Self-Study Module 3f:
Constipation
Abstract

Many symptoms and syndromes are commonly encountered in patients with cancer. This module first presents general approaches to symptom management, followed by management of the specific symptoms and syndromes, including: anorexia/cachexia, anxiety, constipation, depression, diarrhea, fatigue, insomnia, menopausal symptoms and sexual health, mucositis, nausea and vomiting, and skin problems.

Any symptom can be debilitating and prevent the patient and family from achieving goals that are important to them. As with other aspects of medicine, tailored management is based on the underlying etiology and pathophysiology. When several symptoms occur together, they can be interrelated and management can be complex.

Introduction

Constipation refers to stools that are decreased in frequency and may be difficult to evacuate.

There are a number of possible causes of constipation: congenital, myopathic, mechanical, endocrine, metabolic, neurological, psychological, and medication related. There are rare causes such as congenital aganglionosis, myopathy, or anal dyssynergia where pelvic floor muscles contract rather than relax with defecation. However, acquired causes of constipation are much more common. Endocrine/metabolic causes include diabetes, hypothyroidism, and hypercalcemia. As psychologic conditions such as depression have been linked to an increased incidence of constipation, a comprehensive assessment is required. (Ref. 1) Nerve function can be perturbed by diseases such as Parkinson’s, direct invasion by tumor, or paraneoplastic syndromes. Intrinsic or extrinsic luminal compression from masses can mechanically lead to constipation. Finally, medications such as calcium channel blockers, anticholinergic agents, antiserotonergic agents, and opioids are prime mediators of constipation.

At its least, constipation is uncomfortable and detracts from quality of life. At its worst, it can be a primary source of considerable suffering. It can cause nausea, emesis, abdominal pain, delirium, and urinary retention. The volume of gas and stool may synergize with other space-occupying processes such as ascites or tumor to worsen pain. In fact, the pain of luminal distention can be one of the worst pains people experience and is highly opioid resistant. The synergism of constipation with other abdominal processes can limit diaphragmatic excursion, thus worsening dyspnea. Furthermore, constipation can evolve into impaction. At its worst, it can lead to bowel obstruction.
Prevalence

In the general population, the baseline prevalence of constipation is high and increases with age. In advanced medical illness, such as cancer, the combination of underlying disease and medication often lead to a dramatic increase in occurrence. For example, when opioids are used for pain and/or dyspnea, prevalence of constipation approaches 90%. (Ref. 2)

Prognosis

Constipation itself has no definite prognostic implications. Sequelae from constipation (i.e., aspiration pneumonia from emesis or impaction) can limit prognosis. Management is virtually always possible.

Case

Review the case below, and keep it in mind as you progress through the module. How would you approach the assessment of this patient? What interventions might be appropriate?

M.R. is a 28-year-old woman with pseudomyxoma peritonei who developed subacute onset of increased abdominal pain described as difficult to localize, sharp, and 10/10 with intermittent nausea. She had been on long-acting morphine 60 mg PO q 12 h and ondansetron 4 mg PO q 8 h PRN nausea. She had been eating, had flatus, and had been having a daily soft bowel movement. She denied fevers or chills. There was no other significant past medical history and review of systems was otherwise negative. On exam, bowel sounds were present but diminished. There was gross abdominal distention and dullness to percussion. There was no shifting dullness. There was diffuse abdominal tenderness to palpation without rebound. Rectal exam revealed normal sphincter tone and soft, clay like stool in the vault. To symptomatically treat her pain, morphine was given parenterally and incrementally titrated to 18 mg/hour (equivalent to approximately morphine 1,300 mg PO per day) with only moderate control of her pain. A radiograph of the abdomen showed stool throughout her colon. After aggressive bisacodyl suppositories, sodium phosphate enemas, and oral polyethylene glycol, the patient had multiple bowel movements and her pain became controlled on her previous baseline oral opioid regimen.
Pathophysiology

