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Agenda

1. Introduction

2. New CHLA datasets 

contributed to enhance CCDI

o MethylSeq

o Digital pathology

3. Integrated diagnostics

o AI-assisted strategies

4. Future directions

5. Q&A
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Introduction
James Amatruda, M.D., Ph.D.

cancer.gov/CCDI #data4childhoodcancer
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Pediatric Cancer Program at CHLA and University of 
Southern California

▪ Largest pediatric hematology-oncology program in the 

Western U.S.

▪ 2,500 new patients and 40,000 outpatient visits in 2024

▪ 257 active clinical trials

▪ Racial and ethnic background of our patients:

o White-Hispanic (65%)

o Non-Hispanic White (17%)

o Black (5%)

o Asian (4%)

o Pacific Islander/Native American/Other (9%)

▪ Two thirds of CBDI cancer patients are in the lowest 40% 

of socio-economic status

cancer.gov/CCDI #data4childhoodcancer
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CHLA Cancer and Blood Disease Institute and Center for 
Personalized Medicine

Leukemia

Lymphoma
CNS

Neuroblastoma

Bone

Soft tissue

Retinoblastoma

Germ cell tumor
Wilms tumorLiver Other

Tumors undergo molecular characterization 

with CAP-CLIA certified tests:

▪ Chromosomal microarray

▪ OncoKids (203 cancer genes and 

oncogenic fusion genes)

Also available:

▪ RNASeq-Gene Fusions

▪ VMD4Kids (Mutations relevant to vascular 

malformations)

▪ Cancer Predisposition Panel

▪ LBSeq4Kids liquid biopsy copy number and 

targeted sequencing panel (TSP)

▪ Methylation Array for brain tumors

cancer.gov/CCDI #data4childhoodcancer
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phs002518 dataset (2022)

▪ Race/ethnicity

▪ Sex

▪ Diagnosis

▪ Anatomic site

▪ Age at 

diagnosis

▪ Treatment type

▪ Survival

▪ OncoKids 

results
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Methylation Sequencing
David Buckley, Ph.D.

cancer.gov/CCDI #data4childhoodcancer
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MethylSeq Sample Summary

▪ Total patient samples: 170 (138 fresh frozen, 32 

FFPE), which have matching OncoKids data 

deposited on CCDI – all samples sequenced by 

methylation profiling

▪ Dataset well-suited for benchmarking methylation-

based CNS classification models

▪ Sequencing-based methylation profiling captures 

substantially more CpG loci than array platforms; 

EPIC v2 captures only ~3% of CpGs, ignoring the 

vast majority of the methylome

▪ Sequencing-based methylation profiling is now cost-

competitive (and falling fast)

▪ No batching constraints – each sample can run 

independently

▪ Whole-genome (WG)-EMSeq enables high-

resolution copy-number analysis from the same data

cancer.gov/CCDI #data4childhoodcancer



10

Twist vs. WG-EMSeq Sequencing Depth

▪ Pilot study of 10 paired (Twist & WG-EMSeq) samples processed and 

sequenced per manufacturer-specified protocol

▪ Total CpGs covered higher in WG-EMSeq compared to Twist; coverage in 

Twist target regions higher than WG-EMSeq; these results confirm that the two 

approaches trade breadth for depth, which is important context when 

interpreting downstream classification performance

cancer.gov/CCDI #data4childhoodcancer
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Methylation Profile Clustering 
(WG-EMSeq & Twist)

▪ Beta values used to project samples 

on UMAP generated from publicly 

available array methylation profiles of 

corresponding tumor types (high-

grade gliomas, choroid plexus 

tumors, and nerve sheath tumors)

▪ Twist and WG-EMSeq samples 

clustered according to expected 

tumor type, regardless of profiling 

platform, indicating that both 

sequencing approaches preserve 

diagnostically relevant methylation 

signal.
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Array & WG-EMSeq Genome-wide Copy Number Profiles
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Methylation Profile Clustering WG-EMSeq

cancer.gov/CCDI #data4childhoodcancer
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WG-EMSeq NNet Classification

▪ 163 WG-EMSeq samples 

used for concordance analysis

▪ One-versus-rest (OvR) AUC = 

0.957

▪ 144/163 (88%) ‘matched’ to a 

methylation family (score 

above threshold = 0.75)

▪ Sensitivity = 0.90, specificity = 

0.99 in matched samples at 

the family level

▪ 71% of samples achieved a 

class score above threshold; 

sensitivity = 0.922, specificity 

= 0.985

cancer.gov/CCDI #data4childhoodcancer
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Digital Pathology and 

Integrated Diagnostics
Jennifer Cotter, M.D.

cancer.gov/CCDI #data4childhoodcancer
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Digital Pathology: Whole Slide Imaging

cancer.gov/CCDI #data4childhoodcancer
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WSI Dataset partnered to OncoKids Dataset (phs002518)

▪ >700 cancer cases from CHLA 

screened and digitized

▪ Key slide for each case was selected by 

pathologist review to be contributed to 

the NCI Imaging Data Commons

▪ H&E whole slide image for any available 

case linked to OncoKids and WG-

EMSeq data via common identifiers

cancer.gov/CCDI #data4childhoodcancer
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Adoption of Digital Pathology Has Been Slow

▪ Many institutions have had the capacity to scan 

slides into WSI for years, but fewer have fully 

transitioned to digital workflows for operational 

reasons

▪ Staffing

▪ Accurate data entry/labeling 

▪ Data storage costs (one WSI can be >1 GB)

▪ Automation of scanning, quality checking, and 

data organization will drive more labs to digital 

format in the next few years

▪ Delay to digital transition in pathology has limited 

progress in development of machine learning/AI 

tools for WSI, but early work is promising

cancer.gov/CCDI #data4childhoodcancer
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Slide Quality Importance

cancer.gov/CCDI #data4childhoodcancer

Out of focus (scratched 

plastic coverslip)

(top): Poorly prepared H&E scan

(bottom): Properly prepared H&E scan

In focus images; 20x vs. 

