In English | En español
¿Preguntas sobre el cáncer? 1-800-422-6237

Exámenes de detección del neuroblastoma (PDQ®)

  • Actualizado: 9 de mayo de 2014

Opciones

  • Imprimir página
  • Imprimir documento
  • Ver documento
  • Enviar este documento

Pruebas de los beneficios

Las pruebas de los efectos de los exámenes de detección provienen de estudios descriptivos de programas locales y nacionales en Japón, de proyectos piloto sin controles en varios sitios de Europa y Estados Unidos, y de estudios con base en la población en Canadá y Alemania.[1-7]

Se esperaría un aumento de las tasas de supervivencia en los casos detectados mediante exámenes si, por medio de estos, se detectara el neuroblastoma en un estadio más temprano, con mayores probabilidades de curación. Si bien se ha informado de mejores tasas de supervivencia luego del inicio de los exámenes de detección,[8,9] estas observaciones se deben tomar con cautela porque la mejora puede ser a causa del sesgo de tiempo de anticipación diagnóstica, el sesgo de duración y la identificación de casos mediante exámenes de detección con regresión espontánea.

Los exámenes de detección aumentan la incidencia de enfermedades en estadio temprano. Los casos identificados casi exclusivamente mediante exámenes de detección tienen propiedades biológicas favorables (oncogén N-myc sin amplificación, casi triploide e histología favorable); este tipo de neuroblastoma favorable tiene una tasa de supervivencia alta, sin importar si se identifica mediante exámenes de detección o clínicamente.[1,6,7,10-17] Hay pruebas de que algunos tumores presentan regresión espontánea sin tratamiento.[18-21]

Algunos autores opinan que la experiencia japonesa muestra que el número de niños mayores de 1 año, que son diagnosticados con neuroblastoma, puede haber disminuido desde la introducción de los exámenes de detección [22] y que la mortalidad general se redujo en este período.[12,23] Una verdadera reducción de la mortalidad por neuroblastoma puede reflejar mejoras en la eficacia del tratamiento como un beneficio de tratar la enfermedad en estadio temprano. La mortalidad ha disminuido en otros países donde no se realizan exámenes de detección.[24] En otro estudio de comparaciones regionales, se compararon las tasas de enfermedad ente Osaka (Japón), donde se iniciaron estudios en 1985 y Gran Bretaña, donde no se realizaron estudios.[25] Hubo pocos cambios durante este período en las tasas de mortalidad acumulada en las dos regiones; 52 versus 57,5 por millón entre 1970 y 1979 versus 1991 y 1994 en Osaka, comparadas con 78,6 versus 70,1 en los períodos correspondientes en Gran Bretaña. En cualquier caso, la mayoría de los casos identificados mediante exámenes de detección a los 6 meses parecen tener un pronóstico biológicamente favorable sin importar el estadio.[1,26-29] Además, a pesar del cambio en la distribución de los estadios de los casos identificados mediante exámenes de detección en comparación con aquellos que se detectan de forma rutinaria, las pruebas de esta reducción de la incidencia de cánceres en estadio avanzado, según la experiencia japonesa, han generado polémica;[3,11,30] en el Quebec Project, como se menciona más adelante, no se observó dicha reducción.[1]

En un estudio sobre las tendencias de mortalidad antes y después del programa nacional de detección masiva de neuroblastoma en Japón, se analizaron las tasas de mortalidad específica por edad desde 1980 a 2006. Los exámenes de detección se iniciaron a mitad de los ochenta y se suspendieron en 2003. Las tasas de mortalidad se mantuvieron estables durante todo el período en los grupos etarios de 5 a 9 años y de 10 a 14 años, o disminuyeron antes de iniciar los exámenes de detección y continuaron así hasta 2006 para los grupos etarios menores de 1 año y de 1 a 4 años. Debido a que el año más reciente de muerte que se analizó fue 2006, se hubiera esperado que cualquier aumento de la mortalidad específica por edad, relacionada con la suspensión de los exámenes de detección masiva en 2003, ocurriera en los niños menores de 1 año o entre 1 y 4 años. No se observó tal aumento. Este es el primer análisis posdetección que proporciona pruebas de que los exámenes de detección no tuvieron efecto en las tasas de mortalidad y de que la suspensión de dichos exámenes no tuvo efectos adversos.[31]