The pathophysiology of the gastrointestinal tract leading to constipation is complex and is still being elucidated. Normal gastrointestinal function is mediated through endocrine, paracrine, autocrine, and neuronal forms of cellular communication. The gastrointestinal tract has its own intrinsic nervous system in the form of the myenteric and submucosal plexi. Additionally, there is extrinsic input from the central nervous system via the autonomic nervous system. These inputs mediate fight or flight responses and other emotional factors that are known to affect bowel function. Furthermore, the gastrointestinal tract has its own pacemaker cells, the interstitial cells of Cajal, which generate rhythmic electrical activity. Complex communication and coordination is required to produce segmental contractions that serve to mix luminal contents in place or to produce peristaltic contractions that move luminal contents forward. Many agents mediate this communication, including peptides like vasoactive intestinal peptide, small molecules like nitric oxide, and modified amino acids such as serotonin. Over 80% of the body’s serotonin (5-HT) resides in the gastrointestinal tract and over 21 serotonin receptor subtypes subserve its function. The 5-HT4 receptor subtype is known to play a key role in intestinal motility. Finally, acetylcholine is the neurotransmitter ultimately responsible for smooth muscle cell contraction.

The gastrocolic reflex is an example of the integration of this complex communication. Food contents trigger the release of transmitters such as cholecystokinin that result in a wave of communication inducing forward colonic peristalsis. Local stimulation of the colon can trigger peristalsis as well. Luminal distention causes enterochromaffin cells lining the gastrointestinal tract to release serotonin that in turn leads to a cascade of messengers ending in forward peristalsis. In most patients this predictably occurs 1 to 2 hours after they wake and eat breakfast.

Opioids interact with the gastrointestinal tract via receptors (mu and kappa subtypes) that are located throughout its length. (Ref. 3) Immunohistochemical studies in animals identify the location of receptors on enteric nerves and interstitial pacemaker cells. Clinically used opioids are predominantly mu agonists and contribute to constipation in two ways: 1) gastrointestinal secretions are diminished, and 2) productive forward peristalsis is reduced. (Ref. 4)

Disruption of this complex orchestration of communication at the level of pacemaker cells, nerves, muscle, or transmitters can lead to constipation.

Assessment

It is imperative to ask about bowel function. Patients may not initiate discussion on this topic. There is a range of normal function, so it is necessary to establish what is normal for the patient and then put current function into that context.
The Rome II criteria represent a definition of constipation originally derived for research purposes. They are:

- Straining with defecation
- Hard stool
- A sensation of incomplete evacuation
- A sensation of anorectal obstruction
- Fewer than three bowel movements/week

A diagnosis of constipation is made when at least 2 of the above symptoms are present for 12 weeks (may be noncontiguous, but in 1 year). These criteria highlight physical characteristics of stool, frequency of bowel movements, and subjective perceptions of distress as important to the definition, as well as a component of chronicity.

Patients with advanced medical illness may define themselves as being constipated without formally meeting this definition, especially the chronicity component. A patient may feel constipated even after having a bowel movement because of the burden of stool remaining in the gastrointestinal tract. Therefore, in advanced medical illness, the definition needs to be individualized.

A presentation of diarrhea may lead to a diagnosis of fecal impaction. Liquid stool from the right colon or stool that has been reliquified by bacterial action may leak around the hard stool of fecal impaction and mimic the presentation of diarrhea (particularly if bowel tone is decreased secondary to overdistention with hard stool). A careful history may reveal that such a patient had been experiencing constipation before the onset of loose stools.

After taking a careful history, perform a physical exam. Assess for stigmata of hypothyroidism. During the abdominal exam assess for bowel sounds, tympanic distention, ascites, and masses that could be tumors or stool. A rectal exam will provide neurologic information by assessing sphincter tone. Moreover, if stool is present, information about consistency can be gleaned and a low impaction that requires manual disimpaction can be detected.

