

Nanotechnology for medical applications

NCI Alliance for
Nanotechnology
in Cancer

**Nanotechnology for medical applications:
benefits, concerns and effects on the immune system**

Marina A. Dobrovolskaia
Nanotechnology Characterization Lab (NCL)

Outline

Presentation outline

- Nanotechnology Definitions
- Nanoparticles in Daily Life
- Nanoparticles in Medical Applications
- Nanoparticles for Cancer Diagnosis and Therapy
 - Benefits of nanotechnology
 - Toxicity concerns
- Nanomaterials and the Immune System

Examples of nanomaterials

NCI Alliance for
Nanotechnology
in Cancer

Examples of Nanomaterials

What is nano?

What is Nano?

Nanotechnology:

“Research and technology development at the atomic, molecular or macromolecular scale leading to the controlled creation and use of structures, devices and systems with a length scale of approximately **1 – 100 nanometers (nm)**.” (Source: National Nanotech Initiative)

“Whether a material or end product is engineered to exhibit properties or phenomena, including physical or chemical properties or biological effects, that are attributable to its dimension(s), even if these dimensions fall outside the nanoscale range, **up to one micrometer (1,000 nm)**”(US FDA)

Nanoparticles in daily life

A background of numerous small, yellow, spherical nanoparticles of varying sizes are scattered across the slide. One nanoparticle in the lower right quadrant is partially cut off by the bottom edge of the frame.

**Nanoparticles in
Daily Life**

Nanoparticles

NCI Alliance for
Nanotechnology
in Cancer

Nanoparticles in Daily Life

Silver nanoparticles
are used as
anti-microbial
materials

Carbon nanotubes
are used as
structural
materials

**Liposomes and
emulsions** are
commonly used
in cosmetics

Screens
contain
nanoscale
 TiO_2 or
 ZnO_2

Products

NCI Alliance for
Nanotechnology
in Cancer

Examples of products containing nanomaterials

NCI Alliance for
Nanotechnology
in Cancer

Chantecaille Nano Gold Energizing Cream

Trucare Nano Silver Toothpaste
Anti Bacterial, Fights Ulcers
Canker Sore

Melaklear Nano Alpha Arbutin
Anti Melasma Spots SPF20 Skin
Lightening Cream

Research In Beauty Nano-Complex Keratin Gold Shampoo

Acz Nano Zeolite Extra Strength-Detoxification Supplement

Cyclic Nano Silver Cleanser Soap

> 800 companies worldwide use nanotechnology

NCI Alliance for
Nanotechnology
in Cancer

Nanotechnology Products, Applications & Instruments

(Links listed alphabetically)

[A](#) | [B](#) | [C](#) | [D](#) | [E](#) | [F](#) | [G](#) | [H](#) | [I](#) | [J](#) | [K](#) | [L](#) | [M](#) | [N](#) | [O](#) | [P](#) | [Q](#) | [R](#) | [S](#) | [T](#) | [U](#) | [V](#) | [W](#) | [X](#) | [Y](#) | [Z](#) | [All](#)

Showing results 1 - 25 of 898

Ångström Aerospace Corporation (Sweden)

Ångström Aerospace Corporation mission is to develop and provide products, including services based on state-of-the-art Micro-ElectroMechanical Systems (MEMS) and nanotechnologies. Using advanced 3-dimensional wafer level packaging, Ångström Aerospace enables 3D-System-in-Package modules that enables unprecedented possibilities to combine micro-electronics and MEMS sensors/actuators.

10 Angstroms (USA)

10 Angstroms is dedicated to bringing innovative systems and equipment to the nanotechnology R&D market. The company provides both sales representation and service for advanced instrumentation companies.

Never
Subscr
get all :

https://www.nanowerk.com/nanotechnology/nanomaterial/products_a.php

Nanomaterials

NCI Alliance for
Nanotechnology
in Cancer

Industrial and Environmental nanomaterials

Potential Routes of Nanoparticle Exposure

TABLE 1: Mechanisms of engineered nanoparticle toxicity

Mechanisms of toxicity		Reference number
Cellular uptake	Direct intracellular entry	119
	Cell membrane binding	120
	Uptake through reticuloendothelial system	121
Catalytic activity	Release of more reactive ionic form from nanoparticle surface	60
	ROS generation, oxidative stress	24, 122
	Lipid peroxidation	32, 34
	Protein denaturation	123
	Inflammation	35, 124
	Endothelial dysfunction	125
	Mitochondrial perturbation	126
Genotoxicity	DNA damage, mutations	33, 48, 127
Cellular dysfunction	Phagocytic function impairment	128
	Altered cell cycle regulation	36

