Questions About Cancer? 1-800-4-CANCER

Genetics of Breast and Gynecologic Cancers (PDQ®)

Clinical Management of BRCA Mutation Carriers

Increasing data are available on the outcomes of interventions to reduce risk in people with a genetic susceptibility to breast cancer or ovarian cancer.[1-5] As outlined in other sections of this summary, uncertainty is often considerable regarding the level of cancer risk associated with a positive family history or genetic test. In this setting, personal preferences are likely to be an important factor in patients’ decisions about risk reduction strategies.

Screening and Prevention Strategies

Breast cancer


Refer to the PDQ summary on Breast Cancer Screening for information on screening in the general population, and to the PDQ summary Levels of Evidence for Cancer Genetics Studies for information on levels of evidence related to screening and prevention.

Breast self-examination

In the general population, evidence for the value of breast self-examination (BSE) is limited. Preliminary results have been reported from a randomized study of BSE being conducted in Shanghai, China.[6] At 5 years, no reduction in breast cancer mortality was seen in the BSE group compared with the control group of women, nor was a substantive stage shift seen in breast cancers that were diagnosed. (Refer to the PDQ summary on Breast Cancer Screening for more information.)

Little direct prospective evidence exists regarding BSE in individuals with an increased risk of breast cancer. In the Canadian National Breast Screening Study, women with first-degree relatives with breast cancer had statistically significantly higher BSE competency scores than those without a family history. In a study of 251 high-risk women at a referral center, five breast cancers were detected by self-examination less than a year after a previous screen (as compared with one cancer detected by clinician exam and 11 cancers detected as a result of mammography). Women in the cohort were instructed in self-examination, but it is not stated whether the interval cancers were detected as a result of planned self-examination or incidental discovery of breast masses.[7] In another series of BRCA1/BRCA2 mutation carriers, four of nine incident cancers were diagnosed as palpable masses after a reportedly normal mammogram, further suggesting the potential value of self-examination.[8] A task force convened by the Cancer Genetics Studies Consortium has recommended “monthly self-examination beginning early in adult life (e.g., by age 18–21 years) to establish a regular habit and allow familiarity with the normal characteristics of breast tissue. Education and instruction in self-examination are recommended.”[9]

Level of evidence: 5

Clinical breast examination

Few prospective data exist regarding clinical breast examination (CBE).

The Cancer Genetics Studies Consortium task force concluded, “As with self-examination, the contribution of clinical examination may be particularly important for women at inherited risk of early breast cancer.” They recommended that female carriers of a BRCA1 or BRCA2 high-risk mutation undergo annual or semiannual clinical examinations beginning at age 25 to 35 years.[9]


In the general population, strong evidence suggests that regular mammography screening of women aged 50 to 59 years leads to a 25% to 30% reduction in breast cancer mortality. (Refer to the PDQ summary on Breast Cancer Screening for more information.) For women who begin mammographic screening at age 40 to 49 years, a 17% reduction in breast cancer mortality is seen, which occurs 15 years after the start of screening.[10] Observational data from a cohort study of more than 28,000 women suggest that the sensitivity of mammography is lower for young women. In this study, the sensitivity was lowest for younger women (aged 30–49 years) who had a first-degree relative with breast cancer. For these women, mammography detected 69% of breast cancers diagnosed within 13 months of the first screening mammography. By contrast, sensitivity for women younger than 50 years without a family history was 88% (P = .08). For women aged 50 years and older, sensitivity was 93% at 13 months and did not vary by family history.[11] Preliminary data suggest that mammography sensitivity is lower in BRCA1 and BRCA2 carriers than in noncarriers.[8] Subsequent observational studies have found that the positive predictive value (PPV) of mammography increases with age and is highest among older women and among women with a family history of breast cancer.[12] Higher PPVs may be due to increased breast cancer incidence, higher sensitivity, and/or higher specificity.[13] One study found an association between the presence of pushing margins and false-negative mammograms in 28 women, 26 of whom had a BRCA1 mutation and two of whom had a BRCA2 mutation. Pushing margins, characteristic of medullary histology, are associated with an absence of fibrotic reaction.[14] In addition, rapid tumor doubling times may lead to tumors presenting shortly after an apparently normal study. In one study, mean tumor doubling time in BRCA1/BRCA2 carriers was 45 days, compared with 84 days in noncarriers.[15] Another study that evaluated mammographic breast density in women with BRCA mutations found no association between mutation status and mammographic density; however, in both carriers and noncarriers, increased breast density was associated with increased breast cancer risk.[16]

The randomized Canadian National Breast Screening Study-2 compared annual CBE plus mammography to CBE alone in women aged 50 to 59 years from the general population. Both groups were given instruction in BSE.[17] Although mammography detected smaller primary invasive tumors, more invasive cancers, and more DCIS than CBE, the breast cancer mortality rates in the CBE-plus-mammography group and the CBE-alone group were nearly identical, and compared favorably with other breast cancer screening trials. After a mean follow-up of 13 years (range 11.3–16.0 years), the cumulative breast cancer mortality ratio was 1.02 (95% CI = 0.78–1.33). One possible explanation of this finding was the careful training and supervision of the health professionals performing CBE.

Digital mammography refers to the use of a digital detector to find and record x-ray images. This technology improves contrast resolution [18] and has been proposed as a potential strategy for improving the sensitivity of mammography. A screening study comparing digital with routine mammography in 6,736 examinations of women aged 40 years and older found no difference in cancer detection rates;[19] however, digital mammography resulted in fewer recalls. In another study (ACRIN-6652) comparing digital mammography to plain-film mammography in 42,760 women, the overall diagnostic accuracy of the two techniques was similar.[20] When receiver operating characteristic curves were compared, digital mammography was more accurate in women younger than 50 years, in women with radiographically dense breasts, and in premenopausal or perimenopausal women.

In a prospective study of 251 individuals with BRCA mutations who received uniform recommendations regarding screening and risk-reducing, or prophylactic, surgery, annual mammography detected breast cancer in six women at a mean of 20.2 months after receipt of BRCA results.[7] The Cancer Genetics Studies Consortium task force has recommended for female carriers of a BRCA1 or BRCA2 high-risk mutation, “annual mammography, beginning at age 25 to 35 years. Mammograms should be done at a consistent location when possible, with prior films available for comparison.”[9] Data from prospective studies on the relative benefits and risks of screening with an ionizing radiation tool versus CBE or other nonionizing radiation tools would be useful.[21-23]

Certain observations have led to the concern that BRCA mutation carriers may be more prone to radiation-induced breast cancer than women without mutations. The BRCA1 and BRCA2 proteins are known to be important in cellular mechanisms of DNA damage repair, including those involved in repairing radiation-induced damage. Some studies have suggested intermediate radiation sensitivity in cells that are heterozygous for a BRCA mutation, but this is not consistent and varies by experimental system and endpoint.

Two studies failed to find convincing evidence of an association between ionizing radiation exposure and breast cancer risk in BRCA1 and BRCA2 mutation carriers.[24,25] In contrast, two large international studies found evidence of an increased breast cancer risk due to chest x-rays [26] or estimates of total exposure to diagnostic radiation.[27] A large, international, case-control study of 1,601 mutation carriers described an increased risk of breast cancer (HR, 1.54) among women who were ever exposed to chest x-rays, with risk being highest in women aged 40 years and younger, born after 1949, and exposed to x-rays only before age 20 years.[26] Some of the subjects in this study were also included in a larger, more comprehensive analysis of mutation carriers from three European centers.[27] In that study of 1,993 BRCA1 and BRCA2 mutation carriers from the United Kingdom, France, and the Netherlands, age-specific total diagnostic radiation exposure (e.g., chest x-rays, mammography, fluoroscopy, and computed tomography) estimates were derived from self-reported questionnaires. Women exposed before age 30 years had an increased risk (HR, 1.90; 95%, CI 1.20–3.00), compared with those never exposed. This risk was primarily driven by nonmammographic radiation exposure in women younger than 20 years (HR, 1.62; 95% CI, 1.02–2.58).

With the routine use of magnetic resonance imaging (MRI) in BRCA1 and BRCA2 mutation carriers, any potential benefit of mammographic screening must be carefully weighed against potential risks, particularly in young women.[28] One study has suggested that the most cost-effective screening strategy in BRCA1 and BRCA2 mutation carriers may be annual MRI beginning at age 25 years, with alternating MRI and digital mammography (so that each test is done annually but screening occurs every 6 months) beginning at age 30 years.[29] NCCN currently recommends annual MRI screening between ages 25 and 29 years and annual MRI and mammography between ages 30 and 75 years.[3]


Because of the relative insensitivity of mammography in women with an inherited risk of breast cancer, a number of screening modalities have been proposed and investigated in high-risk women, including BRCA mutation carriers. Many studies have described the experience with breast MRI screening in women at risk of breast cancer, including descriptions of relatively large multi-institutional trials.[30-38]

Despite some limitations of these studies, they consistently demonstrate that breast MRI is more sensitive than either mammography or ultrasound for the detection of hereditary breast cancer. The results of six large studies are presented in Table 10, Summary of MRI Screening Studies in Women at Hereditary Risk of Breast Cancer.[30,32,33,36,39,40] Most cancers in these programs were screen detected, with only 6% of cancers presenting in the interval between screenings. The sensitivity of MRI (as defined by the study methodology) ranged from 71% to 100%. Of the combined studies, 77% of cancers were identified by MRI, and 42% were identified by mammography.

Concerns have been raised about the reduced specificity of MRI compared with other screening modalities. In one study, after the initial MRI screen, 16.5% of patients were recalled for further evaluation and an additional 7.6% of patients were recommended to undergo a short-interval follow-up examination at 6 months.[33] These rates declined significantly during later screening rounds, with fewer than 10% of the subjects recalled for more detailed MRI and fewer than 3% recommended to have short interval follow-up. In a second study, Magnetic Resonance Imaging for Breast Screening (MARIBS), the recall rate for additional evaluation was 10.7% per year.[32] The benign biopsy rates in the first study were 11% at first round, 6.6% at second round, and 4.7% at third round.[33] In the MARIBS study, the aggregate surgical biopsy rate was 9 per 1,000 screening episodes, though this may underestimate the burden because follow-up ultrasounds, core-needle biopsies, and fine-needle aspirations have not been included in the numerator of the MARIBS calculation.[32] The PPV of MRI has been calculated differently in the various series and fluctuates somewhat, depending on whether all abnormal examinations or only the examinations that result in a biopsy are counted in the denominator. Generally, the PPV of a recommendation for tissue sampling (as opposed to further investigation) is in the range of 50% in most series.

These trials appear to establish that MRI is superior to mammography in the detection of hereditary breast cancer, and that women participating in these trials including annual MRI screening were less likely to have a cancer missed by screening.[41] However, mammography may identify some cancers, particularly DCIS, that are not identified by MRI.[42]

Regarding downstaging, one screening study demonstrated that patients at risk of hereditary breast cancer were more likely to be diagnosed with small tumors and node-negative disease than were women in two nonrandomized control groups.[30] However, a randomized study of screening with or without MRI using tumor stage or mortality as an endpoint has not been performed. Despite the apparent sensitivity of MRI screening, some women in MRI-based programs will develop life-threatening breast cancer. In a prospective study of 51 BRCA1 and 41 BRCA2 mutation carriers screened with yearly mammograms and MRIs (of whom 80 had prophylactic oophorectomy), 11 breast cancers (9 invasive and 2 DCIS) were detected. Six cancers were first detected on MRI; three were first detected by mammogram; and two were interval cancers. All breast cancers occurred in BRCA1 mutation carriers, suggesting a continued high risk of BRCA1-related breast cancer after oophorectomy in the short term. These results suggest that surveillance and prevention strategies may have differing outcomes in BRCA1 and BRCA2 mutation carriers.[37]

A publication combining results from three large studies (MARIBS, a Canadian study, and a Dutch MRI screening study) demonstrated that when MRI was added to mammography, 80% of cancers detected in BRCA2 mutation carriers were either DCIS or invasive cancers smaller than 1 cm. In BRCA1 mutation carriers, 49% of cancers were DCIS or small invasive cancers. In addition, the authors predicted mortality benefits with the addition of MRI for both BRCA1 and BRCA2 mutation carriers. The model predicted breast cancer mortality reductions of 42% to 47% for mammography, 48% to 61% for MRI, and 50% to 62% for combined screening.[43] An additional study examining BRCA1/2 mutation carriers undergoing MRI between 1997 and 2006 has demonstrated that 97% of incident cancers were stage 0 or stage I.[44] The American Cancer Society and NCCN have recommended the use of annual MRI screening for women at hereditary risk of breast cancer.[3,45]

An additional question regarding the timing of mammography and MRI is whether they should be done simultaneously or in an alternating fashion (so that while each test is done annually, screening occurs every 6 months). One study has suggested that the most cost-effective screening strategy in BRCA1 and BRCA2 mutation carriers may be annual MRI beginning at age 25 years, with alternating MRI and digital mammography beginning at age 30 years.[29]

In summary, evidence strongly supports the integral role of breast MRI in breast cancer surveillance for BRCA1/2 mutation carriers.

Table 10. Summary of Magnetic Resonance Imaging (MRI) Screening Studies in Women at Hereditary Risk of Breast Cancer
Series Rijnsburger [38] Warner [33] MARIBS [32] Kuhl [36] Weinstein [39] Sardanelli [40] Totals
aBased on the first 1,909 women screened.[30]
bIncludes patients with invasive cancer only and patients with both invasive and in situ cancers.
cIncludes only 75 cancers detected in women who underwent both mammographic and MRI screening.
dRestricted to studies in which ultrasound was performed.
N Patients Overall 2,157 236 649 687 609 501 4,839
BRCA1/BRCA2 Carriers 594 236 120 65 44 330 1,389
N Screening Episodes 6,253 457 1,881 1,679   1,592 11,862
N Cancers Baseline 22a 13 20 10 0 0 65
Subsequent 97 9 15 17 18 52 208
Invasiveb 78 16 29 8 11 44 186
In situ 19 9 6 9 7 8 58
Annual Incidence 10.4/1,000   19/1,000        
Detected at Planned Screening 78 21 33 27 18 49 226 (83%)
N Detected by Each Modality Mammography 31c 8 14 9 7 25 94 (42%)
MRI 51c 17 27 25 12 42 174 (77%)
Ultrasoundd   7   10 3 26 46 (41%)
Follow-up Median of 4.9 y Minimum of 1 y 2–7 y Median of 29.09 mo 2 y 3 y  

Level of evidence: 3


Several studies have reported instances of breast cancer detected by ultrasound that were missed by mammography, as discussed in one review.[46] In a pilot study of ultrasound as an adjunct to mammography in 149 women with moderately increased risk based on family history, one cancer was detected, based on ultrasound findings. Nine other biopsies of benign lesions were performed. One was based on abnormalities on both mammography and ultrasound, and the remaining eight were based on abnormalities on ultrasound alone.[46] A large study of 2,809 women with dense breast tissue (ACRIN-6666) demonstrated that ultrasound increased the detection rate due to breast cancer screening from 7.6 per 1,000 with mammography alone to 11.8 per 1,000 for combined mammography and ultrasound.[47] However, ultrasound screening increases false-positive rates and appears to have a limited benefit in combination with MRI. In a multicenter study of 171 women (92% of whom were BRCA1/BRCA2 mutation carriers) undergoing simultaneous mammography, MRI, and ultrasound, no cancers were detected by ultrasound alone.[34] Uncertainties about ultrasound include the effect of screening on mortality, the rate and outcome of false-positive results, and access to experienced breast ultrasonographers.

Level of evidence: None assigned

Other screening modalities

A number of other techniques are under active investigation, including tomosynthesis, contrast-enhanced mammography, thermography, and radionuclide scanning. Additional evidence is needed before these techniques can be incorporated into clinical practice.

Risk-reducing surgeries
Risk-reducing mastectomy

In the general population, both subcutaneous mastectomy and simple (total) mastectomy have been used for prophylaxis. Between 90% and 95% of breast tissue is removed with subcutaneous mastectomy.[48] In a total or simple mastectomy, removal of the nipple-areolar complex increases the proportion of breast tissue removed compared with subcutaneous mastectomy. However, some breast tissue is usually left behind with both procedures. The risk of breast cancer after these procedures has not been well established.

The effectiveness of risk-reducing mastectomy (RRM) in women with BRCA1 or BRCA2 mutations has been evaluated in several studies. In one retrospective cohort study of 214 women considered to be at hereditary risk by virtue of a family history suggesting an autosomal dominant predisposition, three women were diagnosed with breast cancer after bilateral RRM, with a median follow-up of 14 years.[49] As 37.4 cancers were expected, the calculated risk reduction was 92% (95% CI, 76.6–98.3). In a follow-up subset analysis, 176 of the 214 high-risk women in this cohort study underwent mutation analysis of BRCA1 and BRCA2. Mutations were found in 26 women (18 deleterious, eight VUS). None of those women had developed breast cancer after a median follow-up of 13.4 years.[50] Two of the three women diagnosed with breast cancer after RRM were tested, and neither carried a mutation. The calculated risk reduction among mutation carriers was 89.5% to 100% (95% CI, 41.4%–100%), depending on the assumptions made about the expected numbers of cancers among mutation carriers and the status of the untested woman who developed cancer despite mastectomy. The result of this retrospective cohort study has been supported by a prospective analysis of 76 mutation carriers undergoing RRM and monitored prospectively for a mean of 2.9 years. No breast cancers were observed in these women, whereas eight were identified in women undergoing regular surveillance (HR for breast cancer after RRM, 0 [95% CI, 0–0.36]).[51]

The Prevention and Observation of Surgical Endpoints study group estimated the degree of breast cancer risk reduction after RRM in BRCA1/BRCA2 mutation carriers. The rate of breast cancer in 105 mutation carriers who underwent bilateral RRM was compared with that in 378 mutation carriers who did not choose surgery. Bilateral mastectomy reduced the risk of breast cancer by approximately 90% after a mean follow-up of 6.4 years.[52]

Another study evaluated the effectiveness of contralateral RRM in affected women with hereditary breast cancer. In a group of 148 BRCA1 or BRCA2 mutation carriers, 79 of whom underwent RRM, the risk of contralateral cancer was reduced by 91% and was independent of the effect of risk-reducing oophorectomy. Survival was better among women undergoing RRM, but this result was apparently associated with higher mortality due to the index cancer or metachronous ovarian cancer in the group not undergoing surgery.[53] More recently, data from ten European centers on 550 women indicated that RRM was highly effective.[54] Similarly, a retrospective study of 593 BRCA1 and BRCA2 mutation carriers included 105 women with unilateral breast cancer who underwent contralateral risk-reducing mastectomy and had a 10-year survival rate of 89%, compared with 71% in the group who did not undergo contralateral risk-reducing surgery (P < .001).[55] However, these findings need to be confirmed in a larger series because of the potential presence of confounding factors (e.g., no information was provided regarding breast cancer screening practices, and there were missing grade and ER statuses for a large proportion of the sample).