Laboratory assessment may be useful to look for hypothyroidism, diabetes, dehydration, hypercalcemia, or other electrolyte abnormalities. A flat plate of the abdomen may help to assess for obstruction or colonic stool load. Be sure to specifically query the radiologist for an estimation of stool content, and look at the films yourself.
Management

This module focuses on symptomatic management of constipation. It will not detail the treatment of underlying causes, as these can be found in many textbooks and journal articles. (Ref. 5) (Ref. 6) (Ref. 7)

Toileting strategies

It is useful to synergize pharmacologic interventions with normal physiologic processes. To improve outcomes, time interventions with a patient’s normal toileting schedule and take advantage of the gastrocolic reflex after meals (usually 8:00–9:00 am).

Fiber/fluids

In general, a greater volume of stool in the lumen stretches the colon and luminal stretch triggers peristalsis. Hydration and high dietary fiber content are usually advantageous. Consider a dosing regimen of:

- **Psyllium**, 15 ml daily, mix with at least 240 ml of water

In patients with advanced medical illness, when hydration is often suboptimal, avoid added dietary fiber as it may actually worsen constipation.

Activity

Physical activity has been shown to correlate with an improvement in constipation. (Ref. 8)

Stool softeners

Stool softeners (e.g., docusate sodium) are detergents that break up the fat content of stool, allowing water to penetrate more effectively. As a result, stool stays moister and softer. Stool softeners may also increase luminal fluid secretion. (Ref. 9) They do not affect peristalsis. A standard dosing regimen is:

- **Sodium** or **calcium docusate** 100-200 mg PO daily to tid

Stimulant laxatives

Stimulant laxatives such as prune juice, senna, and bisacodyl predominantly increase intestinal propulsive activity through unknown mechanisms. Senna is a prodrug and becomes active only upon reaching the colon, where it is metabolized by bacteria. Bisacodyl is activated in the small intestine and may cause more cramping. Dosing options include:
- **Prune juice** 120-240 ml PO daily to bid; to reduce the sweetness, mix with a little lemon juice
- **Senna** 1-3 tablets PO daily to tid; also available as a tea
- **Bisacodyl**, 5-10 mg PO, PR daily to tid

Osmotic agents

Osmotic agents (e.g., magnesium salts, lactulose, sorbitol, and polyethylene glycol) pull water into the bowel lumen along with other luminal contents. This helps keep the stool softer and more voluminous. Extensive use of magnesium-containing osmotics can lead to magnesium toxicity. Some patients find the disaccharide osmotics, such as lactulose and sorbitol, to be unpalatable. Moreover, when they reach the colon, bacteria can metabolize them, leading to gas production and bloating. Studies have shown lactulose and sorbitol to be equally efficacious; however, sorbitol is less expensive. (Ref. 10)

Polyethylene glycol exists both as an oral liquid and a tasteless, odorless powder. The powder can be mixed with foods or liquids to increase palatability. It is not metabolized by colonic flora and therefore may cause less gas and bloating. Compared with lactulose, studies have shown polyethylene glycol to be more effective and better tolerated; (Ref. 11) (Ref. 12) however, it is more expensive. Dosing options include:

- **Magnesium hydroxide**, 15-30 ml PO daily to qid routinely or PRN
- **Polyethylene glycol**, 15-30 ml PO daily to bid routinely or PRN
- **Lactulose**, 15-60 ml PO daily to tid routinely or PRN
- **Sorbitol**, 15-60 ml PO daily to tid routinely or PRN
- **Magnesium citrate**, 50-150 ml PO daily to tid PRN

Lubricants

Lubricating suppositories and enemas work mechanically to soften the leading edge of hard, dry stool. Examples include glycerin suppositories, oil enemas, and sodium phosphate small-volume enemas. Large-volume enemas, in addition to lubricating and softening the distal leading edge, can cause luminal distention and trigger peristalsis and defecation. Dosing options include:

- **Glycerin suppository**, 1 PR daily to bid PRN
- **Phosphate enema**, 1 PR daily to bid PRN
- **Oil enema**, mineral oil 15-30 ml PR, retain for as long as possible; followed by 500-1,000 ml tap water as tolerated daily to bid PRN
- **Tap water enema**, 500-1,000 ml tap water as tolerated daily to bid PRN
Anal topical anesthetics

Patients experiencing significant anal/rectal pain from hemorrhoids, muscle spasm, fissures, or impaction may benefit from a topical antiinflammatory and/or anesthetic applied to the involved areas routinely or before each bowel movement to reduce inflammation, pain, and pruritus. A standard dosing regimen is:

- Lidocaine, 2-5% spray or jelly PRN; maximum 200 mg/24 hour.

