
-	ľ			-	-		T	-	-	-
	0	000	0	0	0	00	00	0	0	0
0	0	0000	0	0	0	00	00	0	0	•

c Methylation pattern

8 8888 8 8 8	888 888
8 8888 888	8888888
8 888 888	88888888
8 8888 8 8 8	8888 8 8 8
8 888 888	8888 8 8 8
8 8888 8 8 8	8888 888
8 8888 888	8888 888
8 2000 8 8 8 8	2000 2 2 2

e Pattern profile

8 888 888	888 888
8 8888 8 8 8	8888888
8 888 888	88888888
8 2222 2 2 2 2	
0 0000 0 0 0	0000 0 0 0 0
0 0000 0 0 0	
8 888 888	888 888

To reduce • false negative

false positives

- Total methylation content of the cell
- methylation level at specific stage
- methylation pattern of a group of genes
- profile of methylation of either a specific gene or a number of genes
- pattern of methylation in the whole epigenome

Nature Reviews | Cancer

Steve Baylin

Mirco RNA Signatures in Human Cancers

Nature Reviews | Cancer

Micro RNA Polymorphism to Identify High Risk Populations 357–866 (November 2006) | doi:10.1038/nrc1997

Mir-31 inhibits metastasis in breast cancer

ARTICLE

https://doi.org/10.1038/s41467-019-11826-1

OPEN

Distinct methylation levels of mature microRNAs in gastrointestinal cancers

Masamitsu Konno ^{1,10}, Jun Koseki^{2,10}, Ayumu Asai^{1,2,10}, Akira Yamagata^{3,10}, Teppei Shimamura⁴, Daisuke Motooka⁵, Daisuke Okuzaki ⁵, Koichi Kawamoto⁶, Tsunekazu Mizushima⁶, Hidetoshi Eguchi⁶, Shuji Takiguchi^{6,7}, Taroh Satoh¹, Koshi Mimori⁸, Takahiro Ochiya⁹, Yuichiro Doki⁶, Ken Ofusa³, Masaki Mori⁶ & Hideshi Ishii²

The biological significance of micro (mi)RNAs has traditionally been evaluated according to their RNA expression levels based on the assumption that miRNAs recognize and regulate their targets in an unvarying fashion. Here we show that a fraction of mature miRNAs including miR-17-5p, -21-5p, and -200c-3p and let-7a-5p harbor methyl marks that potentially alter their stability and target recognition. Importantly, methylation of these miRNAs was

miR-17-5p methylation level in serum samples distinguished early pancreatic cancer patients

BMC Clinical Pathology

Click on Sign to a

Verma et al. BMC Clinical Pathology (2015) 15:6 DOI 10.1186/s12907-015-0005-5

REVIEW

Open Access

Extracellular vesicles: potential applications in cancer diagnosis, prognosis, and epidemiology

Mukesh Verma^{*}, Tram Kim Lam, Elizabeth Hebert and Rao L Divi

Abstract

Both normal and diseased cells continuously shed extracellular vesicles (EVs) into extracellular space, and the EVs carry molecular signatures and effectors of both health and disease. EVs reflect dynamic changes that are occurring in cells and tissue microenvironment in health and at a different stage of a disease. EVs are capable of altering the function of the recipient cells. Trafficking and reciprocal exchange of molecular information by EVs among different organs and cell types have been shown to contribute to horizontal cellular transformation, cellular reprogramming, functional alterations, and metastasis. EV contents may include tumor suppressors, phosphoproteins, proteases,

H1 is a linker histone which binds to the DNA linking two adjacent nucleosomal cores

Based on <u>http://www.histone.com</u> and J. Nutr. 136:1763-1765

Activating: e.g. H3K4me3 Silencing: e.g. H3K9me3, H3K27me3

Fig. 1 Mapping histone modifications in human gametes and preimplantation embryos.

Histone mapping

Weikun Xia et al. Science 2019;365:353-360

ALTERATIONS OF HISTONE H3 MODIFICATIOINS IN LIVER DURING METHYL DEFICIENCY

Epigenetic Gene Regulation:

Modification					
		Mono-methylation	hylation Di-methylation Tri-methylation		Acetylation
DNA		Repression			
	<u>H3K4</u>	Activation	Activation	Activation Activation	
Histone	<u>H3K9</u>	Activation	Repression	Repression	Activation
	<u>H3K27</u>	Activation	Repression	Repression	
	<u>H3K36</u>		Repair	Activation	Activation
	<u>H3K79</u>	Activation	Activation	Activation Repression	
	<u>H3R17</u>		Activation		
	<u>H4K5</u>				Activation
	<u>H4K8</u>			Activa	
	<u>H4K12</u>				Activation
	<u>H4K16</u>				Activation
	<u>H4K20</u>	Activation	Activation	Repression	
	<u>H4K16</u>			-	Activation

20 Diagnosing Cancer Using Histone Modification Analysis

Mukesh Verma and Deepak Kumar

CONTENTS

20.1	Backgro	ound	
20.2	Histone	Modifications	
	20.2.1	Histone Acetylation	
	20.2.2	Histone Methylation	
	20.2.3	Histone Phosphorylation	
	20.2.4	Histone Ubiquitination	
	20.2.5	Histone Sumoylation	
20.3	Histone	Modifications and Cancer Diagnosis	
	20.3.1	Bladder Cancer	
	20.3.2	Breast Cancer	
	20.3.3	Cervical Cancer	
	20.3.4	Colon Cancer	
			250
	ISBN 978	1420045796 - CA1# 45792	

SINGLE CELL EPIGENOMICS

Springer Protocols

Mukesh Verma Editor

Cancer Epigenetics

Risk Assessment, Diagnosis, Treatment, and Prognosis

O Humana Press

Springer Protocols

Nichols in Weisslar Biology 472

Epigenetics & Cancer

Prevention V983s: Early Detection and Risk Assessment (Annals of the New York Academy of Sciences, V. 983)