A retrospective study of 390 women with early-stage breast cancer who were from families with a known BRCA1/2 mutation found a significant improvement in survival for women who underwent bilateral mastectomy compared with those who chose unilateral mastectomy.[56] A multivariate analysis controlling for age at diagnosis, year of diagnosis, and treatment and other prognostic factors found that contralateral mastectomy was associated with a 48% reduction in death from breast cancer. This was a relatively small study with a high potential for confounding of prognostic factors.

Studies describing histopathologic findings in RRM specimens from women with BRCA1 or BRCA2 mutations have been somewhat inconsistent. In two series, proliferative lesions associated with an increased risk of breast cancer (lobular carcinoma in situ, atypical lobular hyperplasia, atypical ductal hyperplasia, DCIS) were noted in 37% to 46% of women with mutations undergoing either unilateral or bilateral RRM.[57-59] In these series, 13% to 15% of patients were found to have previously unsuspected DCIS in the prophylactically removed breast. Among 47 cases of risk-reducing bilateral or contralateral mastectomies performed in known BRCA1 or BRCA2 mutation carriers from Australia, three (6%) cancers were detected at surgery.[60] In a study from Sweden among 100 women with a hereditary risk of breast cancer, unsuspected lesions were found in 13 out of 50 BRCA1/BRCA2 mutation carriers.[61] These findings were not replicated in a third retrospective cohort study. In this study, proliferative fibrocystic changes were noted in none of 11 bilateral mastectomies from patients with deleterious mutations and in only two of seven contralateral unilateral risk-reducing mastectomies in affected mutation carriers.[62]

Although data are sparse, the evidence indicates that while a substantial proportion of women with a strong family history of breast cancer are interested in discussing RRM as a treatment option, uptake varies according to culture, geography, health care system, insurance coverage, provider attitudes, and other social factors. For example, in one setting where the providers made one or two field trips to family gatherings for family information sessions and individual counseling, only 3% of unaffected carriers obtained RRM within 1 year of follow-up.[63] Among women at increased risk of breast cancer due to family history, fewer than 10% opted for mastectomy.[64] Selection of this option was related to breast cancer–related worry as opposed to objective risk parameters (e.g., number of relatives with breast cancer). In contrast, in a Dutch study of highly motivated women being followed up every 6 months at a high-risk center, more than half (51%) of unaffected carriers opted for RRM. Almost 90% of the RRM surgeries were performed within 1 year of DNA testing. In this study, those most likely to have RRM were women younger than 55 years and with children.[65] In addition, self-perceived risk has been closely linked to interest in RRM.[64]

Assuming risk reduction in the range of 90%, a theoretical model suggests that for a group of 30-year-old women with BRCA1 or BRCA2 mutations, RRM would result in an average increased life expectancy of 2.9 to 5.3 years.[66] While these data are useful for public policy decisions, they cannot be individualized for clinical care as they include assumptions that cannot be fully tested. Another study of at-risk women showed a 70% time-tradeoff value, indicating that the women were willing to sacrifice 30% of life expectancy in order to avoid RRM.[67] A cost-effectiveness analysis study estimated that risk-reducing surgery (mastectomy and oophorectomy) is cost-effective compared with surveillance with regard to years of life saved, but not for improved quality of life.[68]

A computer-simulated survival analysis using a Monte Carlo model included breast MRI, mammography, RRM, and risk-reducing salpingo-oophorectomy (RRSO) and examined the impact of each of these separately on BRCA1 and BRCA2 mutation carriers.[69] The most effective strategy was found to be RRSO at age 40 years and RRM at age 25 years, in which case survival at age 70 years approached that of the general population. However, delaying mastectomy until age 40 years, or substituting RRM with screening with breast MRI and mammogram, had little impact on survival estimates. For example, replacing RRM with MRI-based screening in women with RRSO at age 40 years led to a 3% to 5% decrement in survival compared with RRM at age 25 years. The authors have developed an online tool.[70] As with any model, uncertainty remains due to numerous assumptions; however, this provides additional information for women and their providers who are making these difficult decisions.

The Society of Surgical Oncology has endorsed RRM as an option for women with BRCA1/BRCA2 mutations or strong family histories of breast cancer.[71]

Individual psychological factors have an important role in decision-making about RRM by unaffected women. Research is emerging about psychosocial outcomes of RRM. (Refer to the Psychosocial Outcome Studies section of this summary for more information.)

Level of evidence: 3aii

Risk-reducing salpingo-oophorectomy (RRSO)

In the general population, removal of both ovaries has been associated with a reduction in breast cancer risk of up to 75%, depending on parity, weight, and age at time of artificial menopause. (Refer to the PDQ summary on Breast Cancer Prevention for more information.) A Mayo Clinic study of 680 women at various levels of familial risk found that in women younger than 60 years who had bilateral oophorectomy, the likelihood of breast cancers developing was reduced for all risk groups.[72] Ovarian ablation, however, is associated with important side effects such as hot flashes, impaired sleep habits, vaginal dryness, dyspareunia, and increased risk of osteoporosis and heart disease. A variety of strategies may be necessary to counteract the adverse effects of ovarian ablation.

In support of early small studies,[73,74] a retrospective study of 551 women with disease-associated BRCA1 or BRCA2 mutations found a significant reduction in risk of breast cancer (HR, 0.47; 95% CI, 0.29–0.77) and ovarian cancer (HR, 0.04; 95% CI, 0.01–0.16) after RRSO.[75] A prospective, single-institution study of 170 women with BRCA1 or BRCA2 mutations showed a similar trend. With RRSO, the HR was 0.15 (95% CI, 0.02–1.31) for ovarian, fallopian tube, or primary peritoneal cancer, and 0.32 (95% CI, 0.08–1.2) for breast cancer; the HR for either cancer was 0.25 (95% CI, 0.08–0.74).[76] A prospective, multicenter study of 1,079 women followed up for a median of 30 to 35 months found that while RRSO was associated with reductions in breast cancer risk in both BRCA1 and BRCA2 mutation carriers, the risk reduction was more pronounced in BRCA2 carriers (HR, 0.28; 95% CI, 0.08–0.92).[77] A meta-analysis of all reports of RRSO and breast and ovarian/fallopian tube cancer in BRCA1/BRCA2 mutation carriers confirmed that RRSO was associated with a significant reduction in breast cancer risk (overall: HR, 0.49; 95% CI, 0.37–0.65; BRCA1: HR, 0.47; 95% CI, 0.35–0.64; BRCA2: HR, 0.47; 95% CI, 0.26–0.84).[78]

In addition to the reduction in incidence of both breast and ovarian cancer, a prospective, multicenter, cohort study of 2,482 BRCA1/BRCA2 mutation carriers has reported an association of RRSO with a reduction in all-cause mortality (HR, 0.40; 95% CI, 0.26–0.61), breast cancer–specific mortality (HR, 0.44; 95% CI, 0.26–0.76), and ovarian cancer–specific mortality (HR, 0.21; 95% CI, 0.06–0.80).[79]

Level of evidence: 3ai


Tamoxifen (a synthetic antiestrogen) increases breast-cell growth inhibitory factors and concomitantly reduces breast-cell growth stimulatory factors. The National Surgical Adjuvant Breast and Bowel Project Breast Cancer Prevention Trial (NSABP-P-1), a prospective, randomized, double-blind trial, compared tamoxifen (20 mg/day) with placebo for 5 years. Tamoxifen was shown to reduce the risk of invasive breast cancer by 49%. The protective effect was largely confined to ER-positive breast cancer, which was reduced by 69%. The incidence of ER-negative cancer was not significantly reduced.[80] Similar reductions were noted in the risk of preinvasive breast cancer. Reductions in breast cancer risk were noted both among women with a family history of breast cancer and in those without a family history. An increased incidence of endometrial cancers and thrombotic events occurred among women older than 50 years. Interim data from two European tamoxifen prevention trials did not show a reduction in breast cancer risk with tamoxifen after a median follow-up of 48 months [81] or 70 months,[82] respectively. In one trial, however, reduction in breast cancer risk was seen among a subgroup who also used hormone replacement therapy (HRT).[81] These trials varied considerably in study design and populations. (Refer to the PDQ summary on Breast Cancer Prevention for more information.)

A substudy of the NSABP-P-1 trial evaluated the effectiveness of tamoxifen in preventing breast cancer in BRCA1/BRCA2 mutation carriers older than 35 years. BRCA2-positive women benefited from tamoxifen to the same extent as BRCA1/BRCA2 mutation–negative participants; however, tamoxifen use among healthy women with BRCA1 mutations did not appear to reduce breast cancer incidence. These data must be viewed with caution in view of the small number of mutation carriers in the sample (8 BRCA1 carriers and 11 BRCA2 carriers).[83]

Level of evidence: 1aii

In contrast to the very limited data on primary prevention in BRCA1 and BRCA2 mutation carriers with tamoxifen, several studies have found a protective effect of tamoxifen on the risk of contralateral breast cancer.[84-86] In one study involving approximately 600 BRCA1/BRCA2 mutation carriers, tamoxifen use was associated with a 51% reduction in contralateral breast cancer.[84] An update to this report examined 285 BRCA1/BRCA2 mutation carriers with bilateral breast cancer and 751 BRCA1/BRCA2 mutation carriers with unilateral breast cancer (40% of these patients were included in their initial study). Tamoxifen was associated with a 50% reduction in contralateral breast cancer risk in BRCA1 mutation carriers and a 58% reduction in BRCA2 mutation carriers. Tamoxifen did not appear to confer benefit in women who had undergone an oophorectomy, although the numbers in this subgroup were quite small.[86] Another study that involved 160 BRCA1/BRCA2 mutation carriers demonstrated that tamoxifen use after the treatment of breast cancer with lumpectomy and radiation was associated with a 69% reduction in the risk of contralateral breast cancer.[85] In another study, 2,464 BRCA1/2 mutation carriers with a personal history of breast cancer were identified from three family cohorts. Using both retrospective and prospective data, researchers found a significant decrease in the risk of contralateral breast cancer among women who received adjuvant tamoxifen therapy after their diagnosis. This association persisted after researchers adjusted for age at diagnosis and the ER status of the first cancer. A major limitation of this study is the lack of information on ER status of the first breast cancer in 56% of the women.[87] These studies are limited by their retrospective, case-control designs and the absence of information regarding estrogen receptor status in the primary tumor.

The STAR trial (NSABP-P-2) included more than 19,000 women and compared 5 years of raloxifene versus tamoxifen in reducing the risk of invasive breast cancer.[88] There was no difference in incidence of invasive breast cancer at a mean follow-up of 3.9 years; however, there were fewer noninvasive cancers in the tamoxifen group. The incidence of thromboembolic events and hysterectomy was significantly lower in the raloxifene group. Detailed quality-of-life data demonstrate slight differences between the two arms.[89] Data regarding efficacy in BRCA1 or BRCA2 mutation carriers are not available.

The effect of tamoxifen on ovarian cancer risk was studied in 714 BRCA1 mutation carriers. All subjects had a prior history of breast cancer; use of tamoxifen was not associated with an increased risk of subsequent ovarian cancer (odds ratio [OR], 0.78; 95% CI, 0.46–1.33).[90]

Level of evidence: 1aii

Reproductive factors
Pregnancy and lactation

In the general population, breast cancer risk increases with early menarche and late menopause, and is reduced at early first full-term pregnancy. (Refer to the PDQ summary on Breast Cancer Prevention for more information.) In the Nurses’ Health Study, these were risk factors among women who did not have a mother or sister with breast cancer.[91] Among women with a family history of breast cancer, pregnancy at any age appeared to be associated with an increase in risk of breast cancer, persisting to age 70 years.

One study evaluated risk modifiers among 333 female carriers of a BRCA1 high-risk mutation. In women with known mutations of the BRCA1 gene, early age at first live birth and parity of three or more have been associated with a lowered risk of breast cancer. A RR of 0.85 was estimated for each additional birth, up to five or more; however, increasing parity appeared to be associated with an increased risk of ovarian cancer.[92,93] In a case-control study from New Zealand, investigators noted no difference in the impact of parity on the risk of breast cancer between women with a family history of breast cancer and those without a family history.[94]

Studies of the effect of pregnancy on breast cancer risk have revealed complex results and the relationship with parity has been inconsistent and may vary between BRCA1 and BRCA2 mutation carriers.[95-97] Parity has more consistently been associated with a reduced risk of breast cancer in BRCA1 mutation carriers.[95-99] Of note, neither therapeutic nor spontaneous abortions appear to be associated with an increased breast cancer risk.[97,100]

Level of evidence: 4aii

In the general population, breastfeeding has been associated with a slight reduction in breast cancer risk in a few studies, including a large collaborative reanalysis of multiple epidemiologic studies,[101] and at least one study suggests that it may be protective in BRCA1 mutation carriers. In a multicenter, case-control study of 685 BRCA1 and 280 BRCA2 mutation carriers with breast cancer and 965 mutation carriers without breast cancer drawn from multiple-case families, among BRCA1 mutation carriers, breastfeeding for 1 year or more was associated with approximately a 45% reduced risk of breast cancer.[102] No such reduced risk was observed among BRCA2 mutation carriers. A second study failed to confirm this association.[100]

Oral contraceptives

There is no consistent evidence that the use of oral contraceptives (OCs) increases the risk of breast cancer in the general population.[103] (Refer to the PDQ summary on Breast Cancer Prevention for more information.)

Although several smaller studies have reported a slightly increased risk of breast cancer with OC use in BRCA1/BRCA2 mutation carriers,[104,105] a meta-analysis concluded that the associated risk is not significant with more recent OC formulations.[106] However, OCs formulated before 1975 were associated with an increased risk of breast cancer.[106] A large proportion of patients on whom this meta-analysis was based were drawn from three large studies summarized in Table 11.[107-109]

Table 11. Oral Contraceptive (OC) Use and Breast Cancer Risk in BRCA1/BRCA2 Mutation Carriers
  Brohet 2007a[107] Haile 2006b,c[108] Narod 2002b [109]
CI = confidence interval.
aReports risk estimates in the form of hazard ratios with 95% confidence intervals.
bReports risk estimates in the form of odds ratios with 95% confidence intervals.
cRisk estimates restricted to BRCA mutation carriers younger than 40 years.
Study Population BRCA1 Carriers with Breast Cancer N = 597 N = 195; diagnosis < age 50 y N = 981
BRCA2 Carriers with Breast Cancer N = 249 N = 128; diagnosis < age 50 y N = 330
Ever Use OC BRCA1 1.47 [CI 1.13–1.91] 0.64 [CI 0.35–1.16] 1.38 [CI 1.11–1.72] P = .003
BRCA2 1.49 [Cl 0.8–2.7] 1.29 [Cl 0.61–2.76] 0.94 [Cl 0.72–1.24]
Age Use <20 y BRCA1 1.41 [Cl 0.99–2.01] 0.84 [Cl 0.45–1.55] 1.36 [Cl 1.11–1.67] P = .003
BRCA2 1.25 [Cl 0.57–2.74] 1.64 [Cl 0.77–3.46] Not reported
Total Duration BRCA1 <9 y: 1.51 [Cl 1.1–2.08] <5 y: 0.61 [Cl 0.31–1.17] <10 y: 1.36 [Cl 1.11–167] P = .003
BRCA2 <9 y: 2.27 [Cl 1.1–4.65] <5 y: 0.79 [Cl 0.26–2.37] <10 y: 0.82 [Cl 0.56–1.91]
Use Before Full-term Pregnancy BRCA1 >4 y: 1.49 [Cl 1.05–2.11] >4 y: 0.69 [Cl 0.41–1.16] Not evaluated
BRCA2 >4 y: 2.58 [Cl 1.21–5.49] >4 y: 2.08 [Cl 1.02–4.25] trend per y: 1.11; P trend = .01
Use Before 1975 BRCA1 1.48 [Cl 1.11–1.98] Excluded patients who used OC before 1975 1.42 [Cl 1.17–1.75] P < .001
BRCA2 1.36 [Cl 0.71–2.58]
Use After 1975 BRCA1 1.57 [Cl 1.11–2.22] 0.65 [Cl 0.36–1.19] Not evaluated
BRCA2 1.53 [Cl 0.75–3.12] 1.21 [Cl 0.56–2.58]

When patients are counseled about contraceptive options and preventive actions, the potential impact of OC use on the risk of breast cancer and ovarian cancer and other health-related effects of OCs need to be considered. A number of important issues remain unresolved, including the potential differences between BRCA1 and BRCA2 mutation carriers, effect of age and duration of exposure, and effect of OCs on families with highly penetrant early-onset breast cancer.

Level of evidence: 3aii

(Refer to the Oral contraceptives section in the Chemoprevention section of this summary for a discussion of OC use and ovarian cancer in this population.)

