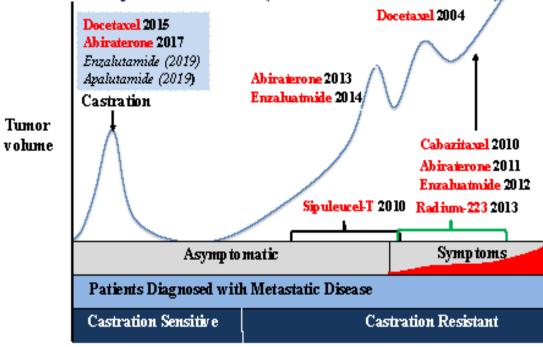
Prostate cancer

PROSTATE CANCER

Fatima Karzai, MD Clinical Director, Genitourinary Malignancies Branch Adjunct Investigator, Center for Immuno-Oncology October 2023

ONE PROGRAM, MANY PEOPLE, INFINITE POSSIBILITIES

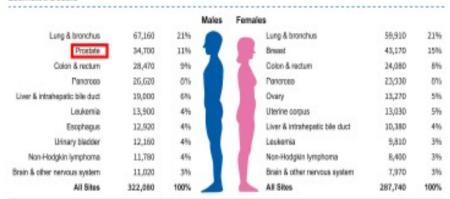
Outline


Outline

- 1. Prostate Cancer overview
- 2. Therapies for localized prostate cancer
- 3. Metastatic Castrate-Resistant Prostate Cancer
- 4. Future Directions

FDA approved therapies

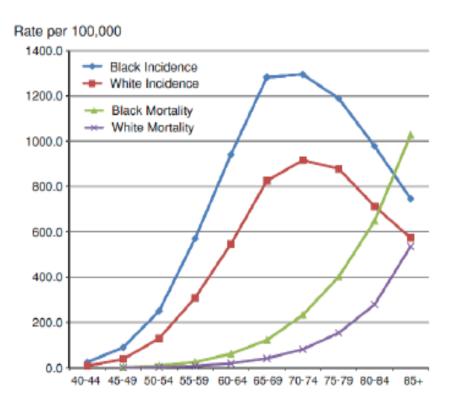
Prostate Cancer FDA-Approved Therapies for Newly Metastatic (Normal Testosterone)/Death



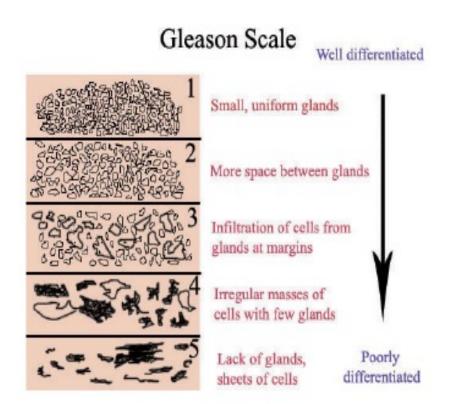
Cancer statistics

Cancer Statistics 2023

			Males	Females		
			Marca		110000000	
Prostate	286,300	29%		Breast	297,790	31%
Lung & branchus	117,550	12%		Lung & branchus	120,790	13%
Colon & rectum	81,890	8%		Colon & rectum	71,160	8%
Urinary bladder	62,420	6%		Uterine corpus	66,200	7%
Melanoma of the skin	58,120	6%		Melanoma of the skin	39,490	4%
Kidney & renal pelvis	52,390	5%		Non-Hodgkin lymphoma	35,670	4%
Non-Hodgkin lymphoma	44,880	4%		Thyroid	31,180	3%
Oral cavity & pharyrox	39,290	4%		Pancreas	30,920	3%
Leukemia	35,670	4%		Kidney & renal pelvis	29,440	3%
Pancreas	33,130	3%		Leukarria	23,940	3%
All Sites	1.010,310	100%		All Sites	948,000	100%


Estimated Deaths

Risks


Risks

- Age
- Family history
- Genetic predisposition
 - BRCA
- Environmental
- Obesity
- Race

Gleason grading

Gleason Grading

- Primary Grade
 - Greater 50%
- Secondary Grade
 - < <50% but ≥5%

Grade

Grade Group

In 2014, the International Society of Urological Pathology released supplementary guidance and a revised prostate cancer grading system, called the Grade Groups.

The Grade Group system is simpler, with just five grades, 1 through 5.

Risk Group*	Grade Group	Gleason Score	
Low/Very Low	Grade Group 1	Gleason Score ≤ 6	
Intermediate	Grade Group 2	Gleason Score 7 (3 + 4	
(Favorable/Unfavorable)	Grade Group 3	Gleason Score 7 (4 + 3)	
High/Very High	Grade Group 4	Gleason Score 8	
	Grade Group 5	Gleason Score 9-10	

Staging

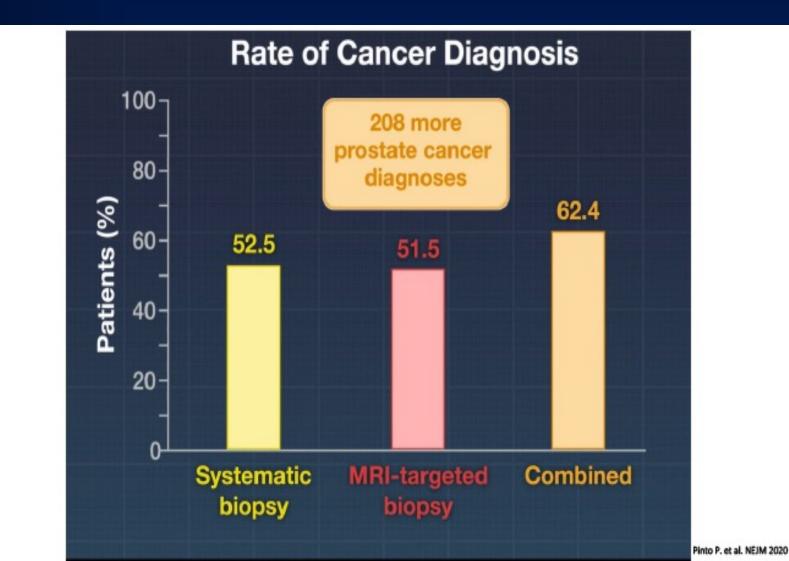
Stage	TNM		Description
I (A)	T1a (incidental)		Localized
II (B)	T1b, <i>T1c</i> , T2a,b,c (within prostate)	Stane I	
Ш (C)	T3a (through capsule) T3b (seminal vesicles)	Stage II	Locally Advanced
IV (D)	T4 (fixed, invades)	Stage III	
	N1, M1	Jack -	Metastatic