En un estudio realizado en Japón, se compararon la incidencia y las tasas de mortalidad del neuroblastoma en tres cohortes: niños que nacieron antes de la implementación de los exámenes de detección entre 1980 y 1983, y quienes nacieron durante la puesta en práctica de los exámenes de detección entre 1986 y 1989, y entre 1990 y 1998.[32] La incidencia acumulada fue mayor en las cohortes que se sometieron a exámenes de detección (21,56–29,80 casos por 100.000 nacimientos) comparada con la cohorte predetección (11,56 casos). La mortalidad acumulada fue menor en las cohortes sometidas a exámenes de detección que en las cohortes predetección (3,90–2,83 vs. 5,38 muertes por 100.000 nacimientos). No es claro el efecto de los cambios de tratamiento en estas tasas.

En el Quebec Neuroblastoma Screening Project, se comparó la incidencia y mortalidad por neuroblastoma en una cohorte de nacimiento de 5 años (n = 476,603) en Quebec (a la que se le se ofrecieron exámenes de detección urinarios a las 3 semanas y a los 6 meses [cumplimiento general, 92%]) a varias cohortes de nacimiento en América del Norte, en las cuales no se realizaron exámenes de detección. En este estudio, la incidencia de enfermedad en estadio temprano de niños menores de 1 año en la población que se sometió a exámenes de detección aumentó más del doble de lo previsto mientras que, en la población de control, se aproximó a lo previsto (razón de incidencia estandarizada, 3,03; intervalo de confianza [IC] 95%, 2,30–3,86) en Quebec versus 0,82 en Minnesota (IC 95%, 0,41–1,38) y en Ontario (IC 95%, 0,53–1,17).[1] La incidencia de la enfermedad en estadio avanzado (estadio III y estadio IV) en niños grandes en Quebec, no mostró un aumento estadísticamente significativo sobre lo que se esperaba (razón de incidencia estandarizada,1,52; IC 95% 0,95–2,23).[1] Luego de aproximadamente 8 años de seguimiento (intervalo 6–11 años) la tasa de mortalidad por neuroblastoma en la población que se sometió a exámenes de detección no fue significativamente diferente de las tasas de poblaciones que no se sometieron a estos exámenes (cociente de mortalidad estandarizado, 1,11 [IC 95%, 0,64–1,92] en la cohorte de Quebec comparada con los niños de Ontario).[7] Se observaron datos similares en el estudio alemán sobre neuroblastoma.[33] Si bien en el 2008 se esperan las tasas de mortalidad definitivas, un análisis interino muestra que la tasa de mortalidad del neuroblastoma es similar tanto en la población que se sometió a exámenes de detección como en la de control (1,6 vs. 1,9 muertes por cada 100.000 niños). En un estudio en Australia, se llegó a una conclusión similar, aunque los exámenes de detección se realizaron a una edad de 7 a 12 meses. En la cohorte de exámenes de detección, la incidencia de neuroblastoma tuvo una mayor importancia estadística que en los niños que no se sometieron a estos exámenes (18,2 vs. 11,2 por cada 100.000 nacimientos); mientras que la mortalidad no tuvo importancia estadística diferente (0,96 vs. 1,57 por cada 100.000 nacimientos).[34]

No hay pruebas a partir de estudios controlados o ensayos aleatorizados de una disminución de la mortalidad relacionada con los exámenes de detección.