Hormone replacement therapy

Both observational and randomized clinical trial data suggest an increased risk of breast cancer associated with HRT in the general population.[110-113] The Women’s Health Initiative (WHI) was a randomized controlled trial of approximately 160,000 postmenopausal women that investigated the risks and benefits of dietary interventions and hormone therapy to reduce the incidence of heart disease, breast cancer, colorectal cancer, and fractures. The estrogen-plus-progestin arm of the study, in which more than 16,000 women were randomly assigned to receive combined hormone therapy or placebo, was halted early because health risks exceeded benefits.[112,113] One of the adverse outcomes prompting closure was a significant increase in both total (245 vs. 185 cases) and invasive (199 vs. 150) breast cancers (RR, 1.24; 95% CI, 1.02–1.50; P < .001) in women randomly assigned to receive estrogen and progestin.[113] Results of a follow-up study suggest that the recent reduction in breast cancer incidence, especially among women aged 50 to 69 years, is predominantly related to decrease in use of combined estrogen plus progestin HRT.[114] HRT-related breast cancers had adverse prognostic characteristics (more advanced stages and larger tumors) compared with cancers occurring in the placebo group, and HRT was also associated with a substantial increase in abnormal mammograms.[113]

Breast cancer risk associated with postmenopausal HRT has been variably reported to be increased [115-117] or unaffected by a family history of breast cancer;[92,118,119] risk did not vary by family history in the meta-analysis.[103] The WHI study has not reported analyses stratified on breast cancer family history, and subjects have not been systematically tested for BRCA1/BRCA2 mutations.[113] Short-term use of hormones for treatment of menopausal symptoms appears to confer little or no breast cancer risk in the general population.[120]

Hormone replacement therapy in BRCA1/BRCA2 mutation carriers

The effect of HRT on breast cancer risk among carriers of a BRCA1 or BRCA2 mutation has been examined in two studies. In a prospective study of 462 BRCA1 or BRCA2 mutation carriers, bilateral RRSO (n = 155) was significantly associated with breast cancer risk-reduction overall (HR, 0.40; 95% CI, 0.18–0.92). When mutation carriers without bilateral RRSO or HRT were used as the comparison group, HRT use (n = 93) did not significantly alter the reduction in breast cancer risk associated with bilateral RRSO (HR, 0.37; 95% CI, 0.14–0.96).[121] In a matched case-control study of 472 postmenopausal women with BRCA1 mutations, HRT use was associated with an overall reduction in breast cancer risk (OR, 0.58; 95% CI, 0.35–0.96; P = .03). A nonsignificant reduction in risk was observed both in women who had undergone bilateral oophorectomy and in those who had not. Women taking estrogen alone had an OR of 0.51 (95% CI, 0.27–0.98; P = .04), while the association with estrogen and progesterone was not statistically significant (OR, 0.66; 95% CI, 0.34–1.27; P = .21).[122] Especially given the differences in estimated risk associated with HRT between observational studies and the WHI, these findings should be confirmed in randomized prospective studies,[123] but they suggest that HRT in BRCA1/BRCA2 mutation carriers neither increases breast cancer risk nor negates the protective effect of oophorectomy.

Level of evidence: 3aii

Ovarian cancer


Refer to the PDQ summary on Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Screening for information on screening in the general population and to the PDQ summary Levels of Evidence for Cancer Genetics Studies for information about levels of evidence related to screening and prevention. The latter also outlines the five requirements that must be met before it is considered appropriate to screen for a particular medical condition as part of routine medical practice.

Clinical examination

In the general population, clinical examination of the ovaries has neither the specificity nor the sensitivity to reliably identify early ovarian cancer. No data exist regarding the benefit of clinical examination of the ovaries (bimanual pelvic examination) in women at inherited risk of ovarian cancer.

Level of evidence: None assigned

Transvaginal ultrasound

In the general population, transvaginal ultrasound (TVUS) appears to be superior to transabdominal ultrasound in the preoperative diagnosis of adnexal masses. Both techniques have lower specificity in premenopausal women than in postmenopausal women due to the cyclic menstrual changes in premenopausal ovaries (e.g., transient corpus luteum cysts) that can cause difficulty in interpretation. The randomized prospective Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO-1) found no reduction in mortality with the annual use of combined TVUS and cancer antigen 125 (CA-125) in screening asymptomatic postmenopausal women at general-population risk of ovarian cancer.[124]

Data are limited regarding the potential benefit of TVUS in screening women at inherited risk of ovarian cancer. A number of retrospective studies have reported experience with ovarian cancer screening in high-risk women using TVUS with or without CA-125.[7,125-135] However, there is little uniformity in the definition of high-risk criteria and compliance with screening, and in whether cancers detected were incident or prevalent. One of the largest reported studies included 888 BRCA1/BRCA2 mutation carriers who were screened annually with TVUS and CA-125. Ten women developed ovarian cancer; five of the ten developed interval cancers after normal screening results within 3 to 10 months before diagnosis. Five of the ten ovarian cancers were screen-detected incident cases, which had normal screening results within 6 to 14 months before diagnosis. Of these five cases, four were stage IIIB or IV.[125]

A similar study reported the results of annual TVUS and CA-125 in a cohort of 312 high-risk women (152 BRCA1/BRCA2 mutation carriers).[127] Of the four cancers that were detected due to abnormal TVUS and CA-125, all four patients were symptomatic, and three had advanced-stage disease. Annual screening of BRCA1/BRCA2 mutation carriers with pelvic ultrasound, TVUS, and CA-125 failed to detect early-stage ovarian cancer among 241 BRCA1/BRCA2 mutation carriers in a study from the Netherlands.[136] Three cancers were detected over the course of the study, all advanced stage IIIC disease.[136] Finally, a study of 1,100 moderate- and high-risk women who underwent annual TVUS and CA-125 reported that ten of 13 ovarian tumors were detected due to screening. Only five of ten were stage I or II.[126] There are limited data related to the efficacy of semiannual screening with TVUS and CA-125.[7,134]

In the United Kingdom Familial Ovarian Cancer Screening Study, 3,563 women with an estimated 10% or higher lifetime risk of ovarian cancer were screened with annual ultrasound and serum CA-125 measurements for a mean of 3.2 years. Four of 13 screen-detected cancers were stage I or II. Women screened within the previous year were less likely to have higher than stage IIIC disease; there was also a trend towards better rates of optimal cytoreduction and improved overall survival. Furthermore, most of the cancers occurred in women with known ovarian cancer susceptibility genes, identifying a cohort at highest cancer risk for consideration of screening.[137] Phase II of this study increased the frequency of screening to every 4 months; the impact of this is not yet available.

The first prospective study of TVUS and CA-125 with survival as the primary outcome was completed in 2009. Of the 3,532 high-risk women screened, 981 were BRCA mutation carriers, 49 of whom developed ovarian cancer. The 5- and 10-year survival was 58.6% (95% CI, 50.9–66.3) and 36% (95% CI, 27–45), respectively, and there was no difference in survival between carriers and noncarriers. A major limitation of the study was the absence of a control group. Despite limitations, this study suggests that annual surveillance by TVUS and CA-125 level appear to be ineffective in detecting tumors at an early stage to substantially influence survival.[138]

Level of evidence: 4

Serum CA-125

Serum CA-125 screening for ovarian cancer in high-risk women has been evaluated in combination with TVUS in a number of retrospective studies, as described in the previous section.[7,125-134]

The National Institutes of Health (NIH) Consensus Statement on Ovarian Cancer recommended against routine screening of the general population for ovarian cancer with serum CA-125. (Refer to the Combined CA-125 and TVU section in the PDQ summary on Ovarian Cancer Screening for more information.) The NIH Consensus Statement did, however, recommend that women at inherited risk of ovarian cancer undergo TVUS and serum CA-125 screening every 6 to 12 months, beginning at age 35 years.[139] The Cancer Genetics Studies Consortium task force has recommended that female carriers of a deleterious BRCA1 mutation undergo annual or semiannual screening using TVUS and serum CA-125 levels, beginning at age 25 to 35 years.[9] Both recommendations are based solely on expert opinion and best clinical judgment.

Level of evidence: 5

Other candidate ovarian cancer biomarkers

The need for effective ovarian cancer screening is particularly important for women carrying mutations in BRCA1 and BRCA2, and the mismatch repair (MMR) genes (e.g., MLH1, MSH2, MSH6, PMS2), disorders in which the risk of ovarian cancer is high. There is a special sense of urgency for BRCA1 mutation carriers, in whom cumulative lifetime risks of ovarian cancer may exceed 40%.

Thus, it is expected that many new ovarian cancer biomarkers (either singly or in combination) will be proposed as ovarian cancer screening strategies during the next 5 to 10 years. While this is an active area of research with a number of promising new biomarkers in early development, at present, none of these biomarkers alone or in combination have been sufficiently well studied to justify their routine clinical use for screening purposes, either in the general population or in women at increased genetic risk.

Before information related to emerging ovarian cancer biomarkers is addressed, it is important to consider the several steps that are required to develop and, more importantly, validate a new biomarker. One useful framework is that published by the National Cancer Institute Early Detection Research Network investigators.[140] They indicated that the goal of a cancer-screening program is to detect tumors at an early stage so that treatment is likely to be successful. The gold standard by which such programs are judged is whether the death rate from the cancer for which screening is performed is reduced among those being screened. In addition, the screening test must be sufficiently noninvasive and inexpensive to allow widespread use in the population to be screened. Maintaining high test specificity (i.e., few false-positive results) is essential for a population screening test, because even a low false-positive rate results in many people having to undergo unnecessary and costly diagnostic procedures and psychological stress. It is likely that the use of several such cancer biomarkers in combination will be required for a screening test to be both sensitive and specific.

Furthermore, a clinically useful test must have a high PPV (a parameter derived from sensitivity, specificity, and disease prevalence in the screened population). Practically speaking, a biomarker with a PPV of 10% implies that ten surgical procedures would be required to identify one case of ovarian cancer; the remaining nine surgeries would represent false-positive test findings. In general, the ovarian cancer research community considers biomarkers with a PPV less than 10% to be clinically unacceptable, given the morbidity related to bilateral salpingo-oophorectomy. Finally, it is important to keep in mind that while novel biomarkers may be present in the sera of women with advanced ovarian cancer (who represent most cases analyzed in the early phases of biomarker development), they may or may not be detectable in women with early-stage disease, which is essential if the screening test is to be clinically useful.

It has been suggested that there are five general phases in biomarker development and validation:

Phase I — Preclinical exploratory studies

  • Identify potentially discriminating biomarkers.
  • Usually done by comparing gene over- or underexpression in the tumor compared with normal tissue.
  • Because many exploratory analyses in large numbers of genes are performed at this stage, one or more may seem to have good discriminating ability between cancers and normal tissue by random chance alone.

Phase 2 — Clinical assay development for clinical disease

  • Develop a clinical assay that can be obtained on noninvasively obtained samples (e.g., a blood specimen).
  • Often the test targets the protein product of one of the genes found to be of interest in phase I.
  • The goal is to describe the performance characteristics of the assay for distinguishing between subjects with and without cancer. At this point, the assay should be in its final configuration and remain stable throughout the following phases.
  • IMPORTANT: Because the case subjects in a phase 2 study already have cancer, with assay results obtained at the time of disease diagnosis, one cannot determine whether disease can be detected early with a given biomarker.

Phase 3 — Retrospective longitudinal repository studies

  • Compare clinical specimens collected from cancer case subjects before their clinical diagnosis with specimens from subjects who have not developed cancer.
  • Evaluate, as a function of time before clinical diagnosis, the biomarker’s ability to detect preclinical disease.
  • Define the criteria for a positive screening test in preparation for phase 4.
  • Explore the influence of other patient characteristics (e.g., age, gender, smoking status, medication use) on the ability of the biomarker to discriminate between those with and without preclinical disease.

Phase 4 — Prospective screening studies

  • Determine the operating characteristics of the biomarker-based screening test in a population for which the test is intended.
  • Measure the detection rate (number of abnormal tests among all those with the disease) and the false-positive rate (the number of abnormal tests among all those who do not have the disease).
  • Evaluate whether the cancers detected by the test are being found at an early stage, a point at which treatment is more likely to be curative.
  • Assess whether the test is acceptable in a population of persons for whom it is intended. Will subjects comply with the test schedule and results?

Phase 5 — Cancer control studies

  • Ideally, conduct randomized controlled clinical trials in clinically relevant populations, in which one arm is subjected to screening and appropriate intervention if screen-positive, while the other arm is not screened.
  • Determine whether the death rate of the cancer being screened for is reduced among those who use the screening test.
  • Obtain information about the costs of screening and treatment of screen-detected cancers.

Finally, for a validated biomarker test to be considered appropriate for use in a particular population, it must have been evaluated in that specific population without prior selection of known positives and negatives. In addition, the test must demonstrate clinical utility, that is, a positive net balance of benefits and risks associated with the application of the test. These may include improved health outcomes and net psychosocial and economic benefits.[141]

Ovarian cancer poses a unique challenge relative to the potential impact of false-positive test results. There are no reliable noninvasive diagnostic tests for early-stage disease, and clinically significant early-stage cancer may not be grossly visible at the time of exploratory surgery.[142] Consequently, it is likely that some patients will be reassured that their abnormal test does not indicate the presence of cancer only by having their ovaries and fallopian tubes surgically removed and examined microscopically. High test specificity (i.e., a very low false-positive rate) is required to avoid unnecessary surgery and induction of premature menopause women with in false-positive results.

Variations on CA-125
CA-125 plus an ovarian cancer symptom index

An ovarian cancer symptom index for predicting the presence of cancer was evaluated in 75 cases and 254 high-risk controls (BRCA mutation carriers or women with a strong family history of breast and ovarian cancer).[143] Women had a positive symptom index if they reported any of the predefined symptoms (bloating or increase in abdominal size, abdominal or pelvic pain, and difficulty eating or feeling full quickly) more than 12 times per month, occurring only within the prior 12 months. CA-125 values greater than 30 U/mL were considered abnormal. The symptom index independently predicted the presence of ovarian cancer, after controlling for CA-125 levels (P < .05). The combination of an elevated CA-125 and a positive-symptom index correctly identified 89.3% of the cases. The symptom index correlated with the presence of cancer in 50% of the affected women who did not have elevated CA-125 levels, but 11.8% of the high-risk controls without cancer also had a positive-symptom index. The authors suggested that a composite index that included both CA-125 and the symptom index had better performance characteristics than either test used alone, and that this strategy might be used as a first screen in a multistep screening program. Additional test performance validation and determination of clinical utility are required in unselected screening populations.

Level of evidence: 5

Risk of ovarian cancer algorithm

A novel modification of CA-125 screening is based on the hypothesis that rising CA-125 levels over time may provide better ovarian cancer screening performance characteristics than simply classifying CA-125 as normal or abnormal based on an arbitrary cut-off value. This has been implemented in the form of the risk of ovarian cancer algorithm (ROCA), an investigational statistical model that incorporates serial CA-125 test results and other covariates into a computation that produces an estimate of the likelihood that ovarian cancer is present in the screened subject. The first report of this strategy, based on reanalysis of 5,550 average-risk women from the Stockholm Ovarian Cancer screening trial, suggested that ovarian cancer cases and controls could be distinguished with 99.7% sensitivity, 83% specificity, and a PPV of 16%. That PPV represents an eightfold increase over the 2% PPV reported with a single measure of CA-125.[144] This report was followed by applying the ROCA to 33,621 serial CA-125 values obtained from the 9,233 average-risk postmenopausal women in a prospective British ovarian cancer screening trial.[145] The area under the receiver operator curve increased from 84% to 93% (P = .01) for ROCA compared with a fixed CA-125 cutoff. These observations represented the first evidence that preclinical detection of ovarian cancer might be improved using this screening strategy. A prospective study of 13,000 normal volunteers aged 50 years and older in England used serial CA-125 values and the ROCA to stratify participants into low, intermediate, and elevated risk subgroups.[146] Each had its own prescribed management strategy, including TVUS and repeat CA-125 either annually (low risk) or at 3 months (intermediate risk). Using this protocol, ROCA was found to have a specificity of 99.8% and a PPV of 19%.

Two prospective trials in England utilized the ROCA. The United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) randomly assigned normal-risk women to either (1) no screening, (2) annual ultrasound, or (3) multimodal screening (N = 202,638; accrual completed; follow-up ends in 2014), and the U.K. Familial Ovarian Cancer Screening Study (UKFOCSS) targeted high-risk women (accrual completed). There are also two high-risk cohorts using the ROCA under evaluation in the United States: the Cancer Genetics Network ROCA Study (N = 2,500; follow-up complete; analysis underway) and the Gynecologic Oncology Group Protocol 199 (GOG-0199; enrollment complete; follow-up ended in 2011).[147] Thus, additional data regarding the utility of this currently investigational screening strategy will become available within the next few years.

Level of evidence: 4

Miscellaneous new markers

A wide array of new candidate ovarian cancer biomarkers has been described during the past decade, e.g., HE4; mesothelin; kallikreins 6, 10, and 11; osteopontin; prostasin; M-CSF; OVX1; lysophosphatidic acid; vascular endothelial growth factor B7-H4; and interleukins 6 and 8.[148-150] These have been singly studied, in combination with CA-125, or in various other permutations. Most of the study populations are relatively small and comprise highly selected, known ovarian cancer cases and healthy controls of the type evaluated in early biomarker development phases 1 and 2. Results have not been consistently replicated in multiple studies; presently, none are considered ready for widespread clinical application.