Miscellaneous agents

Given acetylcholine's key role in smooth muscle contraction, neostigmine, an acetylcholinesterase inhibitor, has been used in acute colonic pseudo-obstruction (i.e., Ogilvie's syndrome). (Ref. 13) Results were impressive but systemic adverse effects of bradycardia and increased respiratory secretions are a concern. Given serotonin's role in gastrointestinal tract modulation and our increasing understanding of the multiple subtypes of serotonin receptors, several serotonergic agents are being studied. The 5-HT4 agonist tegaserod has been approved by the Food and Drug Administration for constipation-predominant irritable bowel syndrome. (Ref. 14) Another 5-HT4 agonist, prucalopride, has been studied in Europe and found to be effective for constipation. (Ref. 15) The role of these agents in a population with advanced medical illness remains to be seen.

Constipation from Opioids

All opioids cause constipation, as discussed above. Whereas pharmacologic tolerance develops to many of the adverse effects of opioids, it never seems to develop to the constipating effects. Dietary interventions alone (e.g., fiber and fluids) are usually not sufficient to counteract constipation. Bulk-forming agents (e.g., psyllium) may cause worsened constipation in a patient who cannot drink sufficient fluid. Most experts recommend a combination of a stimulant laxative (e.g., senna) and a softener (e.g., docusate) to manage the condition. Prokinetic medications such as metoclopramide have been advocated for refractory cases. A standard dosing option is:

- Metoclopramide, 5-20 mg PO, SC, IV q 6 h.

Systemically active opioid antagonists such as naltrexone and naloxone have been shown to be useful, but they reverse the analgesic effects of opioids as well. Therefore, peripherally acting opioid antagonists that do not cross the blood-brain barrier are ideal. Two such agents, alvimopan and methylnaltrexone, are undergoing clinical trials with encouraging preliminary results. (Ref. 16) (Ref. 17) (Ref. 18) Both are predominantly mu-receptor antagonists.
In lieu of the availability of these agents, prevention and early detection are much easier than management of opioid-induced constipation. When an opioid is initially prescribed, the patient should be started on a combination of a stool softener and stimulant laxative at the same time. Doses are titrated to effect and osmotic laxatives and enemas are added as needed.

Summary

Constipation is a common condition that causes significant morbidity. Reversible causes can be removed if identified. The complex control of laxation is being elucidated and new agents are being developed based on this knowledge. Currently, there are multiple categories of pharmacologic agents that work in different ways that can be successfully synergized to control constipation. Using these agents in concert with physiological processes such as the gastrocolic reflex and daily patterns of bowel movement can further enhance success. It remains true that the easiest and best treatment for constipation is to prevent it in the first place.

Key Take-Home Points

1. Assess what is normal for the patient before deciding on a treatment plan.
2. Titrate agents to effect before adding other agents.
3. Combine agents with different mechanisms of action.

Pearls

1. Titrate senna to effect; do not be limited by over-the-counter label warnings on maximum dose.
2. Don’t wait for the patient to bring up the symptom; ask about it.
3. Make a partnership with your patient and the family caregiver; draw them into the interdisciplinary team and foster their active participation in the care plan.