Books edited by Mukesh Verma

🕗 Epigenetics: Unravelling the cancer code : Nature : Nature	Publishing Group - Mozilla Firefox
--	------------------------------------

<u>ile E</u>dit <u>V</u>iew Hi<u>s</u>tory <u>B</u>ookmarks <u>T</u>ools <u>H</u>elp

C

http://www.nature.com/nature/journal/v471/n7339_supp/full/471512a.html

🖻 Most Visited 🥘 Getting Started 🔝 Latest Headlines 💀 Medical Dictionary: M... 😒 PubMed Home 🛛

🕕 Epigenetics: Unravelling the cancer c... 😽

DNA with increased methylation and hypothesized that if a tumour suppressor gene was hypermethylated, its activity would decrease or stop entirely — just as if it were a genetic mutation — allowing the tumour to flourish. In other words, Baylin reasoned, this epigenetic change would produce the same result as a genetic mutation.

Firm evidence came in 1994. Baylin and his colleague, oncologist James Herman, were investigating renal cell carcinoma (RCC), the most common type of kidney cancer in adults. Around 60% of RCCs are caused by an inherited mutation in the von-Hippel Lindau tumour-suppressor gene (VHL), which hobbles the gene's ability express the tumour suppressing protein. Baylin and Herman showed that 20% of the remaining pronon-inherited form of RCC did not have a mutation in VHL. Their genes were silenced not brather by hypermethylation².

The following year, in collaboration with Sidransky's lab at Johns Hopkins, Baylin an human cancers commonly arise when a particular tumour supp-ressor gene, known Moreover, in many cancers including RCC, epigenetic and genetic mutations often w two copies of a tumour suppressor gene is inactivated by genetic mutation, while the ot This finding "convinced us that epigenetic abnormalities could play an important driving role and many others have been pursuing this possibility ever since," says Baylin.

"Epigenetic changes are reversible, and therefore have an edge over genetics" Mukesh Verma Nature 471: s12-s13

nature.com

open innovation pavillion

The move from a purely genetic to an epigenetic model is crucial for prevention strategies. As numerous genetherapy trials have shown, it is very difficult to treat a genetic disease by re-activating the dormant, mutated generics, "says Mukesh Verma, an epigeneticist at the National Cancer Institute's division of cancer control and population sciences in Bethesda, Marvland, Furthermore, epigenetic changes in cancer occur before genetic mutations. "If you can prevent methylation of those tumour suppressor genes, you might have a valuable prevention strategy," says Baylin.

The environmental link

🏄 Start [🕑 📰

Epigenetics has also provided clues that link environmental factors with cancerous genetic changes. Changes in methylation can be detected in the blood of cancer-free individuals who smoke and eat high-fat diets, and these

 $http://ad.doubleclick.net/click; h=v8/3c5c/0/0/*/c; 226841390; 0-0; 0; 10866176; 2321-160/600; 37562861/37580739/1;; \sim sccs=?http://www.nature.com/openinnovation/production/p$

🕞 🔌 🔀 Inbox - Microsoft Ou... 🔀 FW: A Must-Read: G... 🔁 EWAS-Epigenome-wi... 🗁 2011 AACR Cancer P... 🧐 Definitions and meth... 🦷 Document2 - Microso... 👰 Epi2 Working Group_... 🔞 Epigenetics: Unray... 😡 Quick Launch 🔌 «

Be come an InnoC entive Solver and solve problems for cash awards ranging from \$5,000 - \$1,000,000. _ 8

🖒 👻 🚼 🔹 nature

Nature 471: s12-s13

File Edit Yiew History Bookmarks Tools Help

P

X 🟫 🕕 http://www.nature.com/naturejobs/science/articles/10.1038/nj7391-637a

🛛 Latest Headlines \, 💀 Medical Dictionary: M... 🗧 PubMed Home 🏹 Most Visited 😻 Getting Started

🕦 Epigenetics: Marked for success : Nat... 🐳

C

programme has runded around 200 jobs. The bulk of the runding for these large-scale programmes is already dedicated to the larger sequencing centres, but smaller teams are using the data from these projects to generate individualinvestigator grant applications, Shaw adds.

These data have helped to persuade investors in industry that epigenetic abnormalities in Ca wealth of new drug targets. The finding that mutations in epigenetics-related genes may be driving offers the tantalizing possibility of taking a personalized approach to cancer treatment, a tack that is raphyaround in industry, says Robert Gould, chief executive of Epizyme, an epigenetics focused biotechnology firm based in Cambridge, Massachusetts. This evidence, plus the successful approval of a first generation of drugs intended to target epigenetic pathways, has convinced almost every major drug company to invest in cancer epigenetics, says Mukesh Verma, a programme officer at the NCI. For example, Novartis, a pharmaceutical firm with its headquarters in Basel, Switzerland, has more than 200 employees working in epigenetics, most of them in cancer, says En Li, head of China Novartis Institutes for Biomedical Research, based in Shanghai, Last year, GlaxoSmithKline in London, in addition to funding its own epigenetics team, paid \$20 million to partner with Epizyme in a deal in which Epizyme could ultimately receive as much as \$630 million "GSK's group is partnering

with us and is also competing with us on other programmes," says Epizyme's chief scientific officer, Robert Copeland. "It makes for an interesting dynamic."

With so much excitement, competition in the field can be fierce. Data from large government projects can be a boon to smaller labs, says Clark, but individual investigators and those new to the field need to carve their own niche. "In the face of those big initiatives, smaller labs have the challenge of asking smaller and more unique questions as to the basic mechanisms underlying these epigenetic changes," she says. Christopher Vakoc, an epigenetics researcher at Cold Spring Harbor Laboratory in New York, notes that the "tiny" lab he started in 2008 directly competed with several big pharmaceutical companies to discover a role for Brd4 - a 'reader' protein that binds to certain modified histones and modulates gene expression — in acute myeloid leukaemia (J. Zuber et al. Nature 478, 524–528; 2011). After his team's paper was published, Vakoc heard rumours that ten companies were racing to capitalize on the results.