Source: Gupta&Xie, *Journal of Environmental Pathology, Toxicology and Oncology*, 37(3):209–230 (2018)

- Ingestion
- Inhalation
- Dermal
- Parenteral

- **Exposure to industrial and environmental nanomaterials may impact human health**
- **Many reports in the current literature about mechanisms of nanoparticle toxicity**

Nanoparticles for medicine

NCI Alliance for
Nanotechnology
in Cancer

**Nanoparticles
and Medicine**

Medical applications

Nanoparticles for Medical Applications

Properties attractive for medical applications

- Improve solubility of hydrophobic drugs
- Multifunctional capability
- Target tissues and cells affected by disease

Applications

- Gene therapy
- Drug delivery
- Immunotherapy
- Tissue engineering
- Diagnostics
- Devices
- Image-guided surgery
- Imaging agents

Evolving landscapes

Evolving Landscape of Nanotechnology Products

Global Nanotechnology Market (2015)

CAGR rates (2016-2021)

These graphs are prepared based on the business analytical report by Canning S., BCC Research (2015)

Global Nanotechnology Market in 2015 was dominated by environmental, electronic and consumer products

Biomedical Applications of Nanotechnology are predicted to have the highest 5-year compound annual growth rate by 2021

- Liposome
- Nanocrystal
- Emulsion
- Iron-polymer complex
- Micelle
- Drug-protein complex
- Drug-polymer complex
- Dendrimer
- Polymeric NP
- Nanobubble
- Silica NP
- Drug-lipid complex
- Drug-metal complex
- Protein NP
- Drug NP
- Solid lipid NP
- Nanotube
- Metal-protein complex
- Metal-nonmetal complex
- Metal-polymer complex

(1973-2015)

Liposomes, Nanocrystals and Emulsions dominate current nanomedicine landscape

Medical applications

Nanoparticles in Medical Applications

Common features of Nanomedicines:

- Primary market is cancer therapy
- Intravenous administration
- <350 nm in size
- Neutral, hydrophilic surfaces
- Spherical

Clinical grade products

Examples of Clinical Grade Nanotechnology Products

Chemotherapy benefits

Benefits: chemotherapy

Reiffeth et al. Experimental Hematology & Oncology 2013, 2:10
http://www.experimentalhematology.org/content/2/1/10

Open Access

RESEARCH

Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis

Sharmaddeen M Reiffeth¹, Mohammad Roush¹, Byung Lee², Guozeng Wei², Gurpreet Lamba¹ and Delong Liu^{1*}

Doxil (doxorubicin formulated using PEGylated liposome) is less cardiotoxic than free doxorubicin

Figure 1 Comparison of odds ratio in CHF. The summary of OR was calculated using the fixed effect model. Squares are ORs of CHF for separate trials. Horizontal lines through the squares represent 95% CIs. The diamond represents the overall OR of CHF from the meta-analysis and the corresponding 95% CIs. The studies that enrolled liposomal doxorubicin and conventional anthracyclines were separated into two groups for this analysis. Abbreviations: CI: Confidence interval; OR: Odd ratio; CHF: Congestive Heart Failure.

Immunotherapy

Benefits: Immunotherapy

Doxil Synergizes with Cancer Immunotherapeutics to Enhance Antitumor Responses in Syngeneic Mouse Models

Jonathan Rhee-Kwon, Nadege Sury-Panat, Linda Mekhora, Marjorie Kastan, Jon Chmelar, Michaela Marmontel, Wei Zhou, Cheng Cheng-Liu, and Daniel Hwangbo
University of California, Los Angeles

Doxil improves efficacy of cancer immunotherapeutics in CT26 mouse model of colorectal cancer

The Immunotherapy Opdivo & Abraxane for Recurrent HER2-Negative Metastatic Breast Cancer

A Phase 1, Open-Label, Multicenter, Safety Study of Nivolumab (BMS-936558) in Combination With Nab-Paclitaxel Plus or Minus Gemcitabine in Pancreatic Cancer, Nab-Paclitaxel / Carboplatin in Stage IIIB/IV Non-Small Cell Lung Cancer or Nab-Paclitaxel in Recurrent Metastatic Breast Cancer (NCT02309177)

Abraxane is investigated in combination with a-PD-1 in clinical trials for metastatic breast cancer

Benefits: Gene therapy

NCI Alliance for
Nanotechnology
in Cancer

Benefits: Gene therapy

NCI Alliance for
Nanotechnology
in Cancer

Transthyretin (TTR) is a protein primarily made in the liver

A genetic mutation in the TTR gene causes the **TTR protein to form clusters known as amyloid deposits**.