MRI

Multiparametric MRI

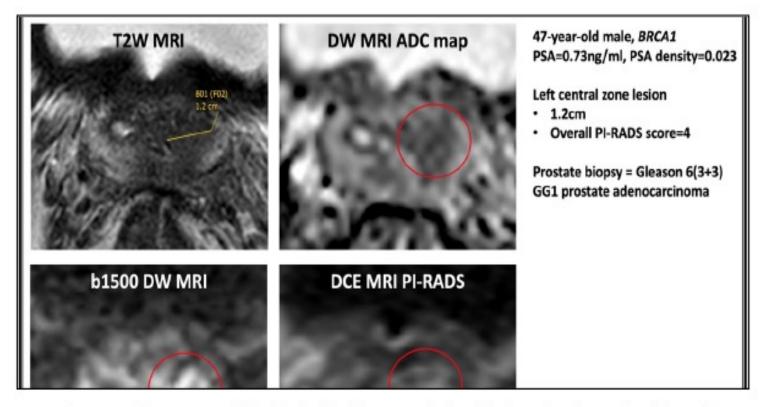
- Studies show targeted MR/ultrasound fusion biopsies are associated with increased detection of high-risk prostate cancer
- Studies have also reported mpMRI as a useful modality for predicting pathological outcomes in patients with high-risk prostate cancer
- Approach to prostate cancer screening is to target populations at risk of developing prostate cancer based on their genetic predisposition

Diagnosis

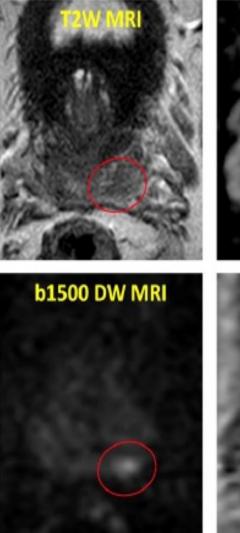

ORIGINAL ARTICLE

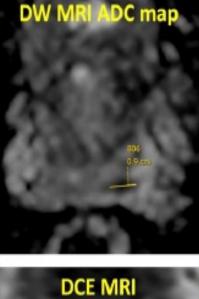
MRI-Targeted, Systematic, and Combined Biopsy for Prostate Cancer Diagnosis

Michael Ahdoot, M.D., Andrew R. Wilbur, B.S., Sarah E. Reese, Ph.D., Amir H. Lebastchi, M.D., Sherif Mehralivand, M.D., Patrick T. Gomella, M.D., Jonathan Bloom, M.D., Sandeep Gurram, M.D., Minhaj Siddiqui, M.D., Paul Pinsky, Ph.D., Howard Pames, M.D., W. Marston Linehan, M.D., et al.


Article	Figures/Media	Metrics	March 5, 2020
			N Engl J Med 2020; 382:917-928 DOI: 10.1056/NEJMoa1910038

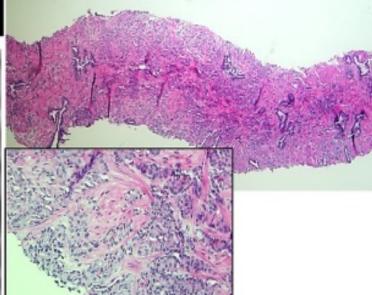
Diagnosis rate


Imaging


Imaging: Prostate MRI

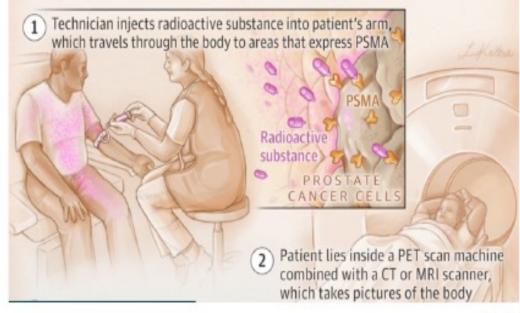
Images Courtesy of Dr. Baris Turkbey and the Molecular Imaging Branch

MRI



63-year-old male, *MSH2* PSA=5.7ng/ml, PSA density=0.158

Left base peripheral zone lesion (PI-RADS score = 4)


Prostate biopsy = Gleason 7(4+3) GG3 prostatic adenocarcinoma with cribriform and poorly formed glands

PSMA PET/CT

Imaging: PSMA PET/CT

PSMA PET scans are imaging tests that detect prostate cancer and its spread in the body. They use a radioactive substance that targets prostate-specific membrane antigen (PSMA) expressed in prostate cancer.

FDA approved PET imaging

FDA approved PSMA-targeted PET imaging

- FDA approved the first PSMA-targeted PET imaging drug, Ga 68 PSMA-11, on December 1, 2020
- FDA approved 18F-DCFPyL in 2021
- Indication is for suspected metastatic disease or recurrent disease after definitive treatment

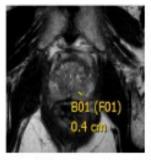
PET/CT

PRIOR PSMA PET/CT PRIOR TO PROSTATECTOMY. PSA= 6.3 ng/mL (3-29-2022)

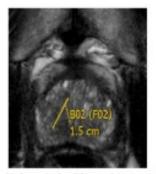
18F-DCFPyL-PET/CT imaging

.

No DCFPyL-avid lymph nodes
 No DCFPyL-avid bone lesions



Right apical posterior prostate: SUV 10.5 (not seen on MRI)



-Right apical-mid central prostate: SUV 36.6 -Left apical posterior prostate: SUV 10.2 Both concordant with MRI

MRI (3-30-2022)

Left apical peripheral zone lesion (PIRADS 3) NIH Score: Low-moderate

Right apical-mid transition zone lesion (PIRADS 3)

Therapy principles

Principles Guiding Therapy of Localized Prostate Cancer

- Patients with a life expectancy of at least 10 years are more likely to benefit
- Patients older than 75 years have other competing causes of mortality
- Eradication of the cancer is the goal of therapy
- Low grade/stage tumors may just require active surveillance

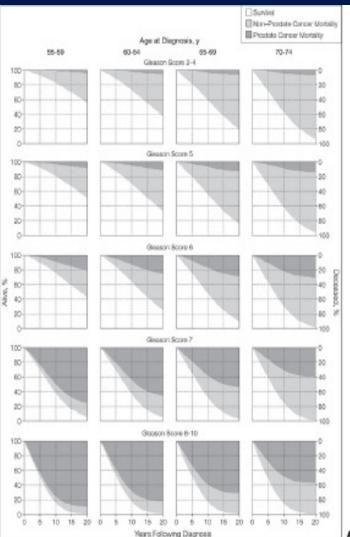
Watchful waiting

Watchful Waiting

- Observation with palliative treatment for symptoms
- No PSA monitoring
- Ideal for patients with poor life expectancy who are likely to die from causes other than prostate cancer

Active surveillance

Active Surveillance


- Periodic PSA monitoring
- Prostate MRIs and prostate biopsies
- Conversion to active treatment when signs of disease progression develop

Ideal candidate

Who is the Ideal Candidate for Watchful Waiting/Active Surveillance?