"Successful approval of first generation of drugs intended to target epigenetic pathways, has convinced almost every major drug company to invest in cancer epigenetics." Mukesh Verma

Nature 483:637-639

There is also an intense demand for talent. In particular_epidenetics companies and individual labs need.

🏄 Start [🚱 📰

Inbox - Microsoft Outlook

Quick Launch 🔌 «

Tumor Types and Genes
Regulated
by Epigenetic
Mechanism

TUMOR LOCATION	GENE	
Breast	p16, BRCA1, GSTP1, DAPK, CDH1, TIMP-3	
Brain	p16, p14 ^{ARF} , MGMT, TIMP-3	
Bladder	р16, DAPK, APC	
Colon	p16, p14 ^{ARF} , CRBP1, MGMT, hMLH1, DAPK, TIMP-3, APC	
Endometrium	hMLH1	
Esophagus	p16, p14 ^{ARF} , GSTP1, CDH1APC	Si
Head and Neck	p16, MGMT, DAPK	de an
Kidney	p16, p14 ^{ARF} , MGMT, GSTP1, TIMP-3, APC	inh
Leukemia	p15, MGMT, DAPK1, CDH1, p73	
Liver	p16, CRBP1, GSTP1, APC	
Lymphoma	p16, p15, CRBP1, MGMT, DAPK, p73	
Lung	p16, p14 ^{ARF} , CRBP1, MGMT, GSTP1, DAPK, FHIT, TIMP-3, RARbeta, RASSF1A	
Ovary	p16, BRCA1, DAPK	Verma a Lancet C
Pancreas	p16, MGMT, APC	Verma e Crit. Rev
Prostate	GSTP1, p27(kip1)	41: 585- Verma a
Stomach	p14 ^{ARF} , P16, APC, hMLH1, MGMT	Rev. Her Verma e
Uterus	p16, p14 ^{ARF} , hMLH1	Therapy

Sirtuins are a group of proteins with histone deacetylase inhibiting and anti apoptotis inhibition properties

Verma and Srivastava (2002). Lancet Oncol. 3: 755-363; Verma et al (2004) Crit. Rev. Clin. Sc. 41: 585-607; Verma and Manne (2006). Crit. Rev. Hematol. Oncol. 60: 9-18; Verma et al (2006). Mol. Diag. Therapy. 10: 1-15.

Г	Category	Gene		Category	Gene	
		HDAC1			DNMT1	
HDACs	HDAC2		DNMTs	DNMT3A		
		HDAC6	HDACs Sirtuins		DNMT3B	MeCP2 DNMTs
		SIRT1		(20G)-Fe(II)-	TET1	MBDS
	Cistuine	SIRT2		dependent	TET2	
	Ontuins	SIRT3	AC	oxygenases	MBD1	OH W
		SIRT7	HDMs	111110-0	MBD2	TET
		KDM1A		Methyl-CpG binding	MBD3	TEIS
		KDM2B	(Me	proteins	MBD4	
		KDM4C			MECP2	
	HDMs	KDM5A				
	TIDINIO	KDM5B		Histone variants		
		KDM5C			H2AFZ	
		KDM6A		Chromatin remodeling factors	ARID1A	ATP
		KDM6B			CHD5	
					CHD7	
	Cotogony	Cono			MTA1	CHUS
	Calegory	Gene			MTA2	
		ED200			МТАЗ	
	LIATA	EP300			SMARCA2	304006
	HAIS	MYSTA	HATS		SMARCA4	000000
		KATE			SNF5	
		MII		Category	Gene	
	HMTs	F7H2		Galogory	ING1	
		NSD1		ING2	INGS	
		PRDM2		Histone modification	ING3	IN B
		SMYD3		readers	ING4	
		WHSC1			ING5	- m

Examples of epigenetic modifications and affected genes

Torract	Dates	Clinical Trial	
Target	Drug	Clinical Inal	
DNA Methylation	5-Azacytidine	Phase I/II/II	
	5-Aza-2'deoxycytidine	Phase I/II/II	
	FCDR		Adverse Experiences SAHA Duvic et al. 2007.
	Zebularine		Am S Hem 109:31.
	Procainamide		 Dehydration Diarrhea Nausea
	EGCG	Phase I	ThrombocytopeniaVomiting
	Psamaplin A		
	Antisense Oligomers	Phase I	
Histone deacetylase	Phenylbutyric acid	Phase I/II	Vorinostat Ph II (Gliobl)
Sirtuins are a group of proteins with histone deacetylase inhibiting	SAHA (Suberoylanilide hydroxamic acid) or Vorinostat	Phasel/II	
and anti apoptotis inhibition properties	Depsipeptide	Phase I/II	65
Eggr et al Nature. 429:457.	Valproic Acid	Phase I/II	Jean-Pierre Issa Temple Univ.

Table 4. Classification of Histone Deacetylase Inhibitors

Class	Compounds	Concentration needed for inhibition of histone deacetylase	Clinical trials	Notes
Short chain fatty acids	Phenylbutyrate	Milli-mole	Yes	Not ideal drug because of high dose requirement
Aliphatic compounds with hydroxamic acid	Trichostatin A, Suberoylanilide hydroxamic acid	Nano-mole Micro-mole	No Yes	Chelate Zn ion at catalytic site of HDAC.
Cyclic tetrapeptides	Trapoxin B, FK 228	Nano-molar Nano-molar	No Yes	FK228, a natural prodrug
Benzamides	MS-27-275	Micro-mole	Yes	Strong anti-tumor activity

Current Medicinal Chemistry, 2006, 13, 2909-2919

HDAC 1, 2, 3, 8, 11 have been characterized (Khan, I, 2007)

Phase I study of epigenetic modulation with 5-azacytidine

and valproic acid in patients with advanced cancers.