Level of evidence: 5


Initially, mass spectroscopy of serum proteins was combined with complex analytic algorithms to identify protein patterns that might distinguish between ovarian cancer cases and controls.[151] This approach assumed that pattern recognition alone would be sufficient to permit such discrimination, and that identification of the specific proteins responsible for the patterns identified was not required. This strategy was modified, using similar laboratory tools, to identify finite numbers of specific known serum markers that may be used in place of, or in conjunction with, CA-125 measurements for the early detection of cancer.[152] These studies [150,153] have generally been small case-control studies that are limited by sample size and the number of early-stage cancer cases included. Further evaluation is needed to determine whether any additional markers identified in this fashion have clinical utility for the early detection of ovarian cancer in the unselected clinical population of interest.

Level of evidence: 5

Multiplex assays

Because individual biomarkers have not met the criteria for an effective screening test, it has been suggested that it may be necessary to combine multiple ovarian cancer biomarkers to obtain satisfactory screening test results. This strategy was employed to quantitatively analyze six serum biomarkers (leptin, prolactin, osteopontin, insulin-like growth factor II, macrophage inhibitory factor, and CA-125), using a multiplex, bead-based platform.[154] A similar assay was available commercially under the trade name OvaSure until its voluntary withdrawal from the market by the manufacturer.[Response to FDA Warning Letter]

The cases in this study were newly diagnosed ovarian cancer patients who had blood collected just before surgery: 36 were stage I and II; 120 were stage III and IV. The controls were healthy age-matched individuals who had not developed ovarian cancer within 6 months of blood draw. Neither cases nor controls in this study were well characterized regarding their familial and/or genetic risk status, but they have been suggested to comprise a high-risk population. First, 181 controls and 113 ovarian cancer cases were tested to determine the initial panel of biomarkers that best discriminated between cases and controls (training set). The resulting panel was applied to an additional 181 controls and 43 ovarian cancer cases (test set). Pooling both early- and late-stage ovarian cancer across the combined training and test sets, performance characteristics were reported as a sensitivity of 95.3% and a specificity of 99.4%, with a PPV of 99.3% and a negative predictive value of 99.2%, using a formula that assumed an ovarian cancer prevalence of about 50%, as seen in the highly selected research population.

To avoid biases that may make test performance appear to be better than it really is, combining training populations and test populations in analyses of this sort is generally not recommended.[155] The most appropriate prevalence to use is the disease prevalence in the unselected population to be screened. The prevalence of ovarian cancer in the general population is 1 in 2,500. In a correction to their manuscript,[154] the authors assumed that the prevalence of ovarian cancer in the screened population was 1 in 2,500 (0.04%) and recalculated the PPV to be only 6.5%. On that basis, the investigators have retracted their claim that this test is suitable for population screening. If this test were used in patients at increased risk of ovarian cancer, the actual prevalence in such a target population is likely to be higher than that observed in the general population, but well below the assumed 50% figure used in the published analysis. This revised PPV of 6.5% indicates that approximately 1 in 15 women with a positive test would in fact have ovarian cancer, and only a fraction of those with ovarian cancer would be stages I or II. The remaining 14 positive tests would represent false-positives, and these women would be at risk of exposure to needless anxiety and potentially morbid diagnostic procedures, including bilateral salpingo-oophorectomy.

Viewed in the context of the criteria previously described,[140] this assay would be classified as phase 2 in its development. While this appears to be a promising avenue of ovarian cancer screening research, additional validation is required, particularly in an unselected population representative of the clinical screening population of interest. A position statement by the Society of Gynecologic Oncologists regarding this assay indicated “it is our opinion that additional research is needed to validate the test’s effectiveness before offering it to women outside of the context of a research study conducted with appropriate informed consent under the auspices of an institutional review board.”

Level of evidence: 5

Risk-reducing surgery

Numerous studies have found that women with an inherited risk of breast and ovarian cancer have a decreased risk of ovarian cancer after RRSO. A retrospective study of 551 women with disease-associated BRCA1 or BRCA2 mutations found a significant reduction in risk of breast cancer (HR, 0.47; 95% CI, 0.29–0.77) and ovarian cancer (HR, 0.04; 95% CI, 0.01–0.16) after bilateral oophorectomy.[75] A prospective, single-institution study of 170 women with BRCA1 or BRCA2 mutations showed a similar trend.[76] With oophorectomy, the HR was 0.15 (95% CI, 0.02–1.31) for ovarian, fallopian tube, or primary peritoneal cancer, and 0.32 (95% CI, 0.08–1.2) for breast cancer; the HR for either cancer was 0.25 (95% CI, 0.08–0.74). A prospective multicenter study of 1,079 women who were followed up for a median of 30 to 35 months found that RRSO is highly effective in reducing ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. This study also showed that RRSO was associated with reductions in breast cancer risk in both BRCA1 and BRCA2 mutation carriers; however, the breast cancer risk reduction was more pronounced in BRCA2 carriers (HR, 0.28; 95% CI, 0.08–0.92).[77] In a case-control study in Israel, bilateral oophorectomy was associated with reduced ovarian/peritoneal cancer risks (OR, 0.12; 95% CI, 0.06–0.24).[156] A meta-analysis of all reports of RRSO and breast and ovarian/fallopian tube cancer in BRCA1/BRCA2 mutation carriers confirmed that RRSO was associated with a significant reduction in risk of ovarian or fallopian tube cancer (HR, 0.21; 95% CI, 0.12–0.39). The study also found a significant reduction in risk of breast cancer (overall: HR, 0.49; 95% CI, 0.37–0.65; BRCA1: HR, 0.47; 95% CI, 0.35–0.64; BRCA2: HR, 0.47; 95% CI, 0.26–0.84).[78] Subsequently, a matched case-control study of 2,854 pairs of women with a BRCA1 or BRCA2 mutation with or without breast cancer showed a greater breast cancer risk reduction with surgical menopause (OR, 0.52; 95% CI, 0.40–0.66) than with natural menopause (OR, 0.81; 95% CI, 0.62–1.07). This study also reported a highly significant reduction in breast cancer risk among women who had an oophorectomy after natural menopause (OR, 0.13; 95% CI, 0.02–0.54; P = .006).[157] Another study of 5,783 women with BRCA1 or BRCA2 mutations who were followed up for an average of 5.6 years reported that 68 of 186 women who developed either ovarian, fallopian, or peritoneal cancer had died. The HR for these cancers with bilateral oophorectomy was 0.20 (95% CI, 0.13–0.30; P = .001). In BRCA mutation carriers without a history of cancer, the HR for all-cause mortality to age 70 years associated with oophorectomy was 0.23 (95% CI, 0.13–0.39; P < .001).[158]

In addition to a reduction in risk of ovarian and breast cancer, RRSO may also significantly improve overall survival (OS) and breast and ovarian cancer-specific survival. A prospective cohort study of 666 women with germline mutations in BRCA1 and BRCA2 found an HR for overall mortality of 0.24 (95% CI, 0.08–0.71) in women who had RRSO compared with women who did not.[159] This study provides the first evidence to suggest a survival advantage among women undergoing RRSO.

Studies on the degree of risk reduction afforded by RRSO have begun to clarify the spectrum of occult cancers discovered at the time of surgery. Primary fallopian tube cancers, primary peritoneal cancers, and occult ovarian cancers have all been reported. Several case series have reported a prevalence of malignant findings among mutation carriers undergoing risk-reducing oophorectomy. Among studies with 50 or more subjects, prevalence ranged from 2.3% to 11%.[7,76,160-166] Some of the variation in prevalence probably results from differences in surgical technique, pathologic handling of the tissues, and age at RRSO. In addition to occult cancers, premalignant lesions have also been described in fallopian tube tissue removed for prophylaxis. In one series of 12 women with BRCA1 mutations undergoing risk-reducing surgery, 11 had hyperplastic or dysplastic lesions identified in the tubal epithelium. In several of the cases the lesions were multifocal.[167] These pathologic findings are consistent with the identification of germline BRCA1 and BRCA2 mutations in women affected with both tubal and primary peritoneal cancers.[164,168-173] One study suggests a causal relationship between early tubal carcinoma, or tubal intraepithelial carcinoma, and subsequent invasive serous carcinoma of the fallopian tube, ovary, or peritoneum.[174] (Refer to the Pathology of ovarian cancer section of this summary for more information.)

These findings support the inclusion of fallopian tube cancers, which account for less than 1% of all gynecologic cancers in the general population, as a component of hereditary ovarian cancer syndrome and necessitate removal of the fallopian tubes at the time of risk-reducing surgery. There is clear evidence that RRSO must include routine collection of peritoneal washings and careful adherence to comprehensive pathologic evaluation of the entire adnexa with the use of serial sectioning.[166,175,176]

The peritoneum, however, appears to remain at low risk for the development of a Müllerian-type adenocarcinoma, even after oophorectomy.[177-181] Of the 324 women from the Gilda Radner Familial Ovarian Cancer Registry who underwent risk-reducing oophorectomy, 6 (1.8%) subsequently developed primary peritoneal carcinoma. No period of follow-up was specified.[182] Among 238 individuals in the Creighton Registry with BRCA1/BRCA2 mutations who underwent risk-reducing oophorectomy, 5 subsequently developed intra-abdominal carcinomatosis (2.1%). Of note, all five of these women had BRCA1 mutations.[183] A study of 1,828 women with a BRCA1 or BRCA2 mutation found a 4.3% risk of primary peritoneal cancer at 20 years after RRSO.[184]

Given the current limitations of screening for ovarian cancer and the high risk of the disease in BRCA1 and BRCA2 mutation carriers, NCCN Guidelines recommend RRSO between the ages of 35 and 40 years or upon completion of childbearing, as an effective risk-reduction option. Optimal timing of RRSO must be individualized, but evaluating a woman's risk of ovarian cancer based on mutation status can be helpful in the decision-making process. In a large study of U.S. BRCA1 and BRCA2 families, age-specific cumulative risk of ovarian cancer at age 40 years was 4.7% for BRCA1 mutation carriers and 1.9% for BRCA2 mutation carriers.[185] In a combined analysis of 22 studies of BRCA1 and BRCA2 mutation carriers, risk of ovarian cancer for BRCA1 mutation carriers increased most sharply from age 40 years to age 50 years, while the risk for BRCA2 mutation carriers was low before age 50 years but increased sharply from age 50 years to age 60 years.[186] In a population-based study of BRCA mutations in ovarian cancer patients, patients with BRCA2 mutations had a significantly later age of onset than patients with BRCA1 mutations (57.3 years [range, 40–72] vs. 52.6 years [range, 31–78]).[187] In summary, women with BRCA1 mutations may consider RRSO for ovarian cancer risk reduction at a somewhat earlier age than women with BRCA2 mutations; however, women with BRCA2 mutations may still consider early RRSO for breast cancer risk reduction.

The role of concomitant hysterectomy at the time of RRSO in BRCA1/2 mutation carriers is controversial. There is concern that a small portion of the proximal fallopian tube remains when hysterectomy is not performed, thereby resulting in a residual increased risk of fallopian tube cancer. However, several studies that have examined fallopian tube cancers indicate that the vast majority of these cancers occur in the distal or midportion of the fallopian tube, suggesting that the occurrence of proximal fallopian tube cancer would be a very unlikely event. Some reports have suggested an increased incidence of uterine carcinoma in mutation carriers,[188] whereas others have not confirmed an elevated risk of serous uterine cancer.[189] A prospective study of 857 women suggested that any increased incidence of uterine cancer appeared to be among BRCA1 mutation carriers who used tamoxifen;[190] this was confirmed by the same group in a later study of 4,456 BRCA1/2 mutation carriers.[191] Even with tamoxifen use, the excess risk of endometrial cancer was small, with a 10-year cumulative risk of 2%.[191] In addition, the use of tamoxifen can now be minimized, given the options of raloxifene (which does not increase the risk of uterine cancer) and aromatase inhibitors for breast cancer prevention in postmenopausal women. Therefore, on the basis of the current understanding of the risk of uterine cancer in BRCA mutation carriers, there is not a singularly compelling reason to consider hysterectomy at the time of RRSO to reduce the risk of uterine cancer. Concomitant hysterectomy does offer the advantage of simplifying the hormone replacement regimen for BRCA mutation carriers who choose to take hormones. After hysterectomy, women can take estrogen alone (which does not increase the risk of breast cancer), without progestins, thereby eliminating the risk of postmenopausal bleeding.

Studies indicate that removal of the uterus is not necessary as a risk-reducing procedure. No increased BRCA mutation prevalence was seen among 200 Jewish women with endometrial carcinoma or 56 unselected women with uterine papillary serous carcinoma.[189,192] However, small studies have reported that uterine papillary serous carcinoma may be part of the BRCA-associated spectrum of disease.[188,193,194] The cumulative risk of endometrial cancer among BRCA mutation carriers with ER-positive breast cancer treated with tamoxifen may be an additional factor to consider when counseling this population about prophylactic hysterectomy.[190,195] Hysterectomy might also be considered in young, unaffected BRCA mutation carriers who may want to use HRT but for whom hysterectomy would offer a simplified regimen of estrogen alone. In counseling a BRCA mutation carrier about optimal risk-reducing surgical options, aggregate data suggest that the risk from residual tubal tissue after RRSO is the least compelling reason to suggest hysterectomy. Therefore, in the absence of tamoxifen use or other underlying uterine or cervical problems, hysterectomy is not a routine component of RRSO for BRCA carriers.

For women who are premenopausal at the time of surgery, the symptoms of surgical menopause (e.g., hot flashes, mood swings, weight gain, and genitourinary complaints) can cause a significant impairment in their quality of life. To reduce the impact of these symptoms, providers have often prescribed a time-limited course of systemic HRT after surgery. (Refer to the Hormone replacement therapy in BRCA1/BRCA2 mutation carriers section of this summary for more information.)

Studies have examined the effect of RRSO on quality of life (QOL). One study examined 846 high-risk women of whom 44% underwent RRSO and 56% had periodic screening.[196] Of the 368 BRCA1/BRCA2 mutation carriers, 72% underwent RRSO. No significant differences were observed in QOL scores (as assessed by the Short Form-36) between those with RRSO or screening or compared with the general population; however, women with RRSO had fewer breast and ovarian cancer worries (P < .001) and more favorable cancer risk perception (P < .05) but more endocrine symptoms (P < .001) and worse sexual functioning (P < .05). Of note, 37% of women used HRT after RRSO, although 62% were either perimenopausal or postmenopausal.[196] Researchers then examined 450 premenopausal high-risk women who had chosen either RRSO (36%) or screening (64%). Of those in the RRSO group, 47% used HRT. HRT users (n = 77) had fewer vasomotor symptoms than did nonusers (n = 87; P < .05), but they had more vasomotor symptoms than did women in the screening group (n = 286). Likewise, women who underwent RRSO and used HRT had more sexual discomfort due to vaginal dryness and dyspareunia than did those in the screening group (P < .01). Therefore, while such symptoms are improved via HRT use, HRT is not completely effective, and additional research is warranted to address these important issues.

The long-term nononcologic effects of RRSO in BRCA1/BRCA2 mutation carriers are unknown. In the general population, RRSO has been associated with increased cardiovascular disease, dementia, death from lung cancer, and overall mortality.[197-201] When age at oophorectomy has been analyzed, the most detrimental effect has been seen in women who undergo RRSO before age 45 years and do not take estrogen replacement therapy.[197] BRCA1/BRCA2 mutation carriers undergoing RRSO may have an increased risk of metabolic syndrome.[202] RRSO has also been associated with an improvement in short-term mortality in this population.[159] The benefits related to cancer risk reduction after RRSO are clear, but further data on the long-term nononcologic risks and benefits are needed.

Bilateral salpingectomy

Bilateral salpingectomy has been suggested as an interim procedure to reduce risk in BRCA mutation carriers.[203,204] There are no data available on the efficacy of salpingectomy as a risk-reducing procedure. The procedure preserves ovarian function and spares the premenopausal patient the adverse effects of a premature menopause. The procedure can be performed using a minimally invasive approach, and a subsequent bilateral oophorectomy could be deferred until the patient approaches menopause. While the data make a compelling argument that some pelvic serous cancers in BRCA mutation carriers originate in the fallopian tube, some cancers clearly arise in the ovary. Furthermore, bilateral salpingectomy could give patients a false sense of security that they have eliminated their cancer risk as completely as if they had undergone a bilateral salpingo-oophorectomy. A small study of 14 young BRCA mutation carriers documented the procedure as feasible.[205] However, efficacy and impact on ovarian function was not assessed in this study. Future prospective trials are needed to establish the validity of the procedure as a risk-reducing intervention.

Oral contraceptives

OCs have been shown to have a protective effect against ovarian cancer in the general population.[206] Several studies, including a large, multicenter, case-control study, showed a protective effect,[110,207-210] while one population-based study from Israel failed to demonstrate a protective effect.[211]

There has been great interest in determining whether a similar benefit extends to women who are at increased genetic risk of ovarian cancer. A multicenter study of 799 ovarian cancer patients with BRCA1 or BRCA2 mutations, and 2,424 control patients without ovarian cancer but with a BRCA1 or BRCA2 mutation, showed a significant reduction in ovarian cancer risk with use of OCs (OR, 0.56; 95% CI, 0.45–0.71). Compared with never-use of OCs, duration up to 1 year was associated with an OR of 0.67 (95% CI, 0.50–0.89). The OR for each year of OC use was 0.95 (95% CI, 0.92–0.97), with a maximum observed protection at 3 years to 5 years of use.[210] This study included women from a prior study by the same authors and confirmed the results of that prior study.[110] A population-based case-control study of ovarian cancer did not find a protective benefit of OC use in BRCA1 or BRCA2 mutation carriers (OR, 1.07 for ≥5 years of use), although they were protective, as expected, among noncarriers (OR, 0.53 for ≥5 years of use).[211] A small, population-based, case-control study of 36 BRCA1 mutation carriers, however, observed a similar protective effect in both mutation carriers and noncarriers (OR, approximately 0.5).[209] A multicenter study of subjects drawn from numerous registries observed a protective effect of OCs among the 147 BRCA1 or BRCA2 mutation carriers, with ovarian cancer compared with the 304 matched mutation carriers without cancer (OR, 0.62 for ≥6 years of use).[208] Finally, a meta-analysis of 18 studies that included 13,627 BRCA mutation carriers, 2,855 of whom had breast cancer and 1,503 of whom had ovarian cancer, reported a significantly reduced risk of ovarian cancer (summary relative risk, 0.50; 95% CI, 0.33–0.75) associated with OC use. The authors also reported significantly greater risk reductions with longer duration of OC use (36% reduction in risk for each additional 10 years of OC use). There was no association with breast cancer risk and use of OC pills formulated after 1975.[106]

Level of evidence: 3aii

(Refer to the Oral contraceptives section in the Reproductive factors section of this summary for a discussion of OC use and breast cancer in this population.)