The probability of prostate cancer mortality is low with:

- Lower Gleason score
- Advanced age

Albertsen, P. C. et al. JAMA 2005;293:2095-101

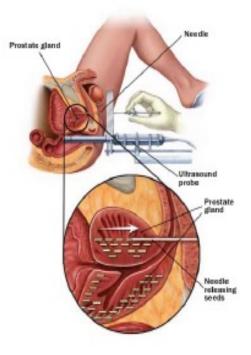
Management

Management of Locally Advanced Prostate Cancer

- Surgery with Androgen Deprivation Therapy (ADT)
 Neoadjuvant is usually on a clinical trial
- Surgery with adjuvant RT
- Radiotherapy with ADT (6 months-18 months)

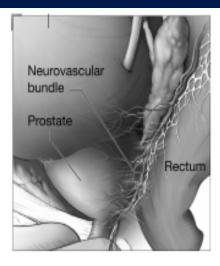
Radiation therapy

Radiation Therapy-External Beam


- The principle is to deliver therapeutic dose of radiation to the tumor but minimize damage to adjacent structures
- Modalities of external beam radiotherapy
 - 3-dimensional conformal radiation therapy (3D-CRT)
 - Intensity modulated radiation therapy (IMRT)
 - Image-guided radiation therapy (IGRT)
 - Proton-beam radiation therapy

Brachytherapy

Radiation Therapy-Brachytherapy

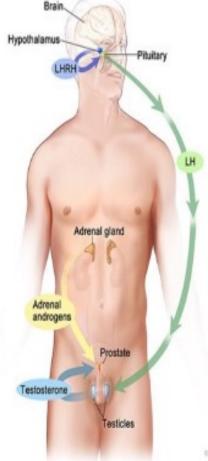

- Direct implantation of radiation seeds
- Maximizes radiotherapy to the tumor
 - limits damage to the surrounding structures
- One time treatment

Complications

Radiation Therapy-Complications

- Gastrointestinal
 - Less common with brachytherapy
- Genitourinary
 - Incidence of erectile dysfunction varies widely
- Secondary malignancies
 - Slight increased risk with bladder and to a lesser extent with rectal cancer

Radiotherapy


Radiotherapy with ADT

- EORTC 22863 randomized 415 men with high grade locally advanced prostate cancer
 - EBRT ± goserelin for 3 years
- ADT group had better
 - 10-yr disease free-survival (22.7 vs.44.7%, p<0.0001)
 - 10-yr overall survival (39.8 vs. 58.1%, p=0.0004)
 - 10-yr disease-specific mortality (30.4 vs. 10.3%, p<0.0001)

ADT-castration

ADT-Castration

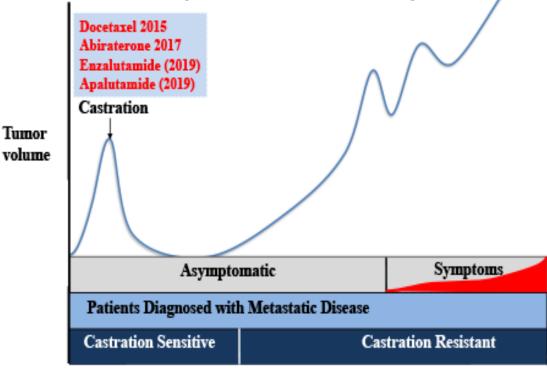
Туре	Method
Surgical	Bilateral Orchidectomy
Medical	 Gonadotropin releasing hormone (GnRH) agonists Goserelin Leuprolide GnRH receptor antagonists Degarelix
	AntiandrogensBicalutamide, flutamide

© 3013 Teresa Winslow LLC U.S. Gold two service rights

ADT radiotherapy

Radiotherapy with ADT

- EORTC 22863 randomized 415 men with high grade locally advanced prostate cancer
 - EBRT ± goserelin for 3 years
- ADT group had better
 - 10-yr disease free-survival (22.7 vs.44.7%, p<0.0001)
 - 10-yr overall survival (39.8 vs. 58.1%, p=0.0004)
 - 10-yr disease-specific mortality (30.4 vs. 10.3%, p<0.0001)

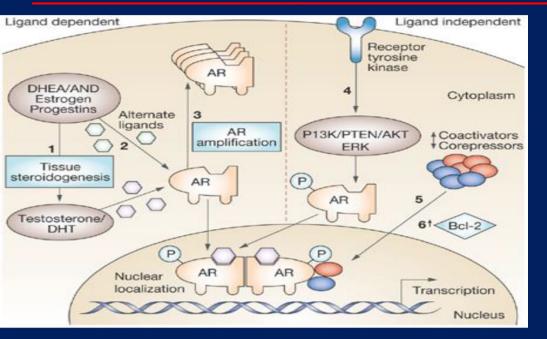

Biochemical recurrence

Biochemical Recurrence after Initial Prostatectomy or RT

- Rising PSA without local recurrence or metastases on CONVENTIONAL imaging (CT and bone scan)
- Treatment options include watchful waiting, prostatectomy, RT, and ADT or clinical trial

FDA approved therapies

Prostate Cancer FDA-Approved Therapies for Newly Metastatic (Normal Testosterone)


Castrate-resistance prostate cancer

What is Castration-Resistance Prostate Cancer?

- Progressive disease despite castrate levels of testosterone (≤50 ng/dL)
- Progression could be based on PSA rises or imaging
- The androgen receptor (AR) drives prostate cancer growth
 - Depriving the tumor of testosterone is the primary therapy for metastatic disease

Anti-androgen therapy

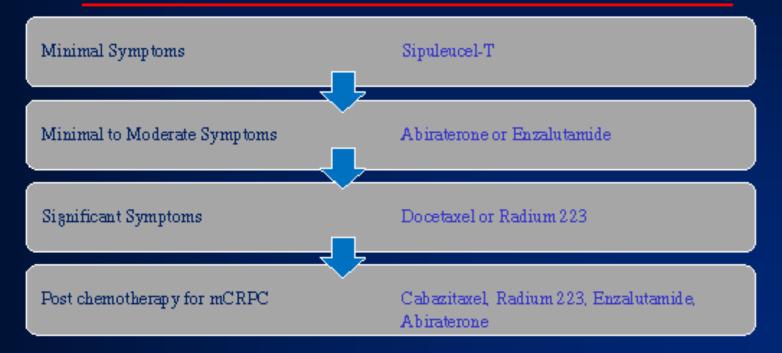
So why do we use Anti-Androgen therapy in CRPC?