Braiteh F, Soriano AO, Garcia-Manero G, Hong D, Johnson MM, Silva Lde P, Yang H, Alexander S, Wolff J, Kurzrock R. Clin Cancer Res.14(19):6296-301. (colorectal cancer, melanoma and breast cancer)

A significant decrease in global DNA methylation and induction of histone acetylation were observed.

The combination of 5-AZA and valproic acid is safe at doses up to 75 mg/m(2) for 5-AZA in patients with advanced malignancies.

Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome.

Soriano et al. Blood. 110(7):2302-8.

• Combination of 5-azacitidine (5-AZA), valproic acid (VPA), and ATRA in patients with acute myeloid leukemia or high-risk myelodysplastic syndrome.

• A total of 53 patients were treated.

• The overall response rate was 42%.

• A significant decrease in global DNA methylation and induction of histone acetylation were achieved.

- VPA blood levels were higher in responders.
- The combination studied is safe and has significant clinical activity.

This clinical trial was registered at www.clinicaltrials.gov as no. NCT00326170.

Histone Inhibitors in Clinical Trials (Clinicaltrials.gov)

STATUS	STUDY
Recruiting	Safety Study of the Histone Deacetylase Inhibitor, CHR-3996, in Patients With Advanced Solid Tumours
Recruiting	Phase II Study of Histone-Deacetylase Inhibitor ITF2357 in Refractory/Relapsed Lymphocytic Leukemia
Recruiting	phII Study of an HDAC Inhibitor in Very High-Risk Relapsed/Refractory Hodg on's Lymphoma Patien s
Recruiting	Phase IIA Study of the HDAC Inhibitor ITF2357 in Patients With JAK-2 V617F Positive Chronic Myeloproliferative Diseases
Recruiting	Phase II Trial of the Histone-Deacetylase Inhibitor ITF2357 Followed by Mechlorethamine in Relapsed/Refractory Hodgkin's Lymphoma Patients
Recruiting	HDAC Inhibitor Vorinostat (SAHA) With Capecitabine (Xeloda) Using a New Weekly Dose Regimen for Advanced Breast Cancer
Recruiting	Valproic Acid, Temozolomide, and Radiation Therapy in Treating Patients Wan Glioblastoma Multiforme
Recruiting	Study of Vorinostat (MK0683) an HDAC Inhibitor, or Placebo in Combination With Bortezomib in Patients With Multiple Myeloma
Recruiting	Study of Vorinostat (MK0683), an HDAC Inhibitor, in Combination With Bortezomib in Patients With Relapsed or Refractory Multiple Myeloma
Completed	A Phase II Study of Epigenetic Therapy to Overcome Chemotherapy Resistance in Refractory Solid Tumors
Recruiting	Sorafenib and LBH589 A. Hepatocellular Carcinoma (HCC)
Recriting	Phase II Study of Valproic Acid With FEC100 for Patients With Locally Advanced Breast Cancer

Total: 84 studies

http://clinicaltrials.gov/ct2/results?term=histone+inhibitors&pg=4

Methylation Inhibitors in Clinical Trials (Clinicaltrials.gov)

STATUS	STUDY
Completed	A Phase II Study of Epigenetic Therapy to Overcome Chemotherapy Resistance in Refractory Solid Tumors
Active Not Recruiting	Azacytidine and Valproic Acid in Patients Wite Advanced Cancers
Recruiting	Azacitidine With or Without MS-275 in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomol poytic Leukemia, or Alute Myeloid Leukemia
Active Not Recruiting	PhII 5-Azacytidine Plus Valproic Acid and Eventually Atra in Intermediate II and High Risk MDS
Recruiting	Decitabine With or Without Interferon Alfa-2b in Treating Patients With Unresectable or Metastatic Solid Tumors
Recruiting	Hydralazine Valproate or Cervical Cancer
Recruiting	Hydralazine Valproat, for Ovarian Cancer
Recruiting	Decitabine in Treating Patients With Previously Untreated Acue Myeloid Leukemia
Recruiting	Chronic Hepatitis C Non-Responder Study With AdoMet and Betaine
Recruiting	Azacitidine, Docetaxel, and Prednisone in Treating Patients With Metastatic Prostate Cancer That Did Not Respond to Hormone Therapy
Recruiting	Low Dose Decitabine + Interferon Alfa-2b in Advance, Renal Cell Carcinop

Total: 51 studies

http://clinicaltrials.gov/ct2/results?term=methylation+inhibitors

Schering-Plough (Decitabine {5-aza-Deoxycytadine} Trial for melanoma) (8 hrs to inactivate DNMT1) Bristol-Myers Squibb (other compounds)

FDA Approved Epigenetic Drugs

Belinostat (approved in 2014) For Peripheral T-cell Lymphoma

nature.com > journal home > archive > issue > perspectives > opinion > full text > table 1

Table 1: Summary of clinical trials of epigenetic therapies in solid tumours as drug resistance modulators