Reproductive factors

It has been suggested that incessant ovulation, with repetitive trauma and repair to the ovarian epithelium, increases the risk of ovarian cancer. In epidemiologic studies in the general population, physiologic states that prevent ovulation have been associated with decreased risk of ovarian cancer. It has also been suggested that chronic overstimulation of the ovaries by luteinizing hormone plays a role in ovarian cancer pathogenesis.[212] Most of these data derive from studies in the general population, but some information suggests the same is true in women at high risk due to genetic predisposition.


Among the general population, parity decreases the risk of ovarian cancer by 45% compared with nulliparity. Subsequent pregnancies appear to decrease ovarian cancer risk by 15%.[213] Earlier studies of women with BRCA1/BRCA2 mutations showed that parity decreases the risk of ovarian cancer.[211,214] In a large case-control study, parity was associated with a significant reduction in ovarian cancer risk in women with BRCA1 mutations, OR 0.67 (CI, 0.46–0.96).[210] For each birth, BRCA1 mutation carriers had an OR of 0.87 (CI, 0.79–0.95). In this same study, parity was associated with an increase in ovarian cancer risk in BRCA2 mutation carriers; however, there was no significant trend for each birth, OR 1.08 (CI, 0.90–1.29). Further studies are necessary to define the association of parity and risk of ovarian cancer in BRCA2 mutation carriers, but for BRCA1 carriers, each live birth significantly decreases risk of ovarian cancer, as it does in sporadic ovarian cancer.

Lactation and tubal ligation

In the general population, breastfeeding is associated with a decrease in ovarian cancer risk.[215] In BRCA mutation carriers, data are limited. One study found no protective effect with breastfeeding.[214] A case-control study among women with BRCA1 or BRCA2 mutations demonstrates a significant reduction in risk of ovarian cancer (OR, 0.39) for women who have had a tubal ligation. This protective effect was confined to those women with mutations in BRCA1 and persists after controlling for OC use, parity, history of breast cancer, and ethnicity.[207] A case-control study of ovarian cancer in Israel found a 40% to 50% reduced risk of ovarian cancer among women undergoing gynecologic surgeries (tubal ligation, hysterectomy, unilateral oophorectomy, ovarian cystectomy, excluding bilateral oophorectomy).[156] The mechanism of protection is uncertain. Proposed mechanisms of action include decreased blood flow to the ovary, resulting in interruption of ovulation and/or ovarian hormone production; occlusion of the fallopian tube, thus blocking a pathway for potential carcinogens; or a reduction in the concentration of uterine growth factors that reach the ovary.[216] (Refer to the PDQ summary on Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Prevention for information relevant to the general population.)

Oral contraceptives

Refer to the Oral contraceptives section in the Chemoprevention section of this summary for more information.

Management of Male BRCA Mutation Carriers

There are data to suggest that men with BRCA gene mutations have an increased risk of various cancers including male breast cancer and prostate cancer (see Table 4).[187,217-221] However, clinical guidelines to manage male carriers with BRCA mutations are based on consensus statements and expert opinions because information is limited.[3,222,223]

There have been suggestions that BRCA2-associated prostate cancers are associated with aggressive disease phenotype.[224-229] Specifically, two recent studies have reported the median survival of male BRCA2 carriers with prostate cancer in the range of 4 to 5 years.[227,228] Furthermore, mortality rate was reported as 60% at 5 years in one of these studies, compared with 2% to 8% reported in the recent European [230] and North American [231] prostate-specific antigen (PSA) screening trials after comparable follow-up. The data have been more limited in BRCA1-associated prostate cancers, however a number of recent studies have suggested an aggressive disease phenotype as well.[224,226,229,232]

The benefits of PSA screening in BRCA carriers are unknown; however, there have been suggestions (based on very small studies) that PSA levels at prostate cancer diagnosis may be higher in carriers than noncarriers.[233,234] These findings suggest that PSA screening may be of potential utility in men with BRCA mutations, especially in view of the aggressive phenotype. Preliminary results of the IMPACT PSA screening study reported a PPV of 47.6% in 21 BRCA2 carriers undergoing biopsy on the basis of elevated PSA.[235] Because screening these men detected clinically significant prostate cancer, the authors suggest that these findings provide rationale for continued screening in such men; however, a survival benefit from such screening has not been shown. Ultimately, it is possible that information on BRCA mutation status in men may inform optimal screening and treatment strategies. Furthermore, recent data that the presence of a germline BRCA2 mutation is an independent prognostic factor for survival in prostate cancer led these authors to conclude that active surveillance may not be the optimal management strategy due to the aggressive disease phenotype.[228]

Screening for male breast cancer in BRCA mutation carriers as suggested by the NCCN clinical practice guidelines [3] includes breast self-exam training and education, clinical breast exam every 6 to 12 months, and consideration of a baseline mammogram. Annual mammogram is a consideration with the presence of gynecomastia or parenchymal/glandular breast density on baseline study. Furthermore, NCCN recommends prostate cancer screening for BRCA2 carriers starting at age 40 years.[3]

Reproductive Considerations in BRCA Mutation Carriers

Refer to the Prenatal diagnosis and preimplantation genetic diagnosis section in the Psychosocial Issues in Inherited Breast and Ovarian Cancer Syndromes section of this summary for more information.

Treatment Strategies

Breast cancer

Prognosis of BRCA1- and BRCA2-related breast cancer
BRCA1-related breast cancer

The distinct features of BRCA1-associated breast tumors are important in prognosis. In addition, there appears to be accelerated growth in BRCA1-associated breast cancer, which is suggested by high-proliferation indices and absence of the expected correlation of tumor size with lymph node status.[236] These pathological features are associated with a worse prognosis in breast cancer, and early studies suggested that BRCA1 mutation carriers with breast cancer may have a poorer prognosis compared with sporadic cases.[237-239] These studies particularly noted an increase in ipsilateral and contralateral second primary breast cancers in BRCA1 and BRCA2 mutation carriers.[240-242] (Refer to the Contralateral breast cancer in BRCA mutation carriers section of this summary for more information.) A retrospective cohort study of 496 AJ breast cancer patients from two centers compared the relative survival among 56 BRCA1/BRCA2 mutation carriers followed up for a median of 116 months. BRCA1 mutations were independently associated with worse disease-specific survival. The poorer prognosis was not observed in women who received chemotherapy.[243] A large population-based study of incident cases of breast cancer among women in Israel failed to find a difference in OS for carriers of BRCA1 founder mutations (n = 76) compared with noncarriers (n = 1,189).[244] Similar findings were seen in a European cohort with no differences in disease-free survival in BRCA1-associated breast cancers.[245] Subsequently, a prospective cohort study of 3,220 women from North America and Australia with incident breast cancer (including 93 BRCA1 carriers and 71 BRCA2 carriers) who were followed up for a mean of 7.9 years reported similar outcomes among BRCA1/2 carriers and those with sporadic disease.[246] However, results were based on chemotherapy regimens used in the late 1990s and did not adjust for surgical approach (lumpectomy vs. mastectomy) and effect of oophorectomy.

A group of researchers reported the results of BRCA1/2 testing in 77 unselected patients with triple-negative breast cancer. Of these, 15 (19.5%) had either a germline BRCA1 (n = 11; 14%) or BRCA2 (n = 3; 4%) mutation or a somatic BRCA1 (n = 1) mutation. The median age at cancer diagnosis was 45 years in BRCA1 mutation carriers and 53 years in noncarriers (P = .005). Interestingly, this study also demonstrated a lower risk of relapse in those with BRCA1 mutation–associated triple-negative breast cancer than in nonmutated triple-negative breast cancer, although this study was limited by its size.[247] A second study examining clinical outcome in BRCA1-associated versus non–BRCA1-associated triple-negative breast cancer showed no difference, although there was a trend toward more brain metastases in those with BRCA1-associated breast cancer. In both of these studies, all but one BRCA1 mutation carrier received chemotherapy.[248]

A Polish study of 3,345 patients younger than 50 years with stages I through III breast cancer studied the impact of a BRCA1 mutation on prognosis. In this cohort, 233 patients (7%) carried one of three Polish BRCA1 founder mutations (5382insC, C61G, or 4154delA). BRCA1 carriers were younger and more frequently ER-negative and HER2/neu-negative. Ten-year survival was similar (80.9% in BRCA1 carriers and 82.2% in noncarriers). Oophorectomy was associated with improved survival in BRCA1 carriers (HR, 0.30; 95% CI 0.12–0.75).[249]

In summary, BRCA1-associated tumors appear to have a prognosis similar to sporadic tumors despite having clinical, histopathologic, and molecular features that indicate a more aggressive phenotype. BRCA1 mutation carriers who do not receive chemotherapy may have a worse prognosis. However, because most BRCA1-associated breast cancers are triple negative, they are usually treated with adjuvant chemotherapy. Work is ongoing to determine whether BRCA1-associated breast cancers should receive different therapy than do sporadic tumors. (Refer to the Role of BRCA1 and BRCA2 in response to systemic therapy section of this summary for more information.)

BRCA2-related breast cancer

Early studies of the prognosis of BRCA2-associated breast cancer have not shown substantial differences in comparison with sporadic breast cancer.[244,250-252] A small study reported statistically significant higher OS in BRCA2 mutation carriers with metastatic breast cancer.[245]

Systemic therapy
Role of BRCA1 and BRCA2 in response to systemic therapy

A growing body of preclinical and clinical literature suggests a differential response of BRCA-related breast cancers to systemic chemotherapy. This is based on the emerging understanding of the functions of these genes in response to DNA damage and mitotic spindle machinery control. As several chemotherapeutic agents target either DNA or mitotic spindle structural integrity, the lack of BRCA functions could alter response to these agents. Intact BRCA1 and BRCA2 are important in DNA repair by homologous recombination. Preclinical studies of BRCA1- and BRCA2-deficient cell lines have suggested increased sensitivity to drugs that cause DNA damage that is repaired by homologous recombination, such as cisplatin, carboplatin and mitomycin C.[253,254] Conversely, intact BRCA1 may be important for spindle poisons, such as taxanes, to be effective.[255,256] Preclinical models suggest decreased sensitivity to these drugs in mutated cell lines.[257,258]

Evidence of the role of BRCA1/BRCA2 mutations in humans is evolving. A number of small studies have suggested increased clinical response rates, particularly in BRCA1 mutation carriers, but design limitations make it difficult to use these studies to guide clinical recommendations.

Retrospective and prospective studies [259-263] have suggested a higher-than-expected response rate to chemotherapy in BRCA1 mutation carriers receiving neoadjuvant chemotherapy for breast cancer, especially when using cisplatin.[261] Several studies regarding the Polish experience on the use of preoperative chemotherapy in BRCA1 mutation carriers have been published. The largest report [261] includes data on 102 BRCA1 mutation carriers of which 51 were described in two prior studies.[264,259] Women were identified from a registry of 6,903 patients. Those with a Polish founder mutation in BRCA1 (5382insC, C61G, or 4153delA) who had also received preoperative chemotherapy were included. Of these 102 women, 22% had a pathologic complete response (pCR). Twelve women received cisplatin chemotherapy as part of a clinical trial, ten of whom had a pCR (83%). All other patients were examined retrospectively. Of these, 14 received cyclophosphamide, methotrexate, and fluorouracil with one pCR (7%), 25 received doxorubicin and docetaxel with two pCRs (8%), and 51 received doxorubicin and cyclophosphamide with 11 pCRs (22%). To place this in the context of other available data, several retrospective studies in BRCA1 and BRCA2 mutation carriers typically treated with anthracycline-based chemotherapy have demonstrated clinical complete response rates of 46% to 90% after preoperative chemotherapy,[260,262] particularly in BRCA1 mutation carriers.[263] A trial of preoperative cisplatin in triple-negative breast cancer patients demonstrated a pCR of 22%; however, both BRCA1 mutation carriers in the study had a pCR.[265]

A small study reported a statistically significant higher sensitivity to first-line treatment in BRCA2 mutation carriers with metastatic breast cancer than in those with sporadic metastatic cancer; conversely, no statistically significant differences were observed for BRCA1 carriers with metastatic breast cancer.[245] No data directly compare different types of chemotherapy in BRCA1 and BRCA2 mutation carriers. However, in a small study of 20 BRCA1 mutation carriers with metastatic breast cancer, there was an overall response rate of 80% to cisplatin therapy.[266] Further studies are evaluating the role of platinums in BRCA1- and BRCA2-associated metastatic cancer.

Thus, the preclinical and clinical data suggesting improved chemotherapy response rates in BRCA1-associated breast cancer are consistent with the emerging understanding of BRCA1 function in DNA-damage response and cell-cycle regulation. While these findings raise the possibility that germline status may influence treatment choices, there is insufficient evidence at this time to support treating mutation carriers with different regimens in the adjuvant and neoadjuvant setting.

Another specific process to exploit in BRCA1/BRCA2-deficient tumors is the poly (ADP-ribose) polymerase (PARP) pathway. Whereas BRCA1 and BRCA2 are active in the repair of double-stranded DNA breaks by homologous recombination, PARP is involved in the repair of single-stranded breaks by base excision repair. It was hypothesized that inhibiting base excision repair in BRCA1- or BRCA2-deficient cells would lead to enhanced cell death as two separate repair mechanisms would be compromised—the concept of synthetic lethality. In vitro studies have shown that PARP inhibition kills BRCA mutant cells with high specificity.[267,268]

PARP inhibitors quickly entered clinical trials. A phase I study of an oral PARP inhibitor called olaparib has demonstrated tolerability (with minimal side effects) and activity in BRCA1 and BRCA2 mutation carriers with breast cancer, ovarian cancer, and prostate cancer.[269] Phase II trials in breast cancer have confirmed tolerability and efficacy of olaparib in mutation carriers.[270,271] Two sequential cohorts of 27 patients, each receiving 400 mg twice daily of olaparib and 100 mg twice daily of olaparib were examined. The women had received a median of three prior chemotherapeutic regimens. Responses were seen in both groups. In the group that received 400 mg twice daily, 41% (11 of 27) of patients had a RECIST-defined response, and another 44% (12 of 27) had stable disease. In the group that received 100 mg twice daily group, 22% (6 of 27) had responses, and 44% (12 of 27) had stable disease. Although the two dose levels cannot be directly compared because they were not randomized, more responses were seen in the higher-dose cohort. Several other PARP inhibitors are in development.

Preclinical models suggest that the combination of PARP inhibitors and chemotherapy may be synergistic;[272,273] however, such synergy may come at the expense of toxicity. The results of ongoing and recently completed clinical trials are awaited with interest.

(Refer to the Systemic therapy section in the Ovarian cancer section of this summary for more information about treatment strategies for BRCA-associated ovarian cancer.)

Local therapy
Breast conservation therapy for BRCA1/BRCA2 mutation carriers

While lumpectomy plus radiation therapy has become standard local-regional therapy for women with early-stage breast cancer, its use in women with a hereditary predisposition for breast cancer who do not choose immediate bilateral mastectomy is more complicated. Initial concerns about the potential for therapeutic radiation to induce tumors or cause excess toxicity in BRCA1/BRCA2 mutation carriers were unfounded.[274-276] Despite this, an increased rate of second primary breast cancer exists, which could impact treatment decisions.