Pitfall

1. Forgetting proactive management of constipation for patients on opioids, which can be disastrous.
Appendix: Constipation Medication Table

Constipation Medication Table

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Trade Name(s)</th>
<th>Dosage Forms/Time C<sub>max</sub></th>
<th>Elimination t<sub>1/2</sub></th>
<th>Route of Elimination</th>
<th>Adult Doses</th>
<th>Pediatric Doses</th>
<th>Adverse Effects</th>
<th>Common Interactions</th>
</tr>
</thead>
</table>
| Aluminum or Magnesium Hydroxide Antacids | Many tabs and liquids available over the counter | Onset of action: dependent upon the ability of the antacid to solubilize in the stomach and react with the hydrochloric acid | Duration of action in fasting patients may range from 20 to 60 minutes When given 1 hr after meals, the acid-neutralizing effect may be prolonged up to 3 hr | NA | 15-30 ml or 1-2 tabs PO q 2 h PRN (avoid Mg if renal failure present; use Al) | infant: 2.5-5 ml PO q 1-2 h child: 5-15 ml PO pc and nightly | • alkalosis
• Mg can > diarrhea
• Al can > constipation
• Hypophosphatemia | • direct binding or elevated gastric pH may alter drug absorption, i.e., ACE inhibitors, benzodiazepines, cephalosporins, chlorpromazine, histamine H₂ receptor antagonists, corticosteroids, digoxin, hypoglycemics, PO iron, isoniazid, ketoconazole, metronidazole, nitrofurantoin, NSAIDs, quinidine, salicylates, phenytoin, tetracycline, theophyllines, valproic acid, vitamins C, D |
Constipation (laxatives)

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Trade Name(s)</th>
<th>Dosage Forms/Time C<sub>max</sub></th>
<th>Elimination t<sub>1/2</sub></th>
<th>Route of Elimination</th>
<th>Adult Doses</th>
<th>Pediatric Doses</th>
<th>Adverse Effects</th>
<th>Common Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bisacodyl Laxative</td>
<td>Various; Dulcolax<sup>®</sup> is an example:</td>
<td>Initial response: PO: 6-12 hr PR: 15-60 minutes</td>
<td>NA</td>
<td>Renal excretion: minimal Feces: extensive</td>
<td>5-10 mg PO/PR daily, tid</td>
<td>5-10 mg PR or 0.3 mg/kg PO PRN</td>
<td>• diarrhea • cramps • dehydration • electrolyte depletion • nausea/vomiting</td>
<td>• none significant</td>
</tr>
<tr>
<td>Docusate sodium or calcium</td>
<td>Various; Colace<sup>®</sup>, Surfak<sup>®</sup> are examples: caps, tabs: 50, 100, 240, 250 mg syrup: 20 mg/5 ml, 50 mg/5 ml drops: 10 mg/ml</td>
<td>Initial response: PO: 1-3 days</td>
<td>NA</td>
<td>Excreted in bile/feces</td>
<td>100-200 mg PO daily, tid</td>
<td>5 mg/kg/24h PO as a single daily dose</td>
<td>• mild abdominal cramping • bitter taste</td>
<td>• mineral oil</td>
</tr>
<tr>
<td>Glycerin Contact irritant laxative</td>
<td>Various; supp: 96% glycerin</td>
<td>Initial response: PR: 15-30 minutes</td>
<td>30-45 minutes</td>
<td>Liver metabolism: 80% Renal excretion: 10%-20%</td>
<td>1 supp PR daily, bid</td>
<td>½-1 supp PR PRN</td>
<td>• rectal irritation</td>
<td>• none significant</td>
</tr>
<tr>
<td>Lactulose Osmotic laxative</td>
<td>Various; syrup: 10 g/15 ml</td>
<td>Initial response: PO: 24-48 hr</td>
<td>NA</td>
<td>Colon: extensive: lactulose is metabolized by colonic bacteria Renal excretion: 3%</td>
<td>15-60 ml PO daily, tid</td>
<td>5-10 ml PO once daily</td>
<td>• flatulence • cramps • nausea</td>
<td>• antibiotics • PO neomycin • antacids</td>
</tr>
</tbody>
</table>
Constipation (laxatives)