From

Poised epigenetic states and acquired drug resistance in cancer Robert Brown, Edward Curry, Luca Magnani, Charlotte S. Wilhelm-Benartzi & Jane Borley Nature Reviews Cancer 14, 747–753 (2014) + doi:10.1038/nrc3819

back to article

Cancer type	Epigenetic therapy	Drug combination	Patient selection	Response	Pharmacodynamic target validation?*	Refs‡
Gastrointestinal stromal tumours	Panobinostat (pan-deacetylase inhibitor)	Panobinostat and imatinib	Patients with metastatic gastrointestinal stromal tumours refractory to imatinib and sunitinib	1 of 11 partial response; 7 of 11 stable disease; 3 of 11 progressive disease	Yes	87
Wild-type KRAS metastatic colorectal cancer	Decitabine (demethylating agent)	Decitabine and panitumumab (monoclonal antibody against EGFR)	Patients with progressive disease on standard therapy and previously treated with cetuximab	2 of 20 partial response; 11 of 20 stable disease; 7 of 20 progressive disease	No	88
Advanced solid tumours	Azacytidine, (demethylating agent); Valproic acid (pan-deacetylase inhibitor)	Azacytidine, valproic acid and carboplatin	Advanced cancer and progression following standard therapy (platinum-based) or no standard effective therapy available	6 of 32 stable disease; 26 of 32 progressive disease	Yes	89
Y Y			Initial response by	3 of 15 CA125		

Table 1: Summary of clinical trials of epigenetic therapies in solid tumours as drug resistance modulators

AML subtypes and combination therapy

Pharmaceutical Participation

AML Subtype	Drug	Company
Tet2/WTI	CD33 + Aza	BI
IDH2 Mutation	Enasidenib	Celgene
MLL	Entospletinib (Syk inhibitor)	Gilead
CBF	Samalizumab (CD200 Ab) + induction	Alexion
P53 mutation	Entospletinib (Syk inhibitor) + Decitabine	Gilead
Complex Karotype	Entospletinib (Syk inhibitor) + Decitabine	Gilead
P53 mutation	Pevonedistat (Nedd8 inhibitor) + Aza	Takeda
Marker Negative	CD33 + Aza	ві
NPM1 w FLT3 WT	Entospletinib (Syk inhibitor)	Gilead
FLT3 mutation	Gilteritinib	Astellas
IDH1 Mutation	Ivosidenib + Aza	Agios

Source: Leukemia & Lymphoma Society

y Combination epigenetic therapy has efficacy in [Cancer Discov. 2011] - PubMed - NCBI - Mozilla Firefox jle Edit Vjew Higtory Bookmarks Iools Help		
C × 6 E http://www.ncbi.nim.nih.gov/pubmed/22586682	Short Coogle	P
🛿 Most Visited 📄 Getting Started 📄 cricinfo records 🔊 Latest Headlines 📄 file:///O:/Documents 📄 pagehasmoved.html		
S NCBI Resources 🛛 How To 🖸	Sign in to NCBI	-
Publicad.gov PubMed US National Library of Medicine National Institutes of Health Advanced	Search	
Display Settings: ♥ Abstract Send to: ♥	Full Text Cancer Discovery	
Cancer Discov. 2011 Dec;1(7):598-607. doi: 10.1158/2159-8290.CD-11-0214. Epub 2011 Nov 9.	Save items	
Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer.	Add to Eavorites	
Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B, Sebree R, Rodgers K, Hooker CM, Franco N, Lee B, Tsai S, Delgado IE, Rudek MA, Belinsky SA, Herman JG, Baylin SB, Brock MV, Rudin CM.		
Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21231, USA.	Related citations in PubMed	r -
Abstract Epigenetic alterations are strongly associated with the development of cancer. We conducted a phase I/II trial of combined epigenetic therapy with	Randomized phase II trial of erlotinib with and without entinostat in patients [J Clin Oncol. 2012]	Į
azacitidine and entinostat, inhibitors of DNA methylation and histone deacetylation, respectively, in extensively pretreated patients with recurrent metastatic non-small cell lung cancer. This therapy is well tolerated, and objective responses were observed, including a complete response and a	Combination therapy with vidaza and entinostat suppresses tumor growth and [Cancer Res. 2011]	
partial response in a patient who remains alive and without disease progression approximately 2 years after completing protocol therapy. Median survival in the entire cohort was 6.4 months (95% Cl 3.8-9.2), comparing favorably with existing therapeutic options. Demethylation of a set of 4	14-3-3sigma methylation in pretreatment serum circulating DNA of cisplatin-p [J Clin Oncol, 2005]	
epigenetically silenced genes known to be associated with lung cancer was detectable in serial blood samples in these patients and was associated with improved progression-free (P = 0.034) and overall survival (P = 0.035). Four of 19 patients had major objective responses to subsequent	Review Gefitinib therapy for non-small cell lung	
anticancer therapies given immediately after epigenetic therapy. Significance: This study demonstrates that combined epigenetic therapy with low-dose azacitidine and entinostat results in objective, durable responses in patients with solid tumors and defines a blood-based biomarker that correlates with clinical benefit.	Review Simultaneous paclitaxel and radiotherapy: initial clinical e [Semin Oncol. 1997]	l
Comment in	See reviews	
A combined epigenetic therapy equals the efficacy of conventional chemotherapy in refractory advanced non-small cell lung cancer. [Cancer Discov. 2011]	See all	
PMID: 22586682 [PubMed - indexed for MEDLINE] PMCID: PMC3353724 [Available on 2012/12/1]	Cited by 1 PubMed Central article	
❶ Publication Types, MeSH Terms, Substances, Grant Support	2'-Deoxyriboguanylurea, the primary breakdown	
	o - 1	
Epigenetic Therapy for Colorectal Cancer Vivek Vaish, Tripti Khare, Mukesh Verma, and Sharad Kha	re	
Methods Mol Biol. 2015;1238:771-82. doi: 10.1007/978-1-493 Aberrations in epigenome that include alterations in DNA methylation, histone ac (micro PNA) expression may expert the progression of coloractal expert (CPC). The	39-1804-1_40 etylation, and miRNA	

Potential Steps for Intervention

A Model for Colorectal Tumorigenesis

Modified from Jubb et al. J Path. 195: 111.
CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer

Nature Genetics **38**, 787 - 793

Identification of tumor clusters.

48 colorectal cancer cases

KRAS mutation indicated by a red rectangle overlaying the branch, *BRAF* mutations indicated by a green rectangle MSI-H cases designated with a blue rectangle.