Amyloid deposits build up in different parts of the body, leading to symptoms of hATTR amyloidosis.

Benefits: Vaccines

Benefits: Vaccines

PDS0101/Versamune®

Mechanism of Action:

- Activates Both CD4+ and CD8+ T-cells
- Stimulates Type I interferon response
- Alters tumor micro-environment

Product	Indication	Partner	Combination	Status
PDS0101 (HPV-Cancer)	Head & neck cancer First line treatment Recurrent/metastatic	MERCK	KEYTRUDA®	Initiate Phase 2 1Q 2020*
	Advanced HPV cancers	NATIONAL CANCER INSTITUTE	Novel Immunotherapies	Initiate Phase 2 1Q 2020*
	Cervical cancer Stage IIb-IVa		Chemo- radiotherapy	Phase 2 ready

- Nanoparticles (lipoplexes, polyplexes, liposomes) were shown to improve vaccine efficacy
 - One example of such platforms is shown on this slide
 - Versamune platform is being explored for combination therapies

Benefits: Lymphatic delivery

Benefits: lymphatic delivery

Reddy ST et al, and Hubbell JA. (2007) *Nature Biotech.*, 25 (10):1159-1164

- Particle distribution to lymph nodes after i.d. injection depends on their size
- Lymphatic delivery benefits vaccines, HIV and infectious diseases therapy

Toxicity

Concerns: Toxicity

- Both nanocarrier and API can be toxic
- API toxicity can “relocate” depending on the particle biodistribution

Nanoparticles

**Nanoparticles and
the Immune system**

Immune system

Nanoparticles and the immune system

Structure activity relationship

Structure Activity Relationship

Bidirectional communication

Bidirectional Communication between Nanoparticles and Proteins

Binding of proteins to nanoparticle surface result in changes in particle properties
Properties and function of some proteins may also change after binding to the nanoparticle

Protein binding

Protein binding affects particle size

BEFORE

AFTER

DLS

Size Distribution by Volume

DLS

Size Distribution by Volume

Incubation with human plasma increases hydrodynamic size of nanoparticles

Biodistribution

Protein Binding and biodistribution

Dobrovolskaia et al., (2008), Mol.Pharm., 5:487-495.

Paciotti J. et al., (2004), Drug Delivery, 11:169-183.

- Particles which bind proteins are eliminated by MPS
- Particle surface protection (e.g with PEG) reduces protein binding and MPS
 - Good correlation between *in vitro* and *in vivo*

MPS uptake

MPS uptake

Capture

Hijacking

- Two theories about nanoparticle distribution to the MPS
- Capture – uptake by phagocytic cells in the tissue
- Hijacking – uptake by circulating phagocytic cells which then take the particle to tissue

Macrophage polarization

NCI Alliance for
Nanotechnology
in Cancer

Nanoparticles Influence Macrophage Polarization

- Macrophages can acquire distinct functional capabilities depending on the types of activating stimuli they are exposed to
 - Classical M1 macrophages (efficient at killing microbes)
 - Alternative activation M2 macrophages (efficient at tissue remodeling and repair)

Nanoparticle Type	Overall Polarization Effect	Size Range (nm)	M1 Markers				M2 Markers				Reference
			CD68/CD80/CD66	IL-1/IL-6/IL-12/IL-23/TNF- α	iNOS/NO	ROS Generation	CD163/CD206	IL-10	TGF- β	Arginase-1	
Silica	M1-Like	10-1000	No Change	Increase	Increase	Increase	-	No Change	Increase	-	[59-64]
Gold	M1-Like	10-300	No Change	Increase	Increase	Increase	-	Decrease	-	-	[60, 70-73]
Polymeric Cationic Polymer	M2-Like	30-600	Decrease	Decrease	Decrease	Decrease	Increase	Increase	Decrease	Increase	[77-80]
Liposome	M1-Like	110-22000	Increase	Increase	Increase	Increase	Decrease	Decrease	Decrease	Increase	[85-93]
Carbon	M2-Like	70-400	-	Decrease	No Change	No Change	Increase	Increase	-	Increase	[96, 98, 99]
Metallic	M1-Like	70-20000	Increase	Increase	Increase	Increase	Increase	Increase	No Change	Increase	[104-111]
Iron Oxide	M1-Like	30-200	Increase	Increase	Increase	Increase	Increase	Decrease	Increase	-	[126-129, 136, 137, 139, 140]
										Decrease	[150, 151, 154, 155, 161, 162, 165, 174]