Resistance Mechanisms:

- AR Amplification
- Secondary androgen production
- Ligand independent growth
- Intranuclear changes

Considerations for treatment

Considerations for treatment


Key disease questions:

- Previous therapies
- Pace of disease (time of progression on ADT, pace of metastases)
- Symptoms (none, moderate or significant)

Key patient characteristics:

- Age
- Comorbidities
- Quality of life preferences
- Treatment logistics

One Possible Decision Algorithm for Treatment of mCRPC: Normal Pace of Disease*

*Initial response to ADT 1-2 years or longer *Metastasis on scans shows slow progression

9

Decision algorithm

One Possible Decision Algorythm for Treatment of mCRPC: Normal Pace of Disease*

Minimal Symptoms

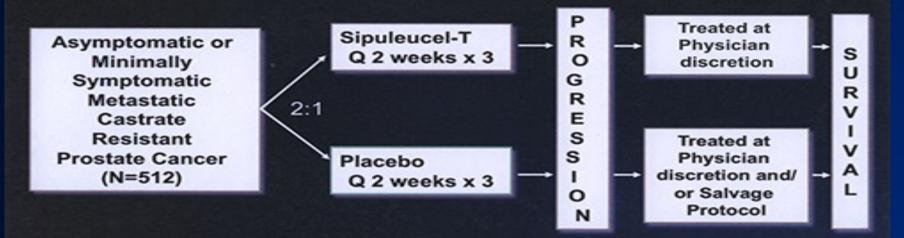
Sipuleucel-T

*Initial response to ADT 1-2 years or longer *Metastasis on scans shows slow progression

11

Therapeutic Cancer Vaccine: Sipuleucel-T

Therapeutic Cancer Vaccine: Sipuleucel-T

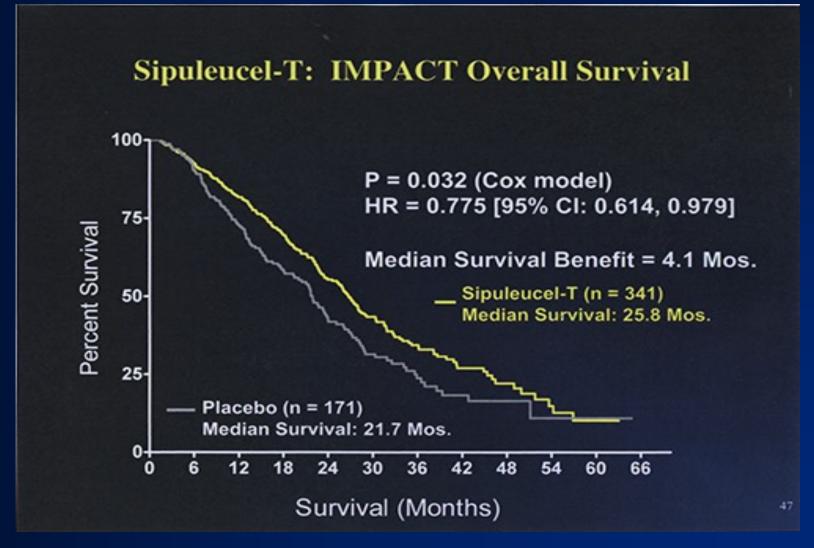

Apheresis Center

Company (Dendreon)

Doctor's Office

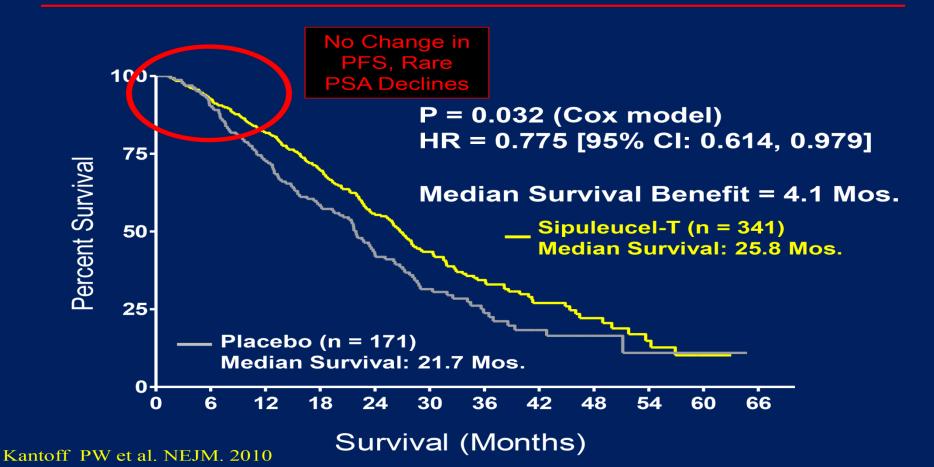
IMPACT: Randomized Phase 3 Trial

IMPACT: Randomized Phase 3 Trial (IMmunotherapy Prostate AdenoCarcinoma Treatment)

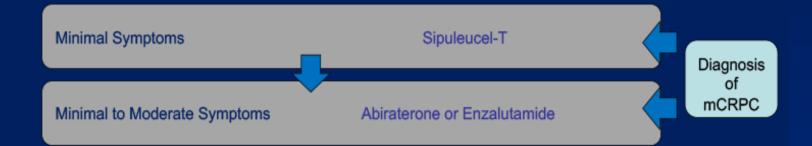


Primary endpoint: Secondary endpoint: Overall Survival Time to Objective Disease Progression

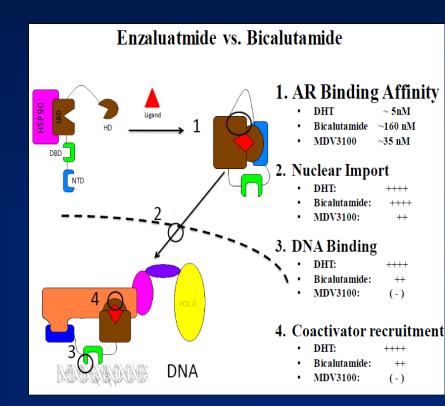
Kantoff PW et al. NEJM. 2010;363:411-22


46

Sipuleucel-T: IMPACT Overall Survival


Sipuleucel-T

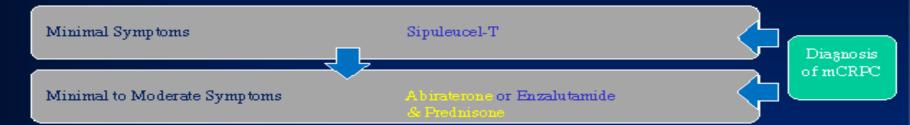
Sipuleucel-T: IMPACT Overall Survival


Algorithm

One Possible Decision Algorithm for Treatment of mCRPC: Normal Pace of Disease*

Enzalutamide

A small molecule AR antagonist Affinity 30 folds of bicalutamide Prevent nuclear translocation Prevents co-activator recruitment