Bibliografía
  1. Woods WG, Tuchman M, Robison LL, et al.: A population-based study of the usefulness of screening for neuroblastoma. Lancet 348 (9043): 1682-7, 1996 Dec 21-28.  [PUBMED Abstract]

  2. Parker L, Craft AW, Dale G, et al.: Screening for neuroblastoma in the north of England. BMJ 305 (6864): 1260-3, 1992.  [PUBMED Abstract]

  3. Bessho F, Hashizume K, Nakajo T, et al.: Mass screening in Japan increased the detection of infants with neuroblastoma without a decrease in cases in older children. J Pediatr 119 (2): 237-41, 1991.  [PUBMED Abstract]

  4. Takeda T: History and current status of neuroblastoma screening in Japan. Med Pediatr Oncol 17 (5): 361-3, 1989.  [PUBMED Abstract]

  5. Chauvin F, Mathieu P, Frappaz D, et al.: Screening for neuroblastoma in France: methodological aspects and preliminary observations. Med Pediatr Oncol 28 (2): 81-91, 1997.  [PUBMED Abstract]

  6. Schilling FH, Spix C, Berthold F, et al.: Neuroblastoma screening at one year of age. N Engl J Med 346 (14): 1047-53, 2002.  [PUBMED Abstract]

  7. Woods WG, Gao RN, Shuster JJ, et al.: Screening of infants and mortality due to neuroblastoma. N Engl J Med 346 (14): 1041-6, 2002.  [PUBMED Abstract]

  8. Sawada T, Matsumura T, Kawakatsu H, et al.: Long-term effects of mass screening for neuroblastoma in infancy. Am J Pediatr Hematol Oncol 13 (1): 3-7, 1991 Spring.  [PUBMED Abstract]

  9. Nishi M, Miyake H, Takeda T, et al.: Effects of the mass screening of neuroblastoma in Sapporo City. Cancer 60 (3): 433-6, 1987.  [PUBMED Abstract]

  10. Bernstein ML, Woods WG: Screening for neuroblastoma. In: Miller AB, ed.: Advances in Cancer Screening. Boston, Mass: Kluwer Academic Publishers, 1996, pp 149-163. 

  11. Yamamoto K, Hayashi Y, Hanada R, et al.: Mass screening and age-specific incidence of neuroblastoma in Saitama Prefecture, Japan. J Clin Oncol 13 (8): 2033-8, 1995.  [PUBMED Abstract]

  12. Asami T, Otabe N, Wakabayashi M, et al.: Screening for neuroblastoma: a 9-year birth cohort-based study in Niigata, Japan. Acta Paediatr 84 (10): 1173-6, 1995.  [PUBMED Abstract]

  13. Naito H, Sasaki M, Yamashiro K, et al.: Improvement in prognosis of neuroblastoma through mass population screening. J Pediatr Surg 25 (2): 245-8, 1990.  [PUBMED Abstract]

  14. Takeuchi LA, Hachitanda Y, Woods WG, et al.: Screening for neuroblastoma in North America. Preliminary results of a pathology review from the Quebec Project. Cancer 76 (11): 2363-71, 1995.  [PUBMED Abstract]

  15. Look AT, Hayes FA, Shuster JJ, et al.: Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol 9 (4): 581-91, 1991.  [PUBMED Abstract]

  16. Bowman LC, Castleberry RP, Cantor A, et al.: Genetic staging of unresectable or metastatic neuroblastoma in infants: a Pediatric Oncology Group study. J Natl Cancer Inst 89 (5): 373-80, 1997.  [PUBMED Abstract]

  17. Brodeur GM, Look AT, Shimada H, et al.: Biological aspects of neuroblastomas identified by mass screening in Quebec. Med Pediatr Oncol 36 (1): 157-9, 2001.  [PUBMED Abstract]

  18. Yamamoto K, Hanada R, Kikuchi A, et al.: Spontaneous regression of localized neuroblastoma detected by mass screening. J Clin Oncol 16 (4): 1265-9, 1998.  [PUBMED Abstract]