Nature Genetics **38**, 787 - 793

48 Colorectal tumors

Prediction of Tumor Class based on Methylation Analysis (AML and ALL)

AML:Acute Myeloid Leukemia ALL: Acute Lymphoblastic Leukemia

Human cells with acute myelocytic leukemia. Credit: National Cancer Institute

Adorjan et al Nuc Ac Res. 30: e21

Lymphoma

Epigenetic Markers During Lung Cancer Progression

Steven Belinsky

Unsupervised clustering of average {beta} values in tumor and nontumor pleura

ASBESTOS

Non-

MESOTHELIOMA

Christensen, B. C. et al. Cancer Res 2009;69:227-234

Epigenetic Profiles Distinguish Pleural Mesothelioma from Normal Pleura and Predict Lung Asbestos Burden and Clinical Outcome

Cancer Research

Copyright ©2009 Amer

Epigenetic Patterns in the Progression of Esophageal Adenocarcinoma

Cancer Research

61:3410

Cancer Progression

Risk factors

- Gastroesophaegeal Reflex Disease (GEPD)
- Smoking
- Hihger Body Mass Index (BMI) or obesity

Esophageal Cancer: Probability of Survival

Pancreatic Cancer: Methylation of p14ARF and p16INK4a

Pancreatic Carcinoma (PCA) : 39 19/39 p16INK4a

Chronic Pancreatitis (CP) : 16

0/16 p16lNK4a

Normal Pancreatogram (NAD) : 6 0/

Sample: Pancreatic Fluid

(Klump et al. *Mol Cell Path* 88: 217)

Distinct chromatin states of human PDAC

Chromatin modifications to identify active and poised enhancers and active transcription start sites by chromatin immunoprecipitation (TSS)

Methylation profiling by methylation -seq, and active transcription sites by RNAseq

Open chromatin sites corresponded to lower methylation levels and higher gene expression.

Breast Cancer Response to Tamoxifen Treatment by ESR1 Methylation

Preinvasive lesions, often designated as "in situ" or "intraepithelial neoplasia" falls in the domain of prevention.

Ductal carcinoma in situ (DCIS) lesions, detected in screening are generally treated aggressively, although all DCIS do not lead to breast cancer (over treatment).

Widschwendter et al. Cancer Research 4, 380

Methylation profiling of DCIS lesions can distinguish aggressive from indolent DCIS.

Chapter 21

Epigenetic Regulation of HIV, AIDS, and AIDS-Related Malignancies

Mukesh Verma

Abstract

Although epigenetics is not a new field, it research have not been explored fully. To d immunodeficiency virus (HIV) and AID between the virus and the host, involvement

Methods Mol Biol. 2015;1238:381-403. doi: 10.1007/978-1

Epigenetic Biomarkers in Liver Cancer

Krishna K. Banaudha and Mukesh Verma

Abstract

Liver cancer (hepatocellular carcinoma or HCC) is a major cancer worldwide. Research in this field is needed to identify biomarkers that can be used for early detection of the disease as well as new approaches to its treatment. Epigenetic biomarkers provide an opportunity to understand liver cancer etiology and evaluate novel epigenetic inhibitors for treatment. Traditionally, liver cirrhosis, proteomic biomarkers, and the presence of hepatitis viruses have been used for the detection and diagnosis of liver cancer. Promising results from microRNA (miRNA) profiling and hypermethylation of selected genes have raised hopes of identifying new biomarkers. Some of these epigenetic biomarkers may be useful in risk assessment and for screening populations to identify who is likely to develop cancer. Challenges and opportunities in the field are discussed in this chapter.

Key words Biogenesis, Biomarkers, Epigenetics, Epidemiology, Hepatitis, Liver cancer, miRNA, Treatment

Methods Mol Biol. 2015;1238:65-76. doi: 10.1007/978-1-4939-1804-1_4.

Immune System and Epigenetics

T cell methyltransferase in Lupus

- The levels of <u>DNA methyltransferase</u> go down in T cells in lupus patients compared to age and sex-matched controls
- <u>Hypomethylation</u> of re

MicroRNA-29b contributes to indirectly targeting DNA mett Qin H et al. J Dermatol Sci. 2

Ethnicity-specific epigenetic Coit P et al. Epigenetics Chr

Lupus: The Immunological I J Investig Dermatol Symp Pr

Microbiome in human gastrointestinal tract [Marcin Klapczynski/Getty Images]

GSTP1 Methylation in Prostate Cancer

GSTP1 codes for the drug detoxification enzyme which

Berlin, Germany and Seattle, WA, U.S.A., February 25,

2009 - Epigenomics AG (Frankfurt a cancer molecular diagnostics co that it has entered into a non-exclu for its proprietary biomarker mGS^T **Quest Diagnostics Incorporated (N** leading provider of diagnostic test services.

Epigenomics Grants Predictive Biosciences Rights to Use a Biomarker in a Prostate Cancer Test

Primo Standard ECV

Epigenomics (www.epigenomics.com) granted Predictive Biosciences (www.pre dictivebiosci.com) a nonexclusive license to use its prostate cancer DNA methylation biomarker, mGSTP1, for the development and commercialization of a laboratory test to help in the diagnosis and management of prostate cancer. The agreement follows a similar deal covering mGSTP1 signed with Quest Diagnostics (www.questdiagnostics.com) in February 2009.

Another Study:

Bladder Cancer Methylation of LAMC2 in Exfoliated Cells Isolated from Urine

MI, Methylation Index

(Sathyanarayana et al. Can Res 64: 1425)

Clustering of Sample Type by CpG Island Hypermethylation

Cluster Analysis of 365 Human Samples with 50 DNA Methylation Markers

DIET AND CANCER: FOCUS ON PREVENTION

Cancer is principally caused by environmental factors, of which the most important are tobacco, diet and factors related to diet, including body mass and physical activity, and exposures in the workplace and elsewhere.