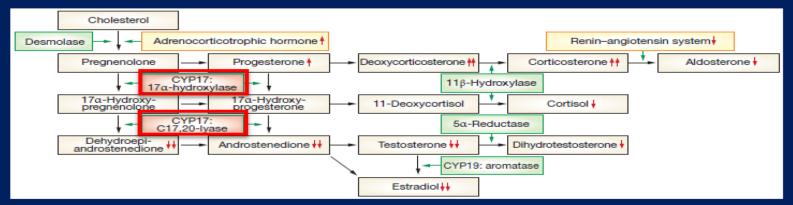


Enzalutamide Toxicity

Cardiovascular: Peripheral edema (15%) Central nervous system: Fatigue (51%), headache (12%) Endocrine & metabolic: Hot flashes (20%) Gastrointestinal: Diarrhea (22%) Hematologic: Neutropenia (15%; grades 3/4: 1%) Neuromuscular & skeletal: Back pain (26%), arthralgia (21%), musculoskeletal pain (15%) Respiratory: Upper respiratory tract infection (11%)

Algorithm

One Possible Decision Algorithm for Treatment of mCRPC: Normal Pace of Disease*


*Initial response to ADT 1-2 years or longer *Metastasis on scans shows slow progression

25

Abiraterone rationale

Rationale for Abiraterone in CRPC

• There is up-regulation of androgen biosynthesis enzymes in CRPC

• Blocks and rogen synthesis by the adrenal glands, testes and within the prostate tumor tissue

Abiraterone Toxicity

Cardiovascular: Edema (25% to 27%), hypertension (9% to 22%; grades 3/4: 1% to 4%)

Central nervous system: Fatigue (39%), insomnia (14%)

Dermatologic: Bruise (13%)

Endocrine & metabolic: Increased serum triglycerides (63%), hyperglycemia (57%), hypernatremia (33%), hypokalemia (17% to 28%; grades 3/4: 3% to 5%), hypophosphatemia (24%; grades 3/4: 7%), hot flash (19% to 22%)

Gastrointestinal: Constipation (23%), diarrhea (18% to 22%), dyspepsia (6% to 11%)

Genitourinary: Urinary tract infection (12%)

Hematologic: Lymphocytopenia (38%; grades 3/4: 9%)

Hepatic: Increased serum ALT (11% to 42%; grades 3/4: 1% to 6%), increased serum AST (31% to 37%; grades 3/4: 2% to 3%)

Neuromuscular & skeletal: Joint swelling (30%, including joint discomfort), myalgia (26%)

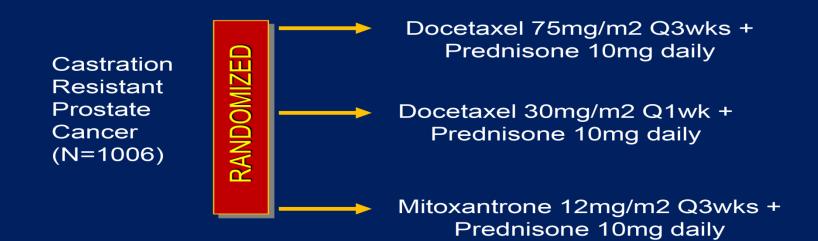
Respiratory: Cough (11% to 17%), upper respiratory infection (5% to 13%), dyspnea (12%), nasopharyngitis (11%)

Algorithm

One Possible Decision Algorythm for Treatment of mCRPC: Rapid Pace of Disease*

*Initial response to ADT short (e.g less than 1 year) or *Metastasis on scans shows rapid progression

Docetaxel


Docetaxel

- In 1960s, crude extract of the bark of the Pacific yew tree, Taxus brevifolia, was shown to have suppressive activity in preclinical tumor models.
- By 1971, paclitaxel was identified as the active constituent of the bark extract.
- Taxanes exhibit antimicrotubule and antitumor activity
- Emerging data suggests that taxanes inhibit AR translocation via microtubules

Phase III study

TAX327: A Multicenter, Randomized Phase III Study of 3 weekly Docetaxel + Prednisone vs. Weekly Docetaxel + Prednisone vs. Mitoxantrone + Prednisone

Docetaxel Toxicity

Central nervous system: Central nervous system toxicity (20% to 58%; severe: 6%; including neuropathy)

Dermatologic: Alopecia (56% to 76%), dermatological reaction (20% to 48%; severe: \leq 5%), nail disease (11% to 41%)

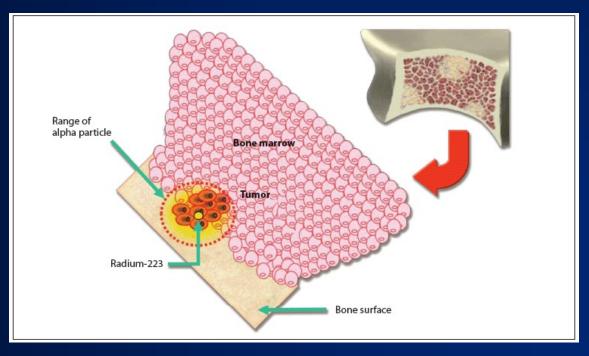
Endocrine & metabolic: Fluid retention (13% to 60%; severe: 7% to 9%; dose dependent)

Gastrointestinal: Stomatitis (19% to 53%; severe 1% to 8%), diarrhea (23% to 43%; severe: 5% to 6%), nausea (34% to 42%), vomiting (22% to 23%)

Hematologic & oncologic: Neutropenia (84% to 99%; grade 4: 75% to 86%; nadir [median]: 7 days, duration [severe neutropenia]: 7 days; dose dependent), leukopenia (84% to 99%; grade 4: 32% to 44%), anemia (65% to 97%; dose dependent; grades 3/4: 8% to 9%), thrombocytopenia (8% to 14%; grade 4: 1%; dose dependent), febrile neutropenia (5% to 14%; dose dependent)