Cationic liposomes

Cationic Liposomes induce broad spectrum of cytokines

Cationic Liposomes

	IFN- γ	IL-1 α	IL-1 β	IL-6	IL-8	IL-10	MCP-1	MIP-1 α	MIP-1 β	RANTES	TNF- α
donor#1	-	++	++	+++	+++	+	+++	+++	++	++	++
donor#2	-	--	--	---	---	-	---	---	--	--	--
donor#3	-	--	--	---	---	-	---	---	--	--	--
donor#4	-	--	--	---	---	-	---	---	--	--	--
donor#5	-	--	--	---	---	-	---	---	--	--	--
donor#6	-	--	--	---	---	-	---	---	--	--	--
donor#7	-	--	--	---	---	-	---	---	--	--	--
Detected cytokines	IL-1 α	IL-1 β	IL-6	TNF- α	IL-10	IL-8	MCP-1	MIP-1 α	MIP-1 β	RANTES	TNF- α
Group:	cytokines					chemokines					
Detected danger signals	MMP-1	MMP-7	MMP-9								
Group:	metalloproteases										

- Cationic liposomes induce wide range of pro-inflammatory responses
- While cytokines are needed for adjuvanticity, excessive secretion of some of them (e.g. TNF- α) often leads to side effects (necrosis at the injection site)

Oxidative stress is underlying mechanism

Anionic liposomes

Anionic liposomes induce chemokines

- Induction of IL-8 by liposomes follows induction of oxidative stress and can be prevented by antioxidant N-acetyl cysteine

IFN

Nucleic Acid Nanoparticles induce IFN

NCI Alliance for
Nanotechnology
in Cancer

These data are
generated in
collaboration with
UNCC:
Dr. Kirill Afonin
Valeria Ke
Justin Halman

Composition

Architecture

Size

DNA < RNA

RNA nanoparticles
are more potent than
DNA nanoparticles

Globular particles are more
potent than planar than
fibrous particles

Larger particles are more
potent than smaller
particles

Hemolysis

Hemolysis

- Cationic dendrimers are more hemolytic than their anionic and neutral counterparts of the same size
- Larger dendrimers are more hemolytic than smaller

Coagulation system

Coagulation system

Nanoparticles can be engineered to avoid or specifically interact with coagulation system.

Zeta potential

Platelets: role of zeta potential

Zeta Potential is important
Less surface amines = less platelet aggregation

Infusion reactions

Infusion Reactions

- Infusion reactions (IRs) are the common Immune-mediated Adverse Effects of liposomal drugs
- Clinical signs of IR vary between patients and include one or more of the following symptoms: flushing, urticaria, rash, pruritus, shortness of breath, asthma, bronchospasm, apnea, hypotension, tachycardia, facial swelling, tightness in the chest and throat, headache, chills, chest pain, back pain, fever, cyanosis or syncope
- The more rapidly a reaction develops, the more severe it is likely to be

WARNINGS AND PRECAUTIONS

- Intestinal toxicities (ILD): Fatal ILD has occurred in patients receiving irinotecan HCl (Onivyde) if ILD is diagnosed (3.3)
- Severe hypersensitivity reaction: Permanently discontinue ONIVYDE for severe hypersensitivity reactions. (3.4, 4)
- Endo-pancreatic toxicity: Can cause fatal harm. Advise females of reproductive potential of the potential risk to a fetus and to use effective contraception. (5.3, 8.1, 8.3)

WARNING: CARDIOMYOPATHY and INFUSION-RELATED REACTIONS

See full prescribing information for complete boxed warning.

- Myocardial damage may lead to congestive heart failure and may occur as the total cumulative dose of doxorubicin HCl approaches 550 mg/m². The risk of cardiomyopathy may be increased at lower cumulative doses with mediational administration (3.1).
- Acute infusion-related reactions occurred in 11% of patients with solid tumors. Serious, life-threatening, and fatal infusion reactions have been reported. Medications/emergency equipment to treat such reactions should be available for immediate use (3.2).