Because of the established increased risk of second primary breast cancers, which may be up to 60% in younger women with BRCA1 mutations,[242] some BRCA1/BRCA2 mutation carriers choose bilateral mastectomy at the time of their initial cancer diagnosis. (Refer to the Contralateral breast cancer in BRCA mutation carriers section of this summary for more information.) However, several studies support the use of breast conservation therapy as a reasonable option to treat the primary tumor.[277-279] The risk of ipsilateral recurrence at 10 years has been estimated to be between 10% to 15% and is similar to that seen in noncarriers.[242,277-280] Studies with longer periods of follow-up demonstrate risks of ipsilateral breast events at 15 years to be as high as 24%, largely resulting from ipsilateral second breast cancers (rather than relapse of the primary tumor).[277,279] Although not entirely consistent across studies, radiation therapy, chemotherapy, oophorectomy, and tamoxifen are associated with a decreased risk of ipsilateral events,[277-280] as is the case in sporadic breast cancer. The risk of contralateral breast cancer does not appear to differ in women undergoing breast conservation therapy versus unilateral mastectomy, suggesting no added risk of contralateral breast cancer from scattered radiation.[277] This finding is supported by a population-based case-control study of women diagnosed with breast cancer before the age of 55 years.[281] All women were genotyped for BRCA1/2. Although there was a significant fourfold risk of contralateral breast cancer in carriers compared with noncarriers, carriers who were exposed to radiation therapy for the first primary were not at increased risk of contralateral breast cancer compared with carriers who were not exposed. (Refer to the Mammography section for more information about radiation and breast cancer risk.) Finally, no difference in OS at 15 years has been seen between BRCA1/BRCA2 mutation carriers choosing breast conservation therapy and carriers choosing mastectomy.[277]

Level of evidence: 3a

Second malignancies
Contralateral breast cancer in BRCA mutation carriers

As early as 1995, the Breast Cancer Linkage Consortium estimated the risk of contralateral breast cancer (CBC) in BRCA1 mutation carriers to be as high as 60% by age 60 years.[282] This report has been followed by several retrospective studies of various cohorts of women with hereditary patterns of breast cancer in both the United States and Europe. One retrospective cohort study reviewed the records of 91 AJ women diagnosed with breast cancer before the age of 42 years, 30 of whom had a deleterious BRCA1 or BRCA2 mutation.[283] At a median follow-up of 63 months, the rate of CBC was 40% in the mutation carriers compared with 8.2% among noncarriers. Carriers had a shorter median interval between cancers than did noncarriers (36 months vs. 63.9 months). The same group reported 5-, 10-, and 15-year probabilities of CBC of 11.9%, 37.6% and 53.2%, respectively, among 87 mutation carriers.[284] Rates of CBC in this clinical cohort did not differ by mutation type (BRCA1 vs. BRCA2) or by age at first diagnosis. A case-control study from the Netherlands compared rates of CBC between 49 women with BRCA1-related breast cancer and 196 breast cancer cases not known to have a BRCA1/BRCA2 mutation (sporadic controls).[237] At 5 years of follow-up, rates of CBC were 20.4% among mutation carriers versus 5.6% among the controls. In an expanded cohort of BRCA1-related breast cancer patients, the risk of CBC was inversely correlated with age at first diagnosis, with the majority of cases of CBC occurring among women whose first breast cancer was diagnosed at or before age 50 years.[285] A similar analysis matching 28 BRCA2 mutation–positive cases with 112 sporadic controls found a fivefold increase in CBC among cases (25% vs. 4.5%).[286] A larger study of members of BRCA1/BRCA2 families in the Netherlands reported similar 10-year risks of CBC for women from BRCA1 and BRCA2 families (34.2% and 29.2%).[287] In another study, 127 patients with early-onset breast cancer (aged 42 years or younger) who had been treated with breast-conserving therapy were genotyped for mutations in BRCA1 and BRCA2. At a median follow-up of 12 years, the rate of CBC among the 22 mutation-positive patients was 42% compared with 9% in the noncarriers.[240] A similar analysis from the Institut Curie in Paris reported a rate of CBC of 37% among mutation carriers compared with 7.3% in noncarriers at a median follow-up of 8.75 years.[288]

In a larger cohort of breast cancer patients (n = 336) from families with documented BRCA1/BRCA2 mutations and 9.2 years of follow-up, the rate of CBC was 28.9% at a mean interval of 5.5 years. Prior oophorectomy was associated with a 59% reduction in the risk of CBC.[289] Another case-control study of mutation carriers and noncarriers identified through ascertainment of women with bilateral breast cancer found that systemic adjuvant chemotherapy reduced CBC risk among mutation carriers (RR, 0.5; 95% CI, 0.2–1.0). Tamoxifen was associated with a nonsignificant risk reduction (RR, 0.7; 95% CI, 0.3–1.8). Similar risk reduction was seen in noncarriers; however, given the higher absolute CBC risk in carriers, there is potentially a greater impact of adjuvant treatment in risk reduction.[280] A high concordance in estrogen receptor status and tumor grade was reported among women from a registry of BRCA1/BRCA2 carriers who had bilateral breast cancer.[290] The German Consortium for Hereditary Breast and Ovarian Cancer estimated the risk of CBC in members of BRCA1 and BRCA2 mutation–positive families. At 25 years after the first breast cancer, the risk of CBC was close to 50% in both BRCA1 and BRCA2 families. The risk was also inversely correlated with age in this study, with the highest risks seen in women whose first breast cancer was before age 40 years.[242] A comparison of 655 women with BRCA1/BRCA2 mutations undergoing breast-conserving therapy versus those undergoing mastectomy noted that both treatment groups experienced high rates of CBC, exceeding 50% by 20 years of follow-up. Rates were significantly higher among women with BRCA1 mutations compared with those with BRCA2 mutations, and among women whose first breast cancer occurred at or before age 35 years.[277] The WECARE study, a large population-based nested case-control study of CBC, reported a 10-year risk of CBC of 15.9% among BRCA1/BRCA2 mutation carriers, compared with a risk of 4.9% among noncarriers. Risks were also inversely related to age at first diagnosis in this study.[291]

Thus, despite differences in study design, study sites, and sample sizes, the data on CBC among women with BRCA1/BRCA2 mutations show several consistent findings:

  • The risk at all time points studied is significantly higher than that among sporadic controls.
  • The risk continues to rise with time since first breast cancer, and reaches 20% to 30% at 10 years of follow-up, and 40% to 50% at 20 years in most studies.
  • Some, but not all, studies show an excess of CBC among BRCA1 carriers compared with BRCA2 carriers.
  • The risk of CBC is greatest among women whose first breast cancer occurs at a young age.

Refer to the Chemoprevention section of this summary for information about the use of tamoxifen as a risk-reduction strategy for CBC in BRCA mutation carriers.

Ovarian cancer

Prognosis of BRCA1- and BRCA2-related ovarian cancer

Despite generally poor prognostic factors, several studies have found an improved survival among ovarian cancer patients with BRCA mutations.[292-300] A nationwide, population-based, case-control study in Israel found 3-year survival rates to be significantly better for ovarian cancer patients with BRCA founder mutations, compared with controls.[293] Five-year follow-up in the same cohort showed improved survival for carriers of both BRCA1 and BRCA2 mutations (54 months) versus noncarriers (38 months), which was most pronounced for women with stages III and IV ovarian cancer and for women with high-grade tumors.[301] In a U.S. study of AJ women with ovarian cancer, those with BRCA mutations had a longer median time to recurrence and an overall improved survival, compared with both AJ women with ovarian cancer who did not have a BRCA mutation and two large groups of advanced-stage ovarian cancer clinical trial patients.[297] In a retrospective U.S. hospital-based study, Ashkenazi BRCA mutation carriers had a better response to platinum-based chemotherapy, as measured by response to primary therapy, disease-free survival, and OS, compared with sporadic cases.[295] Similarly, a significant survival advantage was seen in a case-control study among women with non-AJ BRCA mutations.[302] A study from the Netherlands also showed a better response to platinum-based primary chemotherapy in 112 BRCA1/2 carriers than in 220 sporadic ovarian cancer patients.[303] A U.S. population-based study showed improvement in OS in BRCA2, but not in BRCA1, carriers.[304] However, the study included only 12 BRCA2 mutation carriers and 20 BRCA1 mutation carriers. Significantly better OS and progression-free survival were observed in 29 BRCA2 mutation–positive high-grade serous ovarian cancer cases (20 germline, 9 somatic) from The Cancer Genome Atlas study compared with BRCA mutation–negative cases. BRCA1 mutations were not significantly associated with prognosis.[305] Furthermore, a pooled analysis of 26 observational studies that included 1,213 BRCA mutation carriers and 2,666 noncarriers with epithelial ovarian cancer showed more favorable survival in mutation carriers (BRCA1: HR, 0.73; 95% CI, 0.64–0.84; P < .001; BRCA2: HR, 0.49; 95% CI, 0.39–0.61; P < .001).[306] Thus, 5-year survival in both BRCA1 and BRCA2 carriers with epithelial ovarian cancers was better than that observed in noncarriers, with BRCA2 carriers having the best prognosis. A study in Japanese patients found a survival advantage in stage III BRCA1-associated ovarian cancers treated with cisplatin regimens compared with nonhereditary cancers treated in a similar manner.[296]

In contrast, several studies have not found improved OS among ovarian cancer patients with BRCA mutations.[238,307-309] The largest of these studies involved a large series of unselected Canadian and U.S. patients who were tested for BRCA1 and BRCA2 mutations. At 3 years, the presence of a mutation was associated with a better prognosis, but at 10 years, there was no longer a difference seen in prognosis.[310] Furthermore, one study suggested that there was worse survival in ovarian cancer patients with a family history.[308]

Compelling data suggest a short-term survival advantage in BRCA mutation carriers. However, long-term outcomes are yet to be established. Survival in AJ ovarian cancer patients with BRCA1 or BRCA2 founder mutations does seem to be improved;[305,306] however, further large studies in other populations with appropriate controls are needed to determine whether this survival advantage applies more broadly to all BRCA cancers.

Systemic therapy

The molecular mechanisms that explain the improved prognosis in hereditary BRCA-associated ovarian cancer are unknown but may be related to the function of BRCA genes. BRCA genes play an important role in cell-cycle checkpoint activation and in the repair of damaged DNA via homologous recombination.[311,312] Deficiencies in homologous repair can impair the cells’ ability to repair DNA cross-links that result from certain chemotherapy agents, such as cisplatin. Preclinical data has demonstrated BRCA1 impacts chemosensitivity in breast cancer and ovarian cancer cell lines. Reduced BRCA1 protein expression has been shown to enhance cisplatin chemosensitivity.[254] Patients with BRCA-associated ovarian cancer have shown improved responses to both first-line and subsequent platinum-based chemotherapy, compared with patients with sporadic cancers, which may contribute to their better outcome.[295,298]

PARP pathway inhibitors are currently being studied for the treatment of BRCA1- or BRCA2-deficient ovarian cancers. (Refer to the Role of BRCA1 and BRCA2 in response to systemic therapy section in the Treatment Strategies section of this summary for more information about PARP inhibitors.) While PARP is involved in the repair of single-stranded breaks by base excision repair, BRCA1 and BRCA2 are active in the repair of double-stranded DNA breaks by homologous combination. Therefore, it was hypothesized that inhibiting base excision repair with PARP inhibition in BRCA1- or BRCA2-deficient tumors leads to enhanced cell death, as two separate repair mechanisms would be compromised—the concept of synthetic lethality.

A phase I study of olaparib, an oral PARP inhibitor, demonstrated tolerability (with minimal side effects) and activity in BRCA1 and BRCA2 mutation carriers with ovarian, breast, and prostate cancers.[269] A phase II trial of two different doses of olaparib demonstrated tolerability and efficacy in recurrent ovarian cancer patients with BRCA1 or BRCA2 mutations.[271] The overall response rate was 33% (11 of 33 patients) in the cohort receiving 400 mg twice daily and 13% (3 of 24 patients) in the cohort receiving 100 mg twice daily. The most frequent side effects were mild nausea and fatigue. Olaparib appears to be most effective in patients who are platinum-sensitive.[313] In addition to ovarian cancer patients with germline BRCA1 or BRCA2 mutations, PARP inhibitors also may be useful in ovarian cancer patients with somatic BRCA1 or BRCA2 mutations or with epigenetic silencing of the genes.[314]

Several additional phase II studies have been published that examined PARP inhibitors in ovarian cancer. In one study, women with BRCA1/2 mutations and recurrent ovarian cancer were randomly assigned to receive liposomal doxorubicin (Doxil) (n = 33), versus olaparib at 200 mg twice daily (n = 32), versus olaparib at 400 mg twice daily (n = 32). This study did not show a difference in progression-free survival between the groups, which was the primary endpoint.[315] Of interest, the liposomal doxorubicin arm had a higher response rate than anticipated, consistent with other studies demonstrating that BRCA1/2-associated ovarian cancers may be more sensitive to liposomal doxorubicin than are sporadic ovarian cancers.[316,317] Another study demonstrated significant responses to olaparib in recurrent ovarian cancer patients, including patients with a BRCA1/2 mutation (objective response rate [ORR], 41%) and patients without a BRCA1/2 mutation (ORR, 24%).[318] This study emphasizes that certain sporadic ovarian cancers, particularly those of high-grade serous histology, may have properties similar to BRCA1/2 mutation–related tumors.

Another study examined the role of maintenance therapy with the PARP inhibitor olaparib in platinum-sensitive recurrent ovarian cancer (not restricted to BRCA1/2 mutation carriers). In this randomized controlled trial, those who received olaparib maintenance therapy had an improvement in progression-free survival with an HR of 0.35. In BRCA1/2 mutation carriers, the HR was approximately 0.1.[319]

Level of evidence: 3dii

Second malignancies
Breast cancer

Two genetic registry–based studies have recently explored the risk of primary breast cancer after BRCA-related ovarian cancer. In one study, 164 BRCA1/2 carriers with primary epithelial ovarian, fallopian tube or primary peritoneal cancer were followed for subsequent events.[320] The risk of metachronous breast cancer at 5 years after a diagnosis of ovarian cancer was lower than previously reported for unaffected BRCA1/2 carriers. In this series, OS was dominated by ovarian cancer-related deaths. A similar study compared the risk of primary breast cancer in BRCA-related ovarian cancer patients and unaffected carriers.[321] The 2-year, 5-year, and 10-year risks of primary breast cancer were all statistically significantly lower in patients with ovarian cancer. The risk of contralateral breast cancer among women with a unilateral breast cancer before their ovarian cancer diagnosis was also lower than in women without ovarian cancer, although the difference did not reach statistical significance. These studies suggest that treatment for ovarian cancer, namely oophorectomy and platinum-based chemotherapy, may confer protection against subsequent breast cancer. In a single-institution cohort study of 364 patients with epithelial ovarian cancer who underwent BRCA mutation testing, 135 (37.1%) were found to carry a germline BRCA1 or BRCA2 mutation. Of the 135 BRCA1/2 carriers, 12 (8.9%) developed breast cancer. All breast cancers were stage 0 to stage 2 and diagnosed as follows: mammogram (7), palpable mass (3), and incidental finding during a prophylactic mastectomy (2). At median follow-up of 6.3 years, of the 12 patients with breast cancer after ovarian cancer, three died of recurrent ovarian cancer and one died of metastatic breast cancer.[322] The majority of these cancers were detected with mammogram or clinical exam, suggesting additional breast surveillance with other modalities or prophylactic surgery may be of questionable value.

Available Clinical Practice Guidelines for Hereditary Breast and Ovarian Cancer

Table 12 lists several organizations that have published recommendations for cancer risk assessment and genetic counseling, genetic testing, and/or management for hereditary breast and ovarian cancer.

Table 12. Available Clinical Practice Guidelines for Hereditary Breast and Ovarian Cancer (HBOC)
Organization Risk Assessment and Genetic Counseling Recommendations Genetic Testing Recommendations Management Recommendations
ACOG = American College of Obstetricians and Gynecologists; ASCO = American Society of Clinical Oncology; NAPBC = National Accreditation Program for Breast Centers; NCCN = National Comprehensive Cancer Network; NSGC = National Society of Genetic Counselors; SGO = Society of Gynecologic Oncology; USPSTF = U.S. Preventive Services Task Force.
aThe USPSTF guidelines apply to individuals without a prior cancer diagnosis.
ACOG (2009) [323] Risk Assessment: Addressed Not addressed Addressed
Genetic Counseling: Addressed
ASCO (2010) [4] Risk Assessment: General recommendations; not specific to HBOC General recommendations; not specific to HBOC Not addressed
Genetic Counseling: Addressed
NAPBC (2013) [324] Risk Assessment: Refers to other published guidelines Indications for testing not addressed; components of pretest and posttest counseling addressed Not addressed
Genetic Counseling: Addressed
NSGC (2013) [325] Risk Assessment: Refers to other published guidelines and available models Addressed Refers to other published guidelines
Genetic Counseling: Addressed
NCCN (2014) [3] Risk Assessment: Addressed Addressed Addressed
Genetic Counseling: Addressed
SGO (2014) [326] Risk Assessment: Addressed Addressed Addressed in general terms
Genetic Counseling: Addressed
USPSTFa (2014) [327] Risk Assessment: Addressed Addressed in general terms and other guidelines referenced Addressed in general terms and other guidelines referenced
Genetic Counseling: Addressed