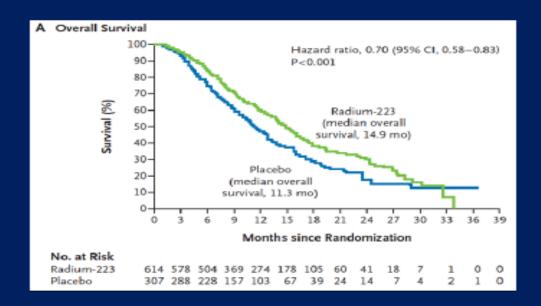
Hepatic: Increased serum transaminases (4% to 19%)

Hypersensitivity: Hypersensitivity (1% to 21%; with premedication 15%)


Infection: Infection (1% to 34%; dose dependent)

Neuromuscular & skeletal: Weakness (53% to 66%; severe 13% to 18%), myalgia (3% to 23%), neuromuscular reaction (16%)

Respiratory: Pulmonary reaction (41%)


Radium-223 (Alpharadin)

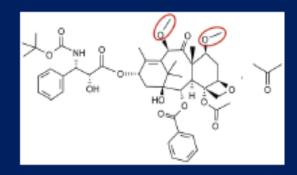
Bone –targeting radiopharmaceutical High energy alpha-particles with short range (<100µm) hence less bone marrow toxicity

ALSYMPCA trial

ALSYMPCA: Randomized Phase III Study of Radium-223 vs. Placebo in mCRPC with bone metastases

Parker C. et al. NEJM, 2013.

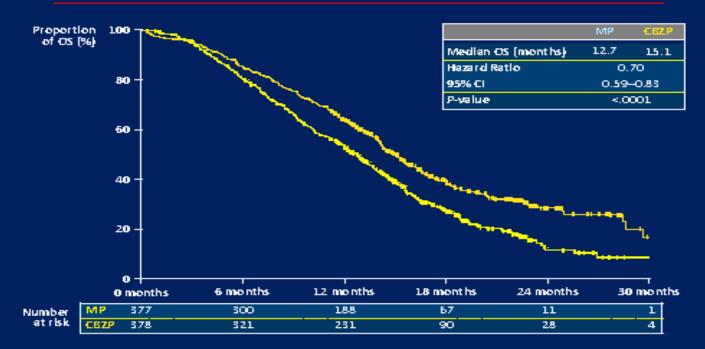
Radium 223 AEs


Radium 223 AEs

- Cardiovascular: Peripheral edema (13%)
- Gastrointestinal: Nausea (36%), diarrhea (25%), vomiting (19%)
- Hematologic: Anemia (93%; grades 3/4: 6%), lymphocytopenia (72%; grades 3/4: 20%), leukopenia (35%; grades 3/4: 3%), thrombocytopenia (31%; grades 3/4: 1% to 6%), neutropenia (18%; grades 3/4: 1% to 3%)

Cabazitaxel

Cabazitaxel


- Novel taxane active in docetaxel resistant cell lines
 - Less affinity for P-glycoprotein pump

Methoxyl side chain instead of hydroxyl groups found in docetaxel

TROPIC

TROPIC: Overall Survival

de Bono JS. et al. Lancet 2010

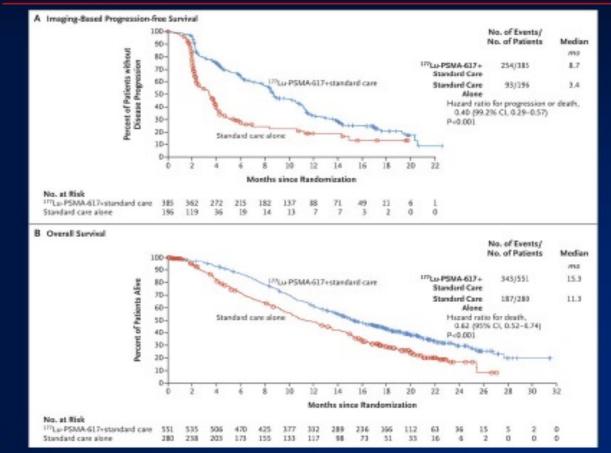
Cabazitaxel toxicity

Cabazitaxel Toxicity

- Central nervous system: Fatigue (37%), fever (12%)
- Gastrointestinal: Diarrhea (47%; grades 3/4: 6%), nausea (34%), vomiting (22%), constipation (20%), abdominal pain (17%), anorexia (16%), taste alteration (11%)
- Hematologic: Anemia (98%; grades 3/4: 11%), leukopenia (96%; grades 3/4: 69%), neutropenia (94%; grades 3/4: 82%; nadir: 12 days [range: 4-17 days]), thrombocytopenia (48%; grades 3/4: 4%)
- Neuromuscular & skeletal: Weakness (20%), back pain (16%), peripheral neuropathy (13%; grades 3/4; <1%), arthralgia (11%)
- Renal: Hematuria (17%)
- Respiratory: Dyspnea (12%), cough (11%)

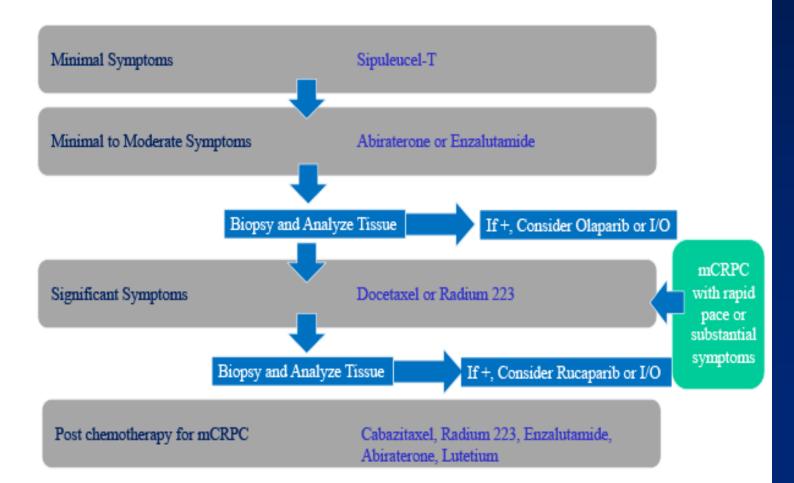
Should strongly consider the use of growth factor

Targeted radioligand therapy


Targeted Radioligand Therapy: 77Lu-PSMA-617

 For the treatment patients with PSMA-positive mCRPC who have been treated with AR pathway inhibition and taxanebased chemotherapy

 The most common adverse reactions (≥20%) were fatigue, dry mouth, nausea, anemia, decreased appetite, and constipation