Between 30% and 40% of cancer cases throughout the world are <u>preventable</u> by feasible dietary means.

- <u>Understanding</u> the <u>determinants</u> of the <u>earliest</u> <u>detectable phenotypes</u> in initiated cells
- Uncovering the <u>molecular mechanisms</u> of action of <u>dietary nutrients</u> leading to cancer formation and <u>prevention</u>
- Defining <u>effects of dietary compounds</u> not only on cancer cells but on <u>normal</u> and <u>preneoplastic</u> cells
- Determining <u>factors</u> that can <u>modulate effect of</u> <u>diet</u>

Igor Pogribny

ssociation of TNFRSF12A ... 🛛 📩

Format: Abstract -

Front Genet. 2020 Jan 9;10:1299. doi: 10.3389/fgene.2019.01299. eCollection 2019.

Association of TNFRSF12A Methylation With Prognosis in Hepatocellular Carcinoma With History of Alcohol Consumption.

Come see the new improvements to the interface

Send to -

Wang Y^{1,2}, Zhang S³, Xie X⁴, Chen Z⁵, Wu L⁴, Yu Z⁴, Guo X^{1,3}, Chen G⁴. Author information

Abstract

Hepatocellular carcinoma (HCC) is the third leading cause of cancer related death worldwide with a poor prognosis. Alcoholic liver disease accounts for approximately one-third of all HCC cases. Current evidence proved that aberrant over-expression of TNFRSF12A correlates with the severity of disease, making it a likely indicator of disease a more aggressive and worse prognosis outcome. Emerging studies have confirmed that epigenetic changes are critical events in the development and progression of liver cancer. The study to investigate the mechanisms by which alcohol abuse mediated changes in the methylation level of TNFRSF12A affect the occurrence, development and prognosis of HCC were under warranted. Thus, in this study we mined two publicly available datasets to detect the association between DNA methylation level of CpG sites in gene TNFRSF12A and the development of HCC in those with alcohol abuse history. Finally, we discovered that the hypomethylation of two methylation sites-cg00510447 and cg26808293-could identify HCC from other non-HCC liver diseases. Also, hypomethylation of these two sites could identify alcoholic cirrhosis from other non-hepatocellular carcinoma liver diseases. Most important, the prognostic analysis revealed that the hypomethylation cig00510447 and cg26808293 in HCC patients with alcohol abuse history, hypomethylation of og 26808293 signified poor prognosis. The further mechanism analysis revealed that the DNA methyltransferases DNMT3L might regulate TNFRSF12A methylation and affect the occurrence, development and prognosis of HCC, especially in patients with a history of alcohol abuse. These findings provide new insights into the role of epigenetic mechanisms in the transformation of alcoholic liver disease into HCC.

Nutr Cancer. 2016 Jul;68(5):719-33. doi: 10.1080/01635581.2016.1180410. Epub 2016 Jun 8.

Nutritional Epigenetics and the Prevention of Hepatocellular Carcinoma with Bioactive Food Constituents.

Moreno FS¹, Heidor R¹, Pogribny IP².

Author information

Abstract

Hepatocellular carcinoma (HCC) is an aggressive and life-threatening disease often diagnosed at intermediate or advanced stages, which substantially limits therapeutic approaches to its successful treatment. This indicates that the prevention of HCC may be the most promising strategy in reducing its incidence and mortality. Emerging evidence indicates that numerous nutrients and nonnutrient dietary bioactive components can reduce the occurrence and/or delay the development of HCC through modifications of deregulated epigenetic mechanisms. This review examines the evicting knowledge on the opigenetic mechanism-based studies in a vitro and in vitro models of HCC on the

chemopreventive potential of epigenetic food components, including dietary methyl-group donors, epigallocatechin-3gallate, sodium butyrate, resveratrol, curcumin, and sulforaphane, on liver carcinogenesis. Future direction and potential gallenges in the effective use of bioactive food constituents in the prevention of HCC are highlighted and discussed.

ANTICANCER PHYTOCHEMICALS (Representative chemopreventive phytochemicals and their dietary sources)

Development of functional foods or <u>dietary supplements</u> as nutrition based epigenetic modulators of chromatin writers, readers and erasers in cancer chemoprevention

Green tea

Sov

Grape

Cocoa

Curcuma

Pharm Res 65: 565-576.

Shop Simple with MyPlate

Find savings in your area and discover new ways to prepare budget-friendly foods.

Learn more

MyPlate on Alexa

Get MyPlate nutrition tips on Amazon Alexa devices or the free Alexa app.

MyPlate Kitchen

personalized cookbooks, and more!

Go to MyPlate Kitchen

Learn more

Start Simple with MyPlate App

Build healthy eating habits one goal at a time! Download the Start Simple with MyPlate app today.

Learn more

https://www.myplate.gov/

Mobile food record

Ahmad et al doi: <u>10.1145/2986035.2986038;</u> (Zhu et al 2022)

Research Opportunities and Challenges

Will inclusion of <u>epigenetic markers</u> help in identification of <u>new risk</u> <u>factors</u> (modifiable factors and host factors) in different <u>races and ethnic</u> groups?

Will epigenetic markers in cohort and case-control studies improve sensitivity and specificity of markers and help in identifying high-risk populations?

Are <u>genetic</u> and <u>epigenetic</u> events <u>correlated</u> during cancer development?

Are there race/ethnicity specific miRNAs and noncoding RNAs?

How can we use this information for better define cancer subcategories?

How can we overcome EWAS technical challenges?

How to use <u>epigentic age</u> information in <u>cancer control?</u>

Research Opportunities and Challenges

Can we <u>predict</u> cancer <u>recurrence</u> or <u>secondary cancer</u> development based on epigenetics marks (or in combination with other omics marks)?

Why is it difficult to <u>harmonize epigenetic data</u> with other omics data sets?