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Trade Name(s)</th>
<th>Dosage Forms/ Time C\text{max}</th>
<th>Elimination t\text{1/2}</th>
<th>Route of Elimination</th>
<th>Adult Doses</th>
<th>Pediatric Doses</th>
<th>Adverse Effects</th>
<th>Common Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium citrate</td>
<td>Various; Citromag® is an example: PO solution: 168 mEq mg/240 ml</td>
<td>Initial response: PO: 0.5-3 hr</td>
<td>NA</td>
<td>NA</td>
<td>50-150 ml PO daily, tid (not recommended)</td>
<td>4 ml/kg PO</td>
<td>• diarrhea</td>
<td>• none significant</td>
</tr>
<tr>
<td>Magnesium hydroxide</td>
<td>Phillips’ Milk of Magnesia®: liquid: 400 mg/5 ml tab: 311 mg</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>15-30 ml PO daily, qid PRN</td>
<td>no information</td>
<td>• anal leakage</td>
<td>• docusate salts</td>
</tr>
<tr>
<td>Mineral Oil</td>
<td>Various</td>
<td>Initial response: PO: 6-8 hr PR: 5-15 minutes</td>
<td>NA</td>
<td>Not absorbed</td>
<td>15-45 ml PO daily, bid</td>
<td>1 ml/kg PO nightly</td>
<td>• nausea</td>
<td>• fat-soluble vitamins (A, E, D, K)</td>
</tr>
</tbody>
</table>
Constipation (laxatives)

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Trade Name(s)</th>
<th>Dosage Forms/Time C_{max}</th>
<th>Elimination $t_{1/2}$</th>
<th>Route of Elimination</th>
<th>Adult Doses</th>
<th>Pediatric Doses</th>
<th>Adverse Effects</th>
<th>Common Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psyllium</td>
<td>Various; Metamucil® is an example: fiber wafers: 3.4 g, unflavored powder: 7 g/tsp, orange powder: 3.4 g/2 tsp</td>
<td>Not absorbed Initial response: PO: 12-24 hr (up to 3 days)</td>
<td>NA</td>
<td>Not absorbed</td>
<td>1 packet (10 ml) daily, tid, or 1 tsp unflavored powder (2 of flavored) PO daily, or 2 wafers PO daily (must mix with at least 240 ml of water)</td>
<td>¼-½ of adult dose</td>
<td>• ensure good fluid intake, dehydration will worsen constipation • hypersensitivity</td>
<td>none significant</td>
</tr>
<tr>
<td>Sennosides</td>
<td>Various; Senokot® is an example: tab: 8.6 mg, sup: 30 mg, syrup: 1.7 mg/ml granules: 15 mg/tsp</td>
<td>Initial response: PO: 6-12 hr PR: 0.5-2 hr</td>
<td>NA</td>
<td>Fecal and/or renal</td>
<td>1-2 tabs PO daily, tid (available combined with docusate)</td>
<td>3-10 ml of Senokot syrup PO bid</td>
<td>• nausea • abdominal cramps</td>
<td>none significant</td>
</tr>
<tr>
<td>Sodium phosphate</td>
<td>Various; Fleet Enema® is an example</td>
<td>Initial response: PR: 0.5-3 hr</td>
<td>NA</td>
<td>NA</td>
<td>1 enema PR daily, bid</td>
<td>one pediatric or adult Fleet enema PRN</td>
<td>• rectal irritation • abdominal cramps</td>
<td>none significant</td>
</tr>
</tbody>
</table>
Constipation (laxatives)

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Trade Name(s)</th>
<th>Dosage Forms/Time C<sub>max</sub></th>
<th>Elimination t<sub>1/2</sub></th>
<th>Route of Elimination</th>
<th>Adult Doses</th>
<th>Pediatric Doses</th>
<th>Adverse Effects</th>
<th>Common Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorbitol Osmotic laxative</td>
<td>Various; syrup: 10 g/15 ml</td>
<td>Initial response: PO: 0.5-3 hr</td>
<td>NA</td>
<td>Liver metabolism: to fructose</td>
<td>15-60 ml PO daily, tid</td>
<td>5-10 ml PO daily</td>
<td>flatulence, cramps, nausea</td>
<td>antibiotics, PO neomycin, antacids</td>
</tr>
</tbody>
</table>
Module 3f: Constipation

A prospective study of 498 hospice inpatients with advanced cancer showed that laxatives were required by 87% of patients taking strong oral opioids, 74% of those on weak opioids, and 64% of those not receiving opioid analgesia. Opioids accounted for about one-quarter of the constipation found in terminally ill cancer patients in a hospice.