VYNEX may cause allergic reactions including anaphylaxis. Seek immediate medical attention if you develop signs and symptoms of anaphylaxis such as:

- trouble breathing
- severe itching
- skin rash or hives
- swelling of the face, lips, mouth, or tongue

Warnings

• A trial of back pain, flushing, and chest tightness has been reported in 13.8% of the patients (16/116) treated with Doxil in the Phase II clinical trial, and in 1.7% of treatment cycles (2/116). This trial generally occurs during the first five minutes of the infusion, subsides with interruption of the infusion, and generally does not recur if the infusion is then resumed at a slower rate.

WARNINGS

Anaphylaxis has been reported with amphotericin B-deoxycholate and other amphotericin B-containing drugs, including AmBisome. If a severe anaphylactic reaction occurs, the infusion should be immediately discontinued and the patient should not receive further infusions of AmBisome.

Infusion reactions

First Generation Liposomes & Infusion Reactions

Table 1 | Gell and Coombs classification of allergic reactions

Underlying mechanism	Type I: Immune system hypersensitivity or toxic allergy	Type II: Antibody-mediated cytotoxicity reaction	Type III: Immune complex-mediated reaction	Type IV: Delayed-type hypersensitivity
Mediators	IgE	Oxidative (IgM and IgG) sensitization	Immune complexes (IgM or IgG)	Memory T helper cells and macrophages, No antigen involved
Immune response	Deposition (deactivation) of mast cells and basophils and synthesis of new mediators (histamine, prostaglandins and leukotrienes)	Oxidative actions by natural killer (NK) cells, macrophages, dendritic cells and complement	Deposition of immune complexes in tissues, Inflammatory response involving complement activation, macrophage activation, neutrophil degranulation and phagocytosis	Oxidative and secretory actions of macrophages and T cells, Cytokine release and lymphocyte infiltration
Time to develop	Usually from minutes (20-60 minutes) to a few hours. Late-onset reactions (20-24 hours) are uncommon	From minutes to hours, but some clinical reactions take weeks to months. Hypersensitivity, anaphylaxis, fever, headache (IgE) can be diagnostic indicators after days	From 2-8 hours, but some clinical manifestations can develop even 2-12 days after exposure	General (2-10 days)
Critical symptoms	Urticaria, angioedema, asthma, anaphylaxis, bronchospasm, vasodilation, hypotension, tachycardia, bradycardia	Pneumonia, nephritis, anaphylactic hemolytic anemia, Goodpasture syndrome	Thrombocytopenia, Several organs can be affected (lungs, joints, skin and kidneys). In addition, serum sickness, fever, glomerulonephritis and neurolgia are possible	Most common skin eruptions, deproteinization chemicals, coagulopathy, drugs, and metals. Contact dermatitis, erythema, edema, maculopapular rash, and granuloma

Szebeni J et al. *Nature Nanotechnology*, 2018

- Infusion reactions to PEGylated liposomes fit Gell and Coombs classification for Type I HR, but mediated by complement instead of IgE
- These IRs are often called anaphylactoid, pseudoallergy or CARPA

Activation of complement, and complement-dependent and -independent induction of cytokines underly IRs to liposomes

2nd generation liposomes

2nd Generation Liposomes Overcome Infusion Reactions

These data are generated in collaboration with Dr. Barenholz

Allergenicity

Allergenicity: DTH to dendrimers

A case of toxic epidermal necrolysis-like dermatitis evolving from contact dermatitis of the hands associated with exposure to dendrimers

Contact Dermatitis 2008; 59: 122–123

T. Toyama, H. Matsuda, I. Ishida, M. Tani, S. Kitaba, S. Sano and I. Katayama

Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan

- Only one case of necrotizing dermatitis (type IV reaction) in response to dendrimers is reported in the literature: fever, chills, exudative erythema and fused bullae (Nikolsky's reaction)
- The mechanism is unknown

Immunogenicity

Immunogenicity

* - antibodies were generated ONLY after conjugation to protein carrier and injection in the presence of strong adjuvants

ENM = engineered nanomaterials; ThPr = therapeutic protein; SWCNT = single wall carbon nanotubes; PAMAM = polyamidoamine; TNF = tumor necrosis factor

Dobrovolskaia & McNeil. *Handbook of Immunological properties of engineered nanomaterials*. WSP, 2013, ISBN 978-981-4390-25-5.