Is there a <u>window of susceptibility</u> of exposure? How can we develop epigenetic approaches to intervene?

How to avoid activity of DNMT and HDAC <u>inhibitors</u> on <u>normal cell</u> <u>functions</u>?

What is the role of non-histone proteins in gene regulation?

How to target <u>cancer stem cells</u> using epigenetic approaches?

How much <u>microbiome-specific metabolites</u> can affect epigenetic regulation? How <u>effective are probiotics</u> in cancer prevention?

How are we addressing these challenges?

What is Social Epigenomics?

AND THEREBY INFLUENCE HEALTH TRAJECTORY AND MODIFY DISEASE RISK

THROUGH **EPIGENOMIC PROFILING** BEFORE THE ONSET OF DISEASES, IT MAY BE POSSIBLE TO TAILOR INTERVENTIONS TO PREVENT CHRONIC CONDITIONS OR DISEASES LATER IN LIFE

Minireview

Cancer Epidemiology, Biomarkers & Prevention

Epigenetic Research in Cancer Epidemiology: Trends, Opportunities, and Challenges

Mukesh Verma¹, Scott Rogers¹, Rao L. Divi¹, Sheri D. Schully¹, Stefanie Nelson¹, L. Joseph Su¹, Sharon A. Ross², Susan Pilch³, Deborah M. Winn¹, and Muin J. Khoury^{1,4}

Abstract

Epigenetics is emerging as an important field in cancer epidemiology that promises to provide insights into gene regulation and facilitate cancer control throughout the cancer care continuum. Increasingly, investigators are incorporating epigenetic analysis into the studies of etiology and outcomes. To understand current progress and trends in the inclusion of epigenetics in cancer epidemiology, we evaluated the published literature and the National Cancer Institute (NCI)-supported research grant awards in this field to identify trends in epigenetics research. We present a summary of the epidemiologic studies in NCI's grant portfolio (from January 2005)

Review

For reprint orders, please contact: reprints@futuremedicine.com

Molecular profiling and companion diagnostics: where is personalized medicine in cancer heading?

The goal of personalized medicine is to use the right drug at the right dose – with minimal or no toxicity – for the right patient at the right time. Recent advances in understanding cell biology and pathways, and in using molecular 'omics' technologies to diagnose cancer, offer a strategic bridge to personalized medicine in cancer. Modern personalized medicine takes into account an individual's genetic makeup and disease history before developing a treatment regimen. The future of clinical oncology will be based on the use of predictive and prognostic biomarkers in patient management. Once implemented widely, personalized medicine will benefit patients and the healthcare system greatly.

Mukesh Verma

Methods & Technologies Branch, Epidemiology & Genomics Research Program, Division of Cancer Control & Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, MD 20850, USA Tel.: +1 240 276 6889 Fax: +1 240 276 7921 vermam@rnail.nih.gov

Personalized Medicine

Epigenetics Roadmap

Copyright © 2006 Nature Publishing Group Nature Reviews | Cancer

Epigenetically Regulated Diseases: Several cancers, autoimmune disorders, reproductive disorders, and neurobehavioral and cognitive dysfunctions

The NIH Roadmap Epigenomics Mapping Consortium was launched with the goal of producing a public resource of human epigenomic data to catalyze basic biology and disease-oriented research.

1040 total

Science 8

MethylC-seq cited 1945 times Dena Procaccini

34

Lister et al. 2009

Cell

34 Nature

http://nihroadmap.nih.gov/epigenomics/

(RM funds in millions)		EX00	EV40	EV44	EV42	FV42	EV44	EV45	Total
Component	FTUO	FTU9		FT11	FT1Z	FT13	F 114	FT15	Total
RFA 1: Mapping Centers	10	10	10	10	10	 	 	 	50
RFA 2: RM/IC Projects		4	8	12	16	20	16	12	88
RFA 3: Data Analysis/Coord	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	12
RFA 4: Tech Development	3.5	3.5	7	7	7	7	7	 	42
RFA 5: Discovery of Novel Marks	3.5	3.5	4	2	2	1	 	 	15
NCBI: Public access	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	12
= RFA released (plus \$3M JUMPSTART)									

Epigenomics Program Budget

INTERNATIONAL HUMAN EPIGENOME CONSORTIUM

http://ihec-epigenomes.org/

Participants in IHEC Meeting: Paris, Jan. 25-26, 2010

Australia Austria Canada China Euro. Comm. (EU) France Germany Israel Italy Japan Korea Netherlands Norway Poland Singapore Spain Sweden Switzerland UK USA

Funding Agencies

Consiglio Nazionale delle Ricerche, Italy **European Science Foundation** Genome British Columbia, Canada German Research Foundation, Germany National Natural Science Foundation, China Netherlands Genomic Initiative, Netherlands NIH, USA Wellcome Trust, UK

Industrial Participants Affymetrix Genoscope

Novartis

Other AACR

Publishers Nature Science

Common fund data ecosystem

An online portal that wi multiple Common Func environment.

Follow FAIR principles F = Findable A = Accessible I = Interoperable R = Reusable

commonfund.nih.gov/da

Remarkable progress in cancer research

Cancer Letters 5 November 2021

Number of Cancer Survivors in U.S. Grows to 18M

╢

- 18.1 million cancer survivors in the U.S. (as of January 2022)
- 26 million by 2040 (projected)
- · More than two-thirds are 65+

For more: Miller KD, et al. Cancer treatment and survivorship statistics, 2022. CA: A Cancer Journal for Clinicians. June 23, 2022.

Cancer Letters September 9, 2022
Conclusions

- Epigenetic regulation is needed for normal development.
- External and internal environment contribute to alterations in epigenetic components and gene expression resulting in disease initiation and development.
- Epigenetic changes are reversible.
- Epigenetic inhibitors have been used successfully in combination therapy.