  1. U.S. Preventive Services Task Force: Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility: recommendation statement. Ann Intern Med 143 (5): 355-61, 2005. [PUBMED Abstract]
  2. American College of Medical Genetics: Genetic susceptibility to breast and ovarian cancer: assessment, counseling and testing guidelines. New York: New York State Department of Health, American College of Medical Genetics Foundation, 1999.
  3. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast and Ovarian. Version 2.2014. Rockledge, PA: National Comprehensive Cancer Network, 2014. Available online with free registration. Last accessed December 04, 2014.
  4. Robson ME, Storm CD, Weitzel J, et al.: American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol 28 (5): 893-901, 2010. [PUBMED Abstract]
  5. ACOG committee opinion. Breast-ovarian cancer screening. Number 239, August 2000. American College of Obstetricians and Gynecologists. Committee on genetics. Int J Gynaecol Obstet 75 (3): 339-40, 2001. [PUBMED Abstract]
  6. Thomas DB, Gao DL, Self SG, et al.: Randomized trial of breast self-examination in Shanghai: methodology and preliminary results. J Natl Cancer Inst 89 (5): 355-65, 1997. [PUBMED Abstract]
  7. Scheuer L, Kauff N, Robson M, et al.: Outcome of preventive surgery and screening for breast and ovarian cancer in BRCA mutation carriers. J Clin Oncol 20 (5): 1260-8, 2002. [PUBMED Abstract]
  8. Brekelmans CT, Seynaeve C, Bartels CC, et al.: Effectiveness of breast cancer surveillance in BRCA1/2 gene mutation carriers and women with high familial risk. J Clin Oncol 19 (4): 924-30, 2001. [PUBMED Abstract]
  9. Burke W, Daly M, Garber J, et al.: Recommendations for follow-up care of individuals with an inherited predisposition to cancer. II. BRCA1 and BRCA2. Cancer Genetics Studies Consortium. JAMA 277 (12): 997-1003, 1997. [PUBMED Abstract]
  10. Shapiro S: Periodic screening for breast cancer: the Health Insurance Plan project and its sequelae, 1963-1986. Baltimore, Md: Johns Hopkins University Press, 1988.
  11. Kerlikowske K, Grady D, Barclay J, et al.: Effect of age, breast density, and family history on the sensitivity of first screening mammography. JAMA 276 (1): 33-8, 1996. [PUBMED Abstract]
  12. Kerlikowske K, Carney PA, Geller B, et al.: Performance of screening mammography among women with and without a first-degree relative with breast cancer. Ann Intern Med 133 (11): 855-63, 2000. [PUBMED Abstract]
  13. Kerlikowske K, Grady D, Barclay J, et al.: Positive predictive value of screening mammography by age and family history of breast cancer. JAMA 270 (20): 2444-50, 1993. [PUBMED Abstract]
  14. Tilanus-Linthorst M, Verhoog L, Obdeijn IM, et al.: A BRCA1/2 mutation, high breast density and prominent pushing margins of a tumor independently contribute to a frequent false-negative mammography. Int J Cancer 102 (1): 91-5, 2002. [PUBMED Abstract]
  15. Tilanus-Linthorst MM, Kriege M, Boetes C, et al.: Hereditary breast cancer growth rates and its impact on screening policy. Eur J Cancer 41 (11): 1610-7, 2005. [PUBMED Abstract]
  16. Mitchell G, Antoniou AC, Warren R, et al.: Mammographic density and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Res 66 (3): 1866-72, 2006. [PUBMED Abstract]
  17. Miller AB, To T, Baines CJ, et al.: Canadian National Breast Screening Study-2: 13-year results of a randomized trial in women aged 50-59 years. J Natl Cancer Inst 92 (18): 1490-9, 2000. [PUBMED Abstract]
  18. Shtern F: Digital mammography and related technologies: a perspective from the National Cancer Institute. Radiology 183 (3): 629-30, 1992. [PUBMED Abstract]
  19. Lewin JM, D'Orsi CJ, Hendrick RE, et al.: Clinical comparison of full-field digital mammography and screen-film mammography for detection of breast cancer. AJR Am J Roentgenol 179 (3): 671-7, 2002. [PUBMED Abstract]
  20. Pisano ED, Gatsonis C, Hendrick E, et al.: Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med 353 (17): 1773-83, 2005. [PUBMED Abstract]
  21. Sharan SK, Morimatsu M, Albrecht U, et al.: Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386 (6627): 804-10, 1997. [PUBMED Abstract]
  22. Gowen LC, Avrutskaya AV, Latour AM, et al.: BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science 281 (5379): 1009-12, 1998. [PUBMED Abstract]
  23. Abbott DW, Freeman ML, Holt JT: Double-strand break repair deficiency and radiation sensitivity in BRCA2 mutant cancer cells. J Natl Cancer Inst 90 (13): 978-85, 1998. [PUBMED Abstract]
  24. Narod SA, Lubinski J, Ghadirian P, et al.: Screening mammography and risk of breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Lancet Oncol 7 (5): 402-6, 2006. [PUBMED Abstract]
  25. Goldfrank D, Chuai S, Bernstein JL, et al.: Effect of mammography on breast cancer risk in women with mutations in BRCA1 or BRCA2. Cancer Epidemiol Biomarkers Prev 15 (11): 2311-3, 2006. [PUBMED Abstract]
  26. Andrieu N, Easton DF, Chang-Claude J, et al.: Effect of chest X-rays on the risk of breast cancer among BRCA1/2 mutation carriers in the international BRCA1/2 carrier cohort study: a report from the EMBRACE, GENEPSO, GEO-HEBON, and IBCCS Collaborators' Group. J Clin Oncol 24 (21): 3361-6, 2006. [PUBMED Abstract]
  27. Pijpe A, Andrieu N, Easton DF, et al.: Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). BMJ 345: e5660, 2012. [PUBMED Abstract]
  28. Berrington de Gonzalez A, Berg CD, Visvanathan K, et al.: Estimated risk of radiation-induced breast cancer from mammographic screening for young BRCA mutation carriers. J Natl Cancer Inst 101 (3): 205-9, 2009. [PUBMED Abstract]
  29. Lowry KP, Lee JM, Kong CY, et al.: Annual screening strategies in BRCA1 and BRCA2 gene mutation carriers: a comparative effectiveness analysis. Cancer 118 (8): 2021-30, 2012. [PUBMED Abstract]
  30. Kriege M, Brekelmans CT, Boetes C, et al.: Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med 351 (5): 427-37, 2004. [PUBMED Abstract]
  31. Lehman CD, Blume JD, Weatherall P, et al.: Screening women at high risk for breast cancer with mammography and magnetic resonance imaging. Cancer 103 (9): 1898-905, 2005. [PUBMED Abstract]
  32. Leach MO, Boggis CR, Dixon AK, et al.: Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet 365 (9473): 1769-78, 2005 May 21-27. [PUBMED Abstract]
  33. Warner E, Plewes DB, Hill KA, et al.: Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA 292 (11): 1317-25, 2004. [PUBMED Abstract]
  34. Lehman CD, Isaacs C, Schnall MD, et al.: Cancer yield of mammography, MR, and US in high-risk women: prospective multi-institution breast cancer screening study. Radiology 244 (2): 381-8, 2007. [PUBMED Abstract]
  35. Sardanelli F, Podo F, D'Agnolo G, et al.: Multicenter comparative multimodality surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): interim results. Radiology 242 (3): 698-715, 2007. [PUBMED Abstract]
  36. Kuhl C, Weigel S, Schrading S, et al.: Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. J Clin Oncol 28 (9): 1450-7, 2010. [PUBMED Abstract]
  37. Shah P, Rosen M, Stopfer J, et al.: Prospective study of breast MRI in BRCA1 and BRCA2 mutation carriers: effect of mutation status on cancer incidence. Breast Cancer Res Treat 118 (3): 539-46, 2009. [PUBMED Abstract]
  38. Rijnsburger AJ, Obdeijn IM, Kaas R, et al.: BRCA1-associated breast cancers present differently from BRCA2-associated and familial cases: long-term follow-up of the Dutch MRISC Screening Study. J Clin Oncol 28 (36): 5265-73, 2010. [PUBMED Abstract]
  39. Weinstein SP, Localio AR, Conant EF, et al.: Multimodality screening of high-risk women: a prospective cohort study. J Clin Oncol 27 (36): 6124-8, 2009. [PUBMED Abstract]
  40. Sardanelli F, Podo F, Santoro F, et al.: Multicenter surveillance of women at high genetic breast cancer risk using mammography, ultrasonography, and contrast-enhanced magnetic resonance imaging (the high breast cancer risk italian 1 study): final results. Invest Radiol 46 (2): 94-105, 2011. [PUBMED Abstract]
  41. Lord SJ, Lei W, Craft P, et al.: A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer. Eur J Cancer 43 (13): 1905-17, 2007. [PUBMED Abstract]
  42. Obdeijn IM, Loo CE, Rijnsburger AJ, et al.: Assessment of false-negative cases of breast MR imaging in women with a familial or genetic predisposition. Breast Cancer Res Treat 119 (2): 399-407, 2010. [PUBMED Abstract]
  43. Heijnsdijk EA, Warner E, Gilbert FJ, et al.: Differences in natural history between breast cancers in BRCA1 and BRCA2 mutation carriers and effects of MRI screening-MRISC, MARIBS, and Canadian studies combined. Cancer Epidemiol Biomarkers Prev 21 (9): 1458-68, 2012. [PUBMED Abstract]
  44. Passaperuma K, Warner E, Causer PA, et al.: Long-term results of screening with magnetic resonance imaging in women with BRCA mutations. Br J Cancer 107 (1): 24-30, 2012. [PUBMED Abstract]
  45. Saslow D, Boetes C, Burke W, et al.: American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 57 (2): 75-89, 2007 Mar-Apr. [PUBMED Abstract]
  46. O'Driscoll D, Warren R, MacKay J, et al.: Screening with breast ultrasound in a population at moderate risk due to family history. J Med Screen 8 (2): 106-9, 2001. [PUBMED Abstract]
  47. Berg WA, Blume JD, Cormack JB, et al.: Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA 299 (18): 2151-63, 2008. [PUBMED Abstract]
  48. Ariyan S: Prophylactic mastectomy for precancerous and high-risk lesions of the breast. Can J Surg 28 (3): 262-4, 266, 1985. [PUBMED Abstract]
  49. Hartmann LC, Schaid DJ, Woods JE, et al.: Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 340 (2): 77-84, 1999. [PUBMED Abstract]
  50. Hartmann LC, Sellers TA, Schaid DJ, et al.: Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers. J Natl Cancer Inst 93 (21): 1633-7, 2001. [PUBMED Abstract]
  51. Meijers-Heijboer H, van Geel B, van Putten WL, et al.: Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 345 (3): 159-64, 2001. [PUBMED Abstract]
  52. Rebbeck TR, Friebel T, Lynch HT, et al.: Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group. J Clin Oncol 22 (6): 1055-62, 2004. [PUBMED Abstract]
  53. van Sprundel TC, Schmidt MK, Rookus MA, et al.: Risk reduction of contralateral breast cancer and survival after contralateral prophylactic mastectomy in BRCA1 or BRCA2 mutation carriers. Br J Cancer 93 (3): 287-92, 2005. [PUBMED Abstract]
  54. Evans DG, Baildam AD, Anderson E, et al.: Risk reducing mastectomy: outcomes in 10 European centres. J Med Genet 46 (4): 254-8, 2009. [PUBMED Abstract]
  55. Evans DG, Ingham SL, Baildam A, et al.: Contralateral mastectomy improves survival in women with BRCA1/2-associated breast cancer. Breast Cancer Res Treat 140 (1): 135-42, 2013. [PUBMED Abstract]
  56. Metcalfe K, Gershman S, Ghadirian P, et al.: Contralateral mastectomy and survival after breast cancer in carriers of BRCA1 and BRCA2 mutations: retrospective analysis. BMJ 348: g226, 2014. [PUBMED Abstract]
  57. Kauff ND, Brogi E, Scheuer L, et al.: Epithelial lesions in prophylactic mastectomy specimens from women with BRCA mutations. Cancer 97 (7): 1601-8, 2003. [PUBMED Abstract]
  58. Hoogerbrugge N, Bult P, de Widt-Levert LM, et al.: High prevalence of premalignant lesions in prophylactically removed breasts from women at hereditary risk for breast cancer. J Clin Oncol 21 (1): 41-5, 2003. [PUBMED Abstract]
  59. Kroiss R, Winkler V, Kalteis K, et al.: Prevalence of pre-malignant and malignant lesions in prophylactic mastectomy specimens of BRCA1 mutation carriers: comparison with a control group. J Cancer Res Clin Oncol 134 (10): 1113-21, 2008. [PUBMED Abstract]
  60. Scott CI, Iorgulescu DG, Thorne HJ, et al.: Clinical, pathological and genetic features of women at high familial risk of breast cancer undergoing prophylactic mastectomy. Clin Genet 64 (2): 111-21, 2003. [PUBMED Abstract]
  61. Isern AE, Loman N, Malina J, et al.: Histopathological findings and follow-up after prophylactic mastectomy and immediate breast reconstruction in 100 women from families with hereditary breast cancer. Eur J Surg Oncol 34 (10): 1148-54, 2008. [PUBMED Abstract]
  62. Adem C, Reynolds C, Soderberg CL, et al.: Pathologic characteristics of breast parenchyma in patients with hereditary breast carcinoma, including BRCA1 and BRCA2 mutation carriers. Cancer 97 (1): 1-11, 2003. [PUBMED Abstract]
  63. Lerman C, Hughes C, Croyle RT, et al.: Prophylactic surgery decisions and surveillance practices one year following BRCA1/2 testing. Prev Med 31 (1): 75-80, 2000. [PUBMED Abstract]
  64. Stefanek ME, Helzlsouer KJ, Wilcox PM, et al.: Predictors of and satisfaction with bilateral prophylactic mastectomy. Prev Med 24 (4): 412-9, 1995. [PUBMED Abstract]
  65. Meijers-Heijboer EJ, Verhoog LC, Brekelmans CT, et al.: Presymptomatic DNA testing and prophylactic surgery in families with a BRCA1 or BRCA2 mutation. Lancet 355 (9220): 2015-20, 2000. [PUBMED Abstract]
  66. Schrag D, Kuntz KM, Garber JE, et al.: Decision analysis--effects of prophylactic mastectomy and oophorectomy on life expectancy among women with BRCA1 or BRCA2 mutations. N Engl J Med 336 (20): 1465-71, 1997. [PUBMED Abstract]
  67. Unic I, Stalmeier PF, Verhoef LC, et al.: Assessment of the time-tradeoff values for prophylactic mastectomy of women with a suspected genetic predisposition to breast cancer. Med Decis Making 18 (3): 268-77, 1998 Jul-Sep. [PUBMED Abstract]
  68. Grann VR, Panageas KS, Whang W, et al.: Decision analysis of prophylactic mastectomy and oophorectomy in BRCA1-positive or BRCA2-positive patients. J Clin Oncol 16 (3): 979-85, 1998. [PUBMED Abstract]
  69. Kurian AW, Sigal BM, Plevritis SK: Survival analysis of cancer risk reduction strategies for BRCA1/2 mutation carriers. J Clin Oncol 28 (2): 222-31, 2010. [PUBMED Abstract]
  70. Kurian AW, Munoz DF, Rust P, et al.: Online tool to guide decisions for BRCA1/2 mutation carriers. J Clin Oncol 30 (5): 497-506, 2012. [PUBMED Abstract]
  71. Giuliano AE, Boolbol S, Degnim A, et al.: Society of Surgical Oncology: position statement on prophylactic mastectomy. Approved by the Society of Surgical Oncology Executive Council, March 2007. Ann Surg Oncol 14 (9): 2425-7, 2007. [PUBMED Abstract]
  72. Olson JE, Sellers TA, Iturria SJ, et al.: Bilateral oophorectomy and breast cancer risk reduction among women with a family history. Cancer Detect Prev 28 (5): 357-60, 2004. [PUBMED Abstract]
  73. Struewing JP, Watson P, Easton DF, et al.: Prophylactic oophorectomy in inherited breast/ovarian cancer families. J Natl Cancer Inst Monogr (17): 33-5, 1995. [PUBMED Abstract]
  74. Rebbeck TR, Levin AM, Eisen A, et al.: Breast cancer risk after bilateral prophylactic oophorectomy in BRCA1 mutation carriers. J Natl Cancer Inst 91 (17): 1475-9, 1999. [PUBMED Abstract]
  75. Rebbeck TR, Lynch HT, Neuhausen SL, et al.: Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med 346 (21): 1616-22, 2002. [PUBMED Abstract]
  76. Kauff ND, Satagopan JM, Robson ME, et al.: Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 346 (21): 1609-15, 2002. [PUBMED Abstract]
  77. Kauff ND, Domchek SM, Friebel TM, et al.: Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study. J Clin Oncol 26 (8): 1331-7, 2008. [PUBMED Abstract]
  78. Rebbeck TR, Kauff ND, Domchek SM: Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. J Natl Cancer Inst 101 (2): 80-7, 2009. [PUBMED Abstract]
  79. Domchek SM, Friebel TM, Singer CF, et al.: Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 304 (9): 967-75, 2010. [PUBMED Abstract]
  80. Fisher B, Costantino JP, Wickerham DL, et al.: Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90 (18): 1371-88, 1998. [PUBMED Abstract]
  81. Veronesi U, Maisonneuve P, Costa A, et al.: Prevention of breast cancer with tamoxifen: preliminary findings from the Italian randomised trial among hysterectomised women. Italian Tamoxifen Prevention Study. Lancet 352 (9122): 93-7, 1998. [PUBMED Abstract]
  82. Powles T, Eeles R, Ashley S, et al.: Interim analysis of the incidence of breast cancer in the Royal Marsden Hospital tamoxifen randomised chemoprevention trial. Lancet 352 (9122): 98-101, 1998. [PUBMED Abstract]
  83. King MC, Wieand S, Hale K, et al.: Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. JAMA 286 (18): 2251-6, 2001. [PUBMED Abstract]
  84. Narod SA, Brunet JS, Ghadirian P, et al.: Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Hereditary Breast Cancer Clinical Study Group. Lancet 356 (9245): 1876-81, 2000. [PUBMED Abstract]
  85. Pierce LJ, Levin AM, Rebbeck TR, et al.: Ten-year multi-institutional results of breast-conserving surgery and radiotherapy in BRCA1/2-associated stage I/II breast cancer. J Clin Oncol 24 (16): 2437-43, 2006. [PUBMED Abstract]