Survival curve

Lu-177-PSMA

Treatments

Strategy for Treating mCRPC

Germline testing

Current Guidelines for Germline Testing in Prostate

Cancer

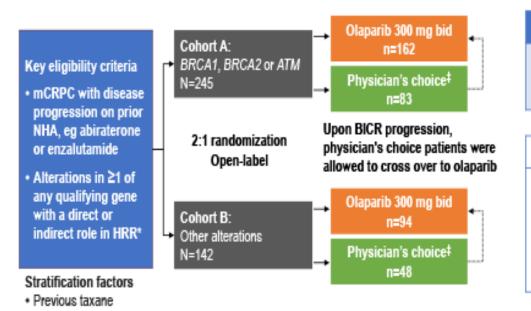
Testing Criteria	Additional Criteria
Known high-risk family history/genes	By family history and ancestry ≥1 close blood relative with: – breast cancer at age ≤50 y – triple-negative breast cancer at any age – male breast cancer at any age – ovarian cancer at any age – pancreatic cancer at any age – metastatic high- or very-high-risk group ≥2 close blood relatives with either breast or prostate cancer (any grade) at any age
High-risk, very high-risk, regional, or metastatic prostate cancer	Regardless of family history
Ashkenazi Jewish ancestry	
Family History of high-risk germline mutations (eg: BRCA1/2, Lynch mutation)	Should include MLH1, MSH2, MSH6, and PMS2 (for Lynch syndrome) and homologous recombination genes (BRCA1/2, ATM, PALB2, and CHEK2)
Intermediate-risk prostate cancer AND intraductal/cribriform histology OR Personal history of exocrine pancreatic cancer, breast cancer, colorectal, gastric, melanoma, pancreatic cancer, upper tract urothelial cancer, glioblastoma, biliary tract cancer, and small intestinal	

NCCN Guidelines. Prostate Cancer. V1.2023. www.nccn.org

NCCN Guidelines. Genetic/familial High-Risk Assessment: Breast, Ovarian, and Pancreatic V2.2023. www.nccn.org

Olaparib

ORIGINAL ARTICLE


Survival with Olaparib in Metastatic Castration-Resistant Prostate Cancer

Maha Hussain, M.D., Joaquin Mateo, M.D., Karim Fizazi, M.D., Fred Saad, M.D., Neal Shore, M.D., Shahneen Sandhu, M.D., Kim N. Chi, M.D., Oliver Sartor, M.D., Neeraj Agarwal, M.D., David Olmos, M.D., Antoine Thiery-Vuillemin, M.D., Przemyslaw Twardowski, M.D., <u>et al.</u>, for the PROfound Trial Investigators*

PROfound STUDY

PROfound STUDY DESIGN

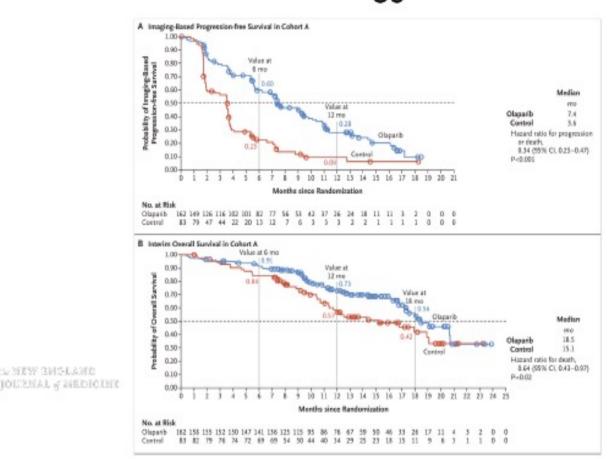
Measurable disease

Primary Endpoint

Radiographic progression-free survival (rPFS) in Cohort A (RECIST 1.1 & PCWG3 by BICR)

Key Secondary Endpoints

- rPFS in Cohorts A+B
- Confirmed radiographic objective response rate (ORR) in Cohort A
- •Time to pain progression (TTPP) in Cohort A
- Overall survival (OS) in Cohort A

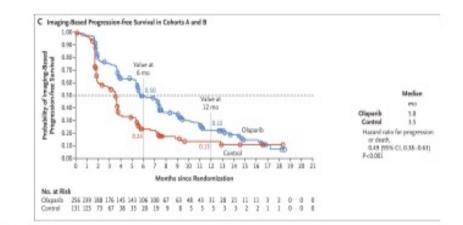

*An investigational Clinical Trial Assay, based on the FoundationOne® CDx next-generation sequencing test Developed in partnership with Foundation Medicine Inc, and used to prospectively select patients harboring alterations in BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D or RAD54L in their tumor tissue

> [‡]Physician's choice of either enzalutamide (160 mg qd) or abiraterone (1000 mg qd plus prednisone [5 mg bid]) BICR, blinded independent central review

Hussain, M et al. ESMO, 2019

Kaplan-Meier

Kaplan–Meier Estimates of Imaging-Based PFS and Interim OS


(金)新闻等 化间分化合材的

Olaparib

Olaparib for metastatic castrate-resistant prostate cancer (mCRPC)

B Cohorts A and B		
Subgroup	Hazard Ratio for Progress	size or Death (95% CI)
All patients		0.49 (0.38-0.63)
Previous taxane use		
Yes	-	0.39 (0.29-0.53)
No		0.77 (0.50-1.22)
Measurable disease at baseline		
Yes	-	0.41 (0.30-0.56)
No		0.64 (0.43-8.88)
Metastases at baseline		
Bare only	-	0.57 (0.15-8.94)
Viscent		0.42 (0.28-0.64)
Other		0.57 (0.37-8.90)
ECOG score at baseline		
0	-	0.67 (0.46-1.00)
1	-	0.45 (0.32-8.64)
2		0.31 (0.10-1.13)
Age at randomization		
d5 y		0.53 (0.34-0.85)
255 pr	•	0.52 (0.39-8.70)
Region		
Asia		0.67 (0.44-1.04)
Europe	-	0.48 (0.33-0.71)
North and South America		0.43 (0.26-0.73)
PSA at baseline		
≥Median	-	0.46 (0.33-0.65)
distant	-	041 (041 0.00)
Gene alteration		
SVCA1		0.41 (0.13-1.99)
BRCA2	-	0.31 (0.13-6.32)
A7M		1.04 (0.61-1.87)
CDR12		0.74 (0.44-1.31)
CHEK2		0.87 (0.23-4.13)
RRR282A		► 6.62 [1.41-46.43
84D54L	· · · · · · · · · · · · · · · · · · ·	0.35 (0.03-2.54)
60	6 825 100 4.00	16.00

FDA approval: deleterious or suspected deleterious germline or somatic HRR gene-mutated mCRPC, after treatment with enzalutamide or abiraterone