Anti-PEG antibody

Pre-existing anti-PEG antibody

- PEGylation of nanoparticles is common to improve circulation time
- Several studies reported existence of naturally occurring antibody
- Functional significance of these antibodies is incompletely understood

"a high level of pre-existing anti-PEG antibodies was a major, but not the sole, factor necessary for triggering first-exposure allergic reaction to pegnivacogin, a PEGylated RNA aptamer" Ganson et al., J ALLERGY CLIN IMMUNOL MAY 2016

High (> 800) titer PEG-reactive antibodies are detected in both healthy males and females, but are more prevalent in females

PEG Ab titer does not correlate with complement activation by PEGylated liposomes. The Ab suggest greater risk but can't predict the reaction and its magnitude. Functional assay, e.g. C3 ELISA, should be used instead

Anti-PEG antibodies

Anti-PEG antibodies and drug release

- Functional significance of these antibodies is incompletely understood
 - Triggering of premature drug release is one potential consequence

Chen L, Chen SW, Su PC, Chang PC, Cheng JL, Baranowski E, Koeffler HP. Premature Drug Release from Polyethylene Glycol (PEG)-Coated Liposomal Formulation via Formation of the Membrane Attack Complex. *ACS Nano*. 2020 Jul 28;14(7):7825-7832. doi:10.1021/acsnano.9b07273. epub 2020 Mar 3. PMID: 32272288.

Anti-PEG antibodies

Anti-PEG antibodies and CARPA

- Contribution to anaphylaxis has also been reported

- PEG Ab titer does not correlate with complement activation by PEGylated liposomes.
- The Ab suggest greater risk but can't predict the reaction and its magnitude.
 - Functional assays identify toxicity
- Antibody screening helps identifying risk and understanding mechanisms

Purified anti-PEG antibodies contribute to the complement activation by Daxil

Anti-inflammatory properties

Anti-inflammatory and immunosuppressive properties

Anti-inflammatory

Indirect

1. Carriers for anti-inflammatory drugs (corticosteroids, indomethacin, methotrexate) liposomes, dendrimers, polymeric NP
2. Carriers for anti-cytokine agents (receptors' antagonists, siRNA against cytokines and signalling molecules, DNA of anti-inflammatory cytokines) polymeric NP, dendrimers, liposomes, chitosan NP
3. Anti-adhesion agents (siRNA against CCR2, selectins' antagonists) lipid NP, dendrimer-like polymers

Direct

1. Inhibition of COX and pro-inflammatory signaling PAMAM dendrimers, gold NP
2. Anti-oxidant activity cerium oxide NP, gold NP, fullerene derivate
3. Anti-cytokine activity gold NP

Mechanism of Action

Indirect

1. Carriers for traditional immunosuppressive drugs (cyclosporine, tacrolimus, rapamycin, mycopholic acid) liposomes, polymeric NP, lipid NP
2. Tolerogenic vaccines (antigens, co-stimulatory signals) polymeric NP, iron oxide NP, PEG-gold NP, chitosan NP
3. Myelosuppression (increase toxicity of a carried drug) PIBCA, PIHCA

Direct

1. Inhibition of T-cell-mediated immunity iron oxide NP, fullerene 60
2. Interference with functions of the cells of the immune system iron oxide NP, PVA-SPION, MWNT, quantum dots
3. Myelosuppression and toxicity to cells of the immune system Sb_2O_3 , Co, ZnO , TiO_2 NP

Mechanism of Action

Immunosuppressive

Immunosuppression

Immunosuppression

Iron oxide nanoparticles (Feraheme) suppresses activation of T-cells via a mechanism involving mitochondrial ROS in vitro

Topical application of Feraheeme inhibits development of skin lesions in a mouse model of psoriasis

Take home message

Take Home Message

- Immunotoxicity can be **GOOD** or **BAD**
- Depends on whether it is desirable (intended) or undesirable (unintended)

- Nanoparticles can be engineered to improve desirable properties or to reduce undesirable ones
- Understanding SAR and mechanisms of toxicity can inform creation of safe and efficient complex drug systems

Nanotechnology characterization lab

Nanotechnology Characterization Lab

FREE Service for cancer nanotechnology concepts, by application.

> 130 Assay Cascade projects
> 400 nanoparticles characterized
15 collaborations advanced to clinical trials
2 received regulatory approval

NCL has 15 years of knowledge and expertise in nanoparticle characterization and helps accelerate the translation of promising nanotech drugs and diagnostics.

60+ protocols available for research community online: <https://ncl.cancer.gov/resources/assay-cascade-protocols>

NCL team

NCL Team

NCL immunology team

Special Thanks to the NCL Immunology Team

Current Members

Barry Neun

Edward Cedrone

Alumni

Anna Ilinskaya

Jamie Rodriguez

Parag Aggarwal

Timothy M. Potter

Enping Hong

Ankit Shah