  19. Nishihira H, Toyoda Y, Tanaka Y, et al.: Natural course of neuroblastoma detected by mass screening: s 5-year prospective study at a single institution. J Clin Oncol 18 (16): 3012-7, 2000.  [PUBMED Abstract]

  20. Tanaka T, Matsumura T, Iehara T, et al.: Risk of unfavorable character among neuroblastomas detected through mass screening. The Japanese Infantile Neuroblastoma Cooperative Study. Med Pediatr Oncol 35 (6): 705-7, 2000.  [PUBMED Abstract]

  21. Yoneda A, Oue T, Imura K, et al.: Observation of untreated patients with neuroblastoma detected by mass screening: a "wait and see" pilot study. Med Pediatr Oncol 36 (1): 160-2, 2001.  [PUBMED Abstract]

  22. Sawada T: Past and future of neuroblastoma screening in Japan. Am J Pediatr Hematol Oncol 14 (4): 320-6, 1992.  [PUBMED Abstract]

  23. Hanawa Y, Sawada T, Tsunoda A: Decrease in childhood neuroblastoma death in Japan. Med Pediatr Oncol 18 (6): 472-5, 1990.  [PUBMED Abstract]

  24. Cole M, Parker L, Craft A: "Decrease in childhood neuroblastoma death in Japan," Hanawa et al. (1990) Med Pediatr Oncol 20 (1): 84-5, 1992.  [PUBMED Abstract]

  25. Honjo S, Doran HE, Stiller CA, et al.: Neuroblastoma trends in Osaka, Japan, and Great Britain 1970-1994, in relation to screening. Int J Cancer 103 (4): 538-43, 2003.  [PUBMED Abstract]

  26. Hachitanda Y, Ishimoto K, Hata J, et al.: One hundred neuroblastomas detected through a mass screening system in Japan. Cancer 74 (12): 3223-6, 1994.  [PUBMED Abstract]

  27. Hayashi Y, Hanada R, Yamamoto K: Biology of neuroblastomas in Japan found by screening. Am J Pediatr Hematol Oncol 14 (4): 342-7, 1992.  [PUBMED Abstract]

  28. Nakagawara A, Zaizen Y, Ikeda K, et al.: Different genomic and metabolic patterns between mass screening-positive and mass screening-negative later-presenting neuroblastomas. Cancer 68 (9): 2037-44, 1991.  [PUBMED Abstract]

  29. Kaneko Y, Kanda N, Maseki N, et al.: Current urinary mass screening for catecholamine metabolites at 6 months of age may be detecting only a small portion of high-risk neuroblastomas: a chromosome and N-myc amplification study. J Clin Oncol 8 (12): 2005-13, 1990.  [PUBMED Abstract]

  30. Bessho F: Effects of mass screening on age-specific incidence of neuroblastoma. Int J Cancer 67 (4): 520-2, 1996.  [PUBMED Abstract]

  31. Katanoda K, Hayashi K, Yamamoto K, et al.: Secular trends in neuroblastoma mortality before and after the cessation of national mass screening in Japan. J Epidemiol 19 (5): 266-70, 2009.  [PUBMED Abstract]

  32. Hiyama E, Iehara T, Sugimoto T, et al.: Effectiveness of screening for neuroblastoma at 6 months of age: a retrospective population-based cohort study. Lancet 371 (9619): 1173-80, 2008.  [PUBMED Abstract]

  33. Schilling FH, Spix C, Berthold F, et al.: Children may not benefit from neuroblastoma screening at 1 year of age. Updated results of the population based controlled trial in Germany. Cancer Lett 197 (1-2): 19-28, 2003.  [PUBMED Abstract]

  34. Kerbl R, Urban CE, Ambros IM, et al.: Neuroblastoma mass screening in late infancy: insights into the biology of neuroblastic tumors. J Clin Oncol 21 (22): 4228-34, 2003.  [PUBMED Abstract]