TRITON2

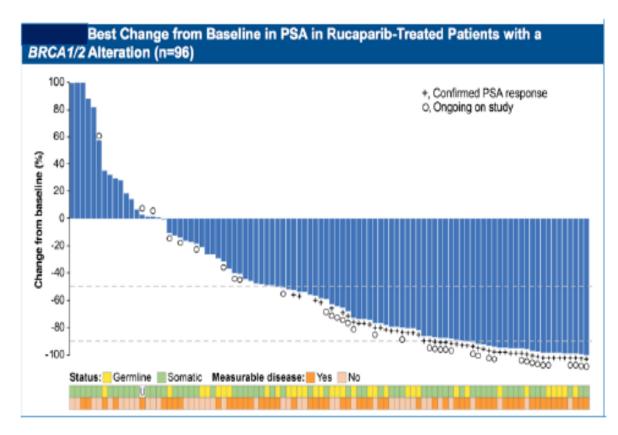
DDR genes				
BRCA1 BRCA2	ATM BARD1 BRIP1 CDK12	CHEK2 FANCA NBN PALB2	RAD51 RAD51B RAD51C RAD51D RAD54L	

Key eligibility criteria

- mCRPC
- Deleterious somatic or germline alteration in DDR gene
- Disease progression on AR-directed therapy (eg, abiraterone, enzalutamide, or apalutamide) for PC and 1 prior taxanebased chemotherapy for CRPC
- · ECOG PS 0 or 1
- No prior PARP inhibitor, mitoxantrone, cyclophosphamide, or platinum-based chemotherapy

Treatment 28-day cycles

Rucaparib 600 mg BID


- Turnour assessments every 8 weeks for 24 weeks, then every 12 weeks
- PSA assessments every 4 weeks

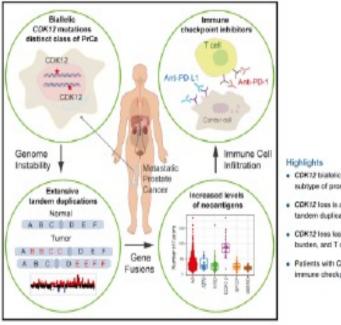
Treatment until radiographic progression or discontinuation for other reason

FDA breakthrough therapy designation for patients with BRCA1/2-mutated mCRPC who have received >=1 prior AR-directed therapy and a taxane based chemotherapy

Rucaparib

Phase II TRITON2: Rucaparib in mCRPC

MSI high prostate cancer


MSI High Prostate Cancer

- Approval of pembrolizumab
- Incidence
 - Localized PC ~2%
 - Autopsy series of mCRPC ~12%
 - · Pritchard et al., Nature Com 2014
 - Ongoing testing suggests <u>5-6%</u> of mCRPC

Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer

Yi-Mi Wu,^{1,2,20} Maroin Cleslik,^{1,2,20} Robert J. Lonigro,¹ Pankaj Vats,¹ Melissa A. Reimers,² Xuhong Cao,¹ Yu Ning,¹ Lisha Wang,¹ Lakahmi P. Kunju,^{1,2,4} Navonil de Sarkar,⁹ Elisabeth I. Heath,^{1,2} Jonathan Chou,⁸ Felix Y. Feng,^{8,0,10,13} Peter S. Nelson,^{3,12,13} Johann S. de Bono,^{14,13} Weiping Zou,^{12,29} Bruce Montgomery,^{12,17} Ajai Alva,^{1,2} PCF/SU2C International Prestate Cancer Dream Team, Dan R. Robinson,^{14,2} and Arul M. Chinnalyan^{1,2,4,10,18,21,9}

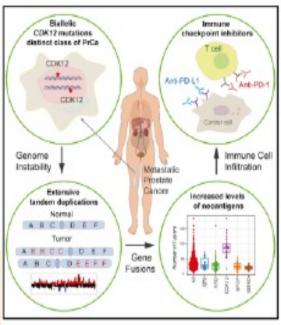
Graphical Abstract

- CDK12 bialetic inactivating mutations define a distinct subtype of prostale cancer
- CDK12 loss is associated with genomic instability and local tandem duplications
- CDK72 loss leads to increased gene fusions, neoentigen burden, and T cell infiltration
- Patients with CDK/2 mutant tumors may benefit from immune checkpoint inhibition

CDK12 inactivation

MSI High Prostate Cancer

- Approval of pembrolizumab
- Incidence
 - Localized PC ~2%
 - Autopsy series of mCRPC ~12%
 - Pritchard et al., Nature Com 2014
 - Ongoing testing suggests <u>5-</u> <u>6%</u> of mCRPC


Lemery et al., NEJM 2017

Pembrolizumab for high tumor mutational burden (2020) 10 mutations/megabase FDA Approval June 2020

Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer

YI-MI Wu, ^{1,2,20} Marcin Cleślik,^{1,2,39} Robert J. Lonigro,¹ Pankaj Vats,¹ Melissa A. Reimers,² Xuhong Cao,¹ Yu Ning,¹ Lisha Wang,¹ Lakshmi P. Kunju,^{1,2,4} Navonil de Sarkar,⁹ Elisabeth I. Heath,^{5,7} Jonathan Chou,⁵ Felix Y. Feng,^{5,0,16,11} Peter S. Nelson,^{5,12,13} Johann S. de Bono,^{54,35} Weiping Zou,^{1,2,36} Bruce Montgomery,^{12,37} Ajai Aixa,^{1,3} PCF/SU2C International Prostate Cancer Dream Team, Dan R. Robinson,^{1,2,7} and Arul M. Chinnaiyan^{1,2,4,16,18,21,8}

Graphical Abstract

Highlights

- CDK12 biallelic inactivating mutations define a distinct subtype of prostate cancer
- CDK12 loss is associated with genomic instability and local tandem duplications
- CDK12 loss loads to increased gene fusions, neoantigen burden, and T cell infiltration
- Patients with CDKY2 mutant tumors may benefit from immune checkpoint inhibition

Future Directions

Future Directions

- mpMRI screening in men be used for diagnosis and monitoring of prostate cancer
- Imaging may facilitate detection of prostate cancer below conventional PSA thresholds particularly in a high genetic risk setting
- New combination strategies in mCRPC

Acknowledgements

THANK YOU

William D. Figg PharmD James L. Gulley MD, PhD Ravi A. Madan MD Lisa M. Cordes PharmD Anna Couvillon, CRNP Katherine Lee-Wisdom, RN Amy Hankin, PA-C Monique Nikki Williams, CRNP Moniquea Smith, PCC Baris Turkbey, MD Pete Choyke, MD Yolanda McKinney, RN Maria Merino, MD Antoun Toubaji, MD Peter Pinto, MD Michele Reed, RN

The Genitourinary Malignancies Branch, The Center for Immuno-Oncology, and the Molecular Imaging Branch All Clinical Trial Participants and their Families

68