Therapy of constipation is based on identification and management of underlying causes combined with symptomatic treatment. A working knowledge of bowel physiology and laxative pharmacology forms the foundation for this approach.

A review of the assessment and management of constipation and diarrhea is provided.

Numerous neurons expressing mu receptor-like proteins were found in the submucosal plexus with comparatively few in the myenteric plexus. In contrast, a higher number of neurons expressing kappa receptor-like immunoreactivity were visualized in the myenteric plexus, with a small number in the submucosal plexus.

In recent years, opioid mechanism and sites of action in exerting an antidiarrheal effect have been studied intensely. Attempts have been made to propose the general mode of action. While there are numerous similarities in the general effects of opioids on motility, fluid secretion, and neuroeffector transmission, the differences between species, in some cases, can be remarkable.

10 Garvey M, Noyes R Jr, Yates W. Frequency of constipation in major depression: Relationship to other clinical variables. Psychosomatics. 1990;31(2):204-206. PMID: 2330403.

A semistructured interview that evaluates 70 clinical variables, including constipation, was administered to 170 patients with major depression. Twenty-seven percent of the patients had depression-associated constipation. Constipation was not associated with any other clinical variable.

An intestinal perfusion technique has been used to investigate the mechanism of action of the laxative, dioctyl sodium sulphosuccinate, in the human jejunum. Dioctyl sodium sulphosuccinate stimulated net secretion of water, sodium, chloride, and potassium and inhibited net absorption of glucose and bicarbonate.

Thirty men aged 65 to 86 with chronic constipation were studied in a randomized, double-blind, crossover trial. The average number of bowel movements per week was 6.71 with sorbitol and 7.02 with lactulose. There were no significant differences between sorbitol and lactulose in any outcome measured except nausea, which was increased with lactulose (p<0.05).

A total of 115 patients with chronic constipation entered a multicenter, randomized, comparative trial. Low-dose polyethylene glycol was more effective than lactulose and was better tolerated.

Fifty-seven patients with opioid-induced constipation participated in a randomized, triple crossover after control run-in (no treatment) study conducted at a methadone maintenance program. Polyethylene glycol produced the loosest stool (P<0.0001) compared with the control, whereas lactulose had the most adverse effects.

Twenty-one patients with acute colonic pseudo-obstruction had abdominal distention and radiographic evidence of colonic dilation, with a cecal diameter of at least 10 cm, and had no response to at least 24 hours of conservative treatment. Ten of the 11 patients who received neostigmine had prompt colonic decompression, as compared with none of the 10 patients who received placebo (P<0.001). The median time to response was 4 minutes (range, 3 to 30). Adverse effects of neostigmine included abdominal pain, excess salivation, and vomiting. Symptomatic bradycardia developed in two patients and was treated with atropine.

In a randomized, double-blind, multicenter study, 1,519 women received either tegaserod, 6 mg bid (n=767), or placebo (n=752) for 12 weeks. Tegaserod produced significant (P<0.05) improvements in the Subject's Global Assessment of Relief and other efficacy variables. Diarrhea was the most frequent adverse event.

In the treatment of opioid-naive patients who underwent surgery and received opioids for acute pain, oral alvimopan (6.0 mg) improved the management of postoperative ileus (POI) by shortening the time to achieve normal bowel function and, ultimately, hospital stay, without compromising opioid analgesia or inducing central nervous system symptoms of withdrawal.
Self-Assessment

Module 3f: Constipation

2. Which of the following is a stimulant laxative at conventional doses?

- a). psyllium
- b). docusate
- c). senna
- d). sorbitol
Self-Assessment Answer

Question 2. The correct answer is: c)

This question is aimed at understanding the treatment of constipation. Only senna is a stimulant laxative in this list. Psyllium is a bulk-forming laxative. Docusate at conventional doses is a stool softener. Sorbitol is an osmotic laxative.