40x magnification
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▪ Tile-based computer vision approach

▪ Levels of predictions:

▪ OncoTree family (e.g., CPT, EMBRY, DIFG)

▪ Tumor subclass (e.g., PDIFHG, PDIFLG)

Families/classes able to be predicted by WSI classifier

PDIFHG vs. 
PDIFLG (diffuse 
high grade vs. 
diffuse low 
grade)

Avg AUC = 0.99

Avg AUC = 0.92

Prediction of 
OncoTree family

Unpublished data

Whole Slide Image Classification
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Integrated Diagnostic Approach

▪ Morphology alone may not be 

sufficient to classify a tumor, but 

WSI contain a large and complex 

set of visual data

▪ Molecular profile drives

▪ Classification

▪ Prognostication

▪ Treatment options

▪ Assembling study cohorts benefits 

from more comprehensive case 

characterization

▪ Adaptability to future classification 

changes is key

WHO 2007 

(4th ed.)

WHO 2016 

(4th ed., revised)

WHO 2021

(5th ed.)

Glioblastoma Glioblastoma, IDH-mutant Astrocytoma, IDH-mutant

Glioblastoma
Diffuse midline glioma,

H3 K27M-mutant

Diffuse midline glioma,

H3 K27M-altered

Glioblastoma
Glioblastoma,

IDH-wildtype

Diffuse hemispheric glioma,

H3 G34-mutant

Glioblastoma
Glioblastoma,

IDH-wildtype
Infant-type hemispheric glioma
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AI-driven Integrated Diagnostics
Alexander Markowitz, Ph.D.

cancer.gov/CCDI #data4childhoodcancer
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Current Challenges of Integrated Reporting

▪ Labor intensive process requiring 

coordination of clinical and 

bioinformatics teams

▪ Classifications can change over time 

as new insights are generated and 

new subtypes are discovered

▪ Retrospective classifications is 

performed manual ad-hoc basis

▪ Data silos inhibit automation of 

integrating new results when 

reviewing past cases

cancer.gov/CCDI #data4childhoodcancer
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Vision and Motivation for AI-driven Integrated Diagnostics

cancer.gov/CCDI #data4childhoodcancer

▪ Develop AI solutions that provide 

trustworthy outputs when performing 

integrated diagnostics and 

classification tasks

▪ Motivated by:

1. Promising ML/AI tools:

o Digital Pathology

o Variant Classification

o Methylation Classification

2. Clinical multi-modal datasets (CCDI)
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Demo Case: Using AI-integrated Tools to Update a 
Classification

Original

▪ CCDI Participant ID: R96341124 

(phs002518)

▪ Descriptive Classification:

▪ ICD; Glioma, malignant

▪ Data Sources:

▪ Pathology report

Update

▪ CCDI Participant ID: R96341124 

(phs002518)

▪ AI-driven Classification:

▪ WHO CNS5; Diffuse Midline 
Glioma, H3 K27-altered

▪ Data Sources:

▪ OncoKids Cancer Panel (BAM)

▪ Digital Pathology WSI (new*)

cancer.gov/CCDI #data4childhoodcancer
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WHO Classification Logic Schema

Precise tumor classification involves the accumulation of diagnostic test 

results. Classification systems, such as the WHO CNS5, provide logical 

schemas to help deduce a classification.

cancer.gov/CCDI #data4childhoodcancer
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Combination of Custom and Commercial Classification Tools 
Can Be Used to Evaluate Criteria

▪ Radiology/Imaging:

o Location identification

▪ Digital Pathology:

o Tumor Classification

o IHC Scoring

▪ DNA Variant Classification:

o Golden Helix Varseq

▪ Methylation Classification:

o EMSeq, Methyl Array

cancer.gov/CCDI #data4childhoodcancer
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AI-driven integrated reporting

▪ Report provides a recommended 

diagnostic classification:

o Input WSI Images

o OncoKids Cancer Panel

▪ Itemized list of whether the sample 

met each criterion of the diagnosis.

o When data is not provided, the 

status is listed as uncertain

▪ Scoring of diagnosis is weighted 

among the essential and desirable 

criteria

#data4childhoodcancer
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AI-driven Integrated Report Presents Evidence and Rationale 
For Its Classification

Integrated report provides transparent 

access to:

1. Narrative diagnostic summary

2. ML predictions and scores

3. Underlying raw image and 

genomic data (via footnoted 

citations)
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Benefits of AI-assisted Integrated Classification 

▪ Improved accuracy, consistency, and transparency in case 
classifications

▪ This approach:

o Detects misclassified or edge-cases

o Provides quantitative confidence to support decisions

o Enables transparent review and future reinterpretation

cancer.gov/CCDI #data4childhoodcancer
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Q&A

cancer.gov/CCDI #data4childhoodcancer
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How You Can Engage with CCDI

Learn about CCDI and subscribe to our monthly newsletter:

cancer.gov/CCDI

Access CCDI data and resources:

ccdi.cancer.gov

Questions? Email us at:

NCIChildhoodCancerDataInitiative@mail.nih.gov

cancer.gov/CCDI #data4childhoodcancer



cancer.gov                                   cancer.gov/espanol

Thank you for attending!
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