  86. Gronwald J, Tung N, Foulkes WD, et al.: Tamoxifen and contralateral breast cancer in BRCA1 and BRCA2 carriers: an update. Int J Cancer 118 (9): 2281-4, 2006. [PUBMED Abstract]
  87. Phillips KA, Milne RL, Rookus MA, et al.: Tamoxifen and risk of contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. J Clin Oncol 31 (25): 3091-9, 2013. [PUBMED Abstract]
  88. Vogel VG, Costantino JP, Wickerham DL, et al.: Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295 (23): 2727-41, 2006. [PUBMED Abstract]
  89. Land SR, Wickerham DL, Costantino JP, et al.: Patient-reported symptoms and quality of life during treatment with tamoxifen or raloxifene for breast cancer prevention: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295 (23): 2742-51, 2006. [PUBMED Abstract]
  90. Vicus D, Rosen B, Lubinski J, et al.: Tamoxifen and the risk of ovarian cancer in BRCA1 mutation carriers. Gynecol Oncol 115 (1): 135-7, 2009. [PUBMED Abstract]
  91. Colditz GA, Rosner BA, Speizer FE: Risk factors for breast cancer according to family history of breast cancer. For the Nurses' Health Study Research Group. J Natl Cancer Inst 88 (6): 365-71, 1996. [PUBMED Abstract]
  92. Narod S, Lynch H, Conway T, et al.: Increasing incidence of breast cancer in family with BRCA1 mutation. Lancet 341 (8852): 1101-2, 1993. [PUBMED Abstract]
  93. Narod SA, Goldgar D, Cannon-Albright L, et al.: Risk modifiers in carriers of BRCA1 mutations. Int J Cancer 64 (6): 394-8, 1995. [PUBMED Abstract]
  94. McCredie M, Paul C, Skegg DC, et al.: Family history and risk of breast cancer in New Zealand. Int J Cancer 73 (4): 503-7, 1997. [PUBMED Abstract]
  95. Jernström H, Lerman C, Ghadirian P, et al.: Pregnancy and risk of early breast cancer in carriers of BRCA1 and BRCA2. Lancet 354 (9193): 1846-50, 1999. [PUBMED Abstract]
  96. Cullinane CA, Lubinski J, Neuhausen SL, et al.: Effect of pregnancy as a risk factor for breast cancer in BRCA1/BRCA2 mutation carriers. Int J Cancer 117 (6): 988-91, 2005. [PUBMED Abstract]
  97. Friedman E, Kotsopoulos J, Lubinski J, et al.: Spontaneous and therapeutic abortions and the risk of breast cancer among BRCA mutation carriers. Breast Cancer Res 8 (2): R15, 2006. [PUBMED Abstract]
  98. Milne RL, Osorio A, Ramón y Cajal T, et al.: Parity and the risk of breast and ovarian cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat 119 (1): 221-32, 2010. [PUBMED Abstract]
  99. Antoniou AC, Shenton A, Maher ER, et al.: Parity and breast cancer risk among BRCA1 and BRCA2 mutation carriers. Breast Cancer Res 8 (6): R72, 2006. [PUBMED Abstract]
  100. Andrieu N, Goldgar DE, Easton DF, et al.: Pregnancies, breast-feeding, and breast cancer risk in the International BRCA1/2 Carrier Cohort Study (IBCCS). J Natl Cancer Inst 98 (8): 535-44, 2006. [PUBMED Abstract]
  101. Col: Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 360 (9328): 187-95, 2002. [PUBMED Abstract]
  102. Jernström H, Lubinski J, Lynch HT, et al.: Breast-feeding and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 96 (14): 1094-8, 2004. [PUBMED Abstract]
  103. Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53 297 women with breast cancer and 100 239 women without breast cancer from 54 epidemiological studies. Collaborative Group on Hormonal Factors in Breast Cancer. Lancet 347 (9017): 1713-27, 1996. [PUBMED Abstract]
  104. Ursin G, Henderson BE, Haile RW, et al.: Does oral contraceptive use increase the risk of breast cancer in women with BRCA1/BRCA2 mutations more than in other women? Cancer Res 57 (17): 3678-81, 1997. [PUBMED Abstract]
  105. Jernström H, Loman N, Johannsson OT, et al.: Impact of teenage oral contraceptive use in a population-based series of early-onset breast cancer cases who have undergone BRCA mutation testing. Eur J Cancer 41 (15): 2312-20, 2005. [PUBMED Abstract]
  106. Iodice S, Barile M, Rotmensz N, et al.: Oral contraceptive use and breast or ovarian cancer risk in BRCA1/2 carriers: a meta-analysis. Eur J Cancer 46 (12): 2275-84, 2010. [PUBMED Abstract]
  107. Brohet RM, Goldgar DE, Easton DF, et al.: Oral contraceptives and breast cancer risk in the international BRCA1/2 carrier cohort study: a report from EMBRACE, GENEPSO, GEO-HEBON, and the IBCCS Collaborating Group. J Clin Oncol 25 (25): 3831-6, 2007. [PUBMED Abstract]
  108. Haile RW, Thomas DC, McGuire V, et al.: BRCA1 and BRCA2 mutation carriers, oral contraceptive use, and breast cancer before age 50. Cancer Epidemiol Biomarkers Prev 15 (10): 1863-70, 2006. [PUBMED Abstract]
  109. Narod SA, Dubé MP, Klijn J, et al.: Oral contraceptives and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 94 (23): 1773-9, 2002. [PUBMED Abstract]
  110. Narod SA, Risch H, Moslehi R, et al.: Oral contraceptives and the risk of hereditary ovarian cancer. Hereditary Ovarian Cancer Clinical Study Group. N Engl J Med 339 (7): 424-8, 1998. [PUBMED Abstract]
  111. Chen CL, Weiss NS, Newcomb P, et al.: Hormone replacement therapy in relation to breast cancer. JAMA 287 (6): 734-41, 2002. [PUBMED Abstract]
  112. Writing Group for the Women's Health Initiative Investigators: Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 288 (3): 321-33, 2002. [PUBMED Abstract]
  113. Chlebowski RT, Hendrix SL, Langer RD, et al.: Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women's Health Initiative Randomized Trial. JAMA 289 (24): 3243-53, 2003. [PUBMED Abstract]
  114. Chlebowski RT, Kuller LH, Prentice RL, et al.: Breast cancer after use of estrogen plus progestin in postmenopausal women. N Engl J Med 360 (6): 573-87, 2009. [PUBMED Abstract]
  115. Schuurman AG, van den Brandt PA, Goldbohm RA: Exogenous hormone use and the risk of postmenopausal breast cancer: results from The Netherlands Cohort Study. Cancer Causes Control 6 (5): 416-24, 1995. [PUBMED Abstract]
  116. Steinberg KK, Thacker SB, Smith SJ, et al.: A meta-analysis of the effect of estrogen replacement therapy on the risk of breast cancer. JAMA 265 (15): 1985-90, 1991. [PUBMED Abstract]
  117. Colditz GA, Egan KM, Stampfer MJ: Hormone replacement therapy and risk of breast cancer: results from epidemiologic studies. Am J Obstet Gynecol 168 (5): 1473-80, 1993. [PUBMED Abstract]
  118. Sellers TA, Mink PJ, Cerhan JR, et al.: The role of hormone replacement therapy in the risk for breast cancer and total mortality in women with a family history of breast cancer. Ann Intern Med 127 (11): 973-80, 1997. [PUBMED Abstract]
  119. Stanford JL, Weiss NS, Voigt LF, et al.: Combined estrogen and progestin hormone replacement therapy in relation to risk of breast cancer in middle-aged women. JAMA 274 (2): 137-42, 1995. [PUBMED Abstract]
  120. Gorsky RD, Koplan JP, Peterson HB, et al.: Relative risks and benefits of long-term estrogen replacement therapy: a decision analysis. Obstet Gynecol 83 (2): 161-6, 1994. [PUBMED Abstract]
  121. Rebbeck TR, Friebel T, Wagner T, et al.: Effect of short-term hormone replacement therapy on breast cancer risk reduction after bilateral prophylactic oophorectomy in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group. J Clin Oncol 23 (31): 7804-10, 2005. [PUBMED Abstract]
  122. Eisen A, Lubinski J, Gronwald J, et al.: Hormone therapy and the risk of breast cancer in BRCA1 mutation carriers. J Natl Cancer Inst 100 (19): 1361-7, 2008. [PUBMED Abstract]
  123. Chlebowski RT, Prentice RL: Menopausal hormone therapy in BRCA1 mutation carriers: uncertainty and caution. J Natl Cancer Inst 100 (19): 1341-3, 2008. [PUBMED Abstract]
  124. Buys SS, Partridge E, Black A, et al.: Effect of screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA 305 (22): 2295-303, 2011. [PUBMED Abstract]
  125. Hermsen BB, Olivier RI, Verheijen RH, et al.: No efficacy of annual gynaecological screening in BRCA1/2 mutation carriers; an observational follow-up study. Br J Cancer 96 (9): 1335-42, 2007. [PUBMED Abstract]
  126. Stirling D, Evans DG, Pichert G, et al.: Screening for familial ovarian cancer: failure of current protocols to detect ovarian cancer at an early stage according to the international Federation of gynecology and obstetrics system. J Clin Oncol 23 (24): 5588-96, 2005. [PUBMED Abstract]
  127. Olivier RI, Lubsen-Brandsma MA, Verhoef S, et al.: CA125 and transvaginal ultrasound monitoring in high-risk women cannot prevent the diagnosis of advanced ovarian cancer. Gynecol Oncol 100 (1): 20-6, 2006. [PUBMED Abstract]
  128. Meeuwissen PA, Seynaeve C, Brekelmans CT, et al.: Outcome of surveillance and prophylactic salpingo-oophorectomy in asymptomatic women at high risk for ovarian cancer. Gynecol Oncol 97 (2): 476-82, 2005. [PUBMED Abstract]
  129. Dørum A, Kristensen GB, Abeler VM, et al.: Early detection of familial ovarian cancer. Eur J Cancer 32A (10): 1645-51, 1996. [PUBMED Abstract]
  130. Tailor A, Bourne TH, Campbell S, et al.: Results from an ultrasound-based familial ovarian cancer screening clinic: a 10-year observational study. Ultrasound Obstet Gynecol 21 (4): 378-85, 2003. [PUBMED Abstract]
  131. Karlan BY, Raffel LJ, Crvenkovic G, et al.: A multidisciplinary approach to the early detection of ovarian carcinoma: rationale, protocol design, and early results. Am J Obstet Gynecol 169 (3): 494-501, 1993. [PUBMED Abstract]
  132. Muto MG, Cramer DW, Brown DL, et al.: Screening for ovarian cancer: the preliminary experience of a familial ovarian cancer center. Gynecol Oncol 51 (1): 12-20, 1993. [PUBMED Abstract]
  133. Liede A, Karlan BY, Baldwin RL, et al.: Cancer incidence in a population of Jewish women at risk of ovarian cancer. J Clin Oncol 20 (6): 1570-7, 2002. [PUBMED Abstract]
  134. Laframboise S, Nedelcu R, Murphy J, et al.: Use of CA-125 and ultrasound in high-risk women. Int J Gynecol Cancer 12 (1): 86-91, 2002 Jan-Feb. [PUBMED Abstract]
  135. Woodward ER, Sleightholme HV, Considine AM, et al.: Annual surveillance by CA125 and transvaginal ultrasound for ovarian cancer in both high-risk and population risk women is ineffective. BJOG 114 (12): 1500-9, 2007. [PUBMED Abstract]
  136. van der Velde NM, Mourits MJ, Arts HJ, et al.: Time to stop ovarian cancer screening in BRCA1/2 mutation carriers? Int J Cancer 124 (4): 919-23, 2009. [PUBMED Abstract]
  137. Rosenthal AN, Fraser L, Manchanda R, et al.: Results of annual screening in phase I of the United Kingdom familial ovarian cancer screening study highlight the need for strict adherence to screening schedule. J Clin Oncol 31 (1): 49-57, 2013. [PUBMED Abstract]
  138. Evans DG, Gaarenstroom KN, Stirling D, et al.: Screening for familial ovarian cancer: poor survival of BRCA1/2 related cancers. J Med Genet 46 (9): 593-7, 2009. [PUBMED Abstract]
  139. NIH consensus conference. Ovarian cancer. Screening, treatment, and follow-up. NIH Consensus Development Panel on Ovarian Cancer. JAMA 273 (6): 491-7, 1995. [PUBMED Abstract]
  140. Pepe MS, Etzioni R, Feng Z, et al.: Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93 (14): 1054-61, 2001. [PUBMED Abstract]
  141. Grosse SD, Khoury MJ: What is the clinical utility of genetic testing? Genet Med 8 (7): 448-50, 2006. [PUBMED Abstract]
  142. Finch A, Shaw P, Rosen B, et al.: Clinical and pathologic findings of prophylactic salpingo-oophorectomies in 159 BRCA1 and BRCA2 carriers. Gynecol Oncol 100 (1): 58-64, 2006. [PUBMED Abstract]
  143. Andersen MR, Goff BA, Lowe KA, et al.: Combining a symptoms index with CA 125 to improve detection of ovarian cancer. Cancer 113 (3): 484-9, 2008. [PUBMED Abstract]
  144. Skates SJ, Xu FJ, Yu YH, et al.: Toward an optimal algorithm for ovarian cancer screening with longitudinal tumor markers. Cancer 76 (10 Suppl): 2004-10, 1995. [PUBMED Abstract]
  145. Skates SJ, Menon U, MacDonald N, et al.: Calculation of the risk of ovarian cancer from serial CA-125 values for preclinical detection in postmenopausal women. J Clin Oncol 21 (10 Suppl): 206s-210s, 2003. [PUBMED Abstract]
  146. Menon U, Skates SJ, Lewis S, et al.: Prospective study using the risk of ovarian cancer algorithm to screen for ovarian cancer. J Clin Oncol 23 (31): 7919-26, 2005. [PUBMED Abstract]
  147. Greene MH, Piedmonte M, Alberts D, et al.: A prospective study of risk-reducing salpingo-oophorectomy and longitudinal CA-125 screening among women at increased genetic risk of ovarian cancer: design and baseline characteristics: a Gynecologic Oncology Group study. Cancer Epidemiol Biomarkers Prev 17 (3): 594-604, 2008. [PUBMED Abstract]
  148. Gagnon A, Ye B: Discovery and application of protein biomarkers for ovarian cancer. Curr Opin Obstet Gynecol 20 (1): 9-13, 2008. [PUBMED Abstract]
  149. Hennessy BT, Murph M, Nanjundan M, et al.: Ovarian cancer: linking genomics to new target discovery and molecular markers--the way ahead. Adv Exp Med Biol 617: 23-40, 2008. [PUBMED Abstract]
  150. Badgwell D, Bast RC Jr: Early detection of ovarian cancer. Dis Markers 23 (5-6): 397-410, 2007. [PUBMED Abstract]
  151. Petricoin EF, Ardekani AM, Hitt BA, et al.: Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359 (9306): 572-7, 2002. [PUBMED Abstract]
  152. Zhang Z, Bast RC Jr, Yu Y, et al.: Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 64 (16): 5882-90, 2004. [PUBMED Abstract]
  153. Koehn H, Oehler MK: Proteins' promise--progress and challenges in ovarian cancer proteomics. Menopause Int 13 (4): 148-53, 2007. [PUBMED Abstract]
  154. Visintin I, Feng Z, Longton G, et al.: Diagnostic markers for early detection of ovarian cancer. Clin Cancer Res 14 (4): 1065-72, 2008. [PUBMED Abstract]
  155. Simon R: Roadmap for developing and validating therapeutically relevant genomic classifiers. J Clin Oncol 23 (29): 7332-41, 2005. [PUBMED Abstract]
  156. Rutter JL, Wacholder S, Chetrit A, et al.: Gynecologic surgeries and risk of ovarian cancer in women with BRCA1 and BRCA2 Ashkenazi founder mutations: an Israeli population-based case-control study. J Natl Cancer Inst 95 (14): 1072-8, 2003. [PUBMED Abstract]
  157. Kotsopoulos J, Lubinski J, Lynch HT, et al.: Oophorectomy after menopause and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev 21 (7): 1089-96, 2012. [PUBMED Abstract]
  158. Finch AP, Lubinski J, Møller P, et al.: Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. J Clin Oncol 32 (15): 1547-53, 2014. [PUBMED Abstract]
  159. Domchek SM, Friebel TM, Neuhausen SL, et al.: Mortality after bilateral salpingo-oophorectomy in BRCA1 and BRCA2 mutation carriers: a prospective cohort study. Lancet Oncol 7 (3): 223-9, 2006. [PUBMED Abstract]
  160. Leeper K, Garcia R, Swisher E, et al.: Pathologic findings in prophylactic oophorectomy specimens in high-risk women. Gynecol Oncol 87 (1): 52-6, 2002. [PUBMED Abstract]
  161. Olivier RI, van Beurden M, Lubsen MA, et al.: Clinical outcome of prophylactic oophorectomy in BRCA1/BRCA2 mutation carriers and events during follow-up. Br J Cancer 90 (8): 1492-7, 2004. [PUBMED Abstract]
  162. Colgan TJ, Murphy J, Cole DE, et al.: Occult carcinoma in prophylactic oophorectomy specimens: prevalence and association with BRCA germline mutation status. Am J Surg Pathol 25 (10): 1283-9, 2001. [PUBMED Abstract]
  163. Powell CB, Kenley E, Chen LM, et al.: Risk-reducing salpingo-oophorectomy in BRCA mutation carriers: role of serial sectioning in the detection of occult malignancy. J Clin Oncol 23 (1): 127-32, 2005. [PUBMED Abstract]
  164. Callahan MJ, Crum CP, Medeiros F, et al.: Primary fallopian tube malignancies in BRCA-positive women undergoing surgery for ovarian cancer risk reduction. J Clin Oncol 25 (25): 3985-90, 2007. [PUBMED Abstract]
  165. Domchek SM, Friebel TM, Garber JE, et al.: Occult ovarian cancers identified at risk-reducing salpingo-oophorectomy in a prospective cohort of BRCA1/2 mutation carriers. Breast Cancer Res Treat 124 (1): 195-203, 2010. [PUBMED Abstract]
  166. Powell CB, Chen LM, McLennan J, et al.: Risk-reducing salpingo-oophorectomy (RRSO) in BRCA mutation carriers: experience with a consecutive series of 111 patients using a standardized surgical-pathological protocol. Int J Gynecol Cancer 21 (5): 846-51, 2011. [PUBMED Abstract]
  167. Piek JM, van Diest PJ, Zweemer RP, et al.: Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. J Pathol 195 (4): 451-6, 2001. [PUBMED Abstract]
  168. Paley PJ, Swisher EM, Garcia RL, et al.: Occult cancer of the fallopian tube in BRCA-1 germline mutation carriers at prophylactic oophorectomy: a case for recommending hysterectomy at surgical prophylaxis. Gynecol Oncol 80 (2): 176-80, 2001. [PUBMED Abstract]
  169. Rose PG, Shrigley R, Wiesner GL: Germline BRCA2 mutation in a patient with fallopian tube carcinoma: a case report. Gynecol Oncol 77 (2): 319-20, 2000. [PUBMED Abstract]
  170. Zweemer RP, van Diest PJ, Verheijen RH, et al.: Molecular evidence linking primary cancer of the fallopian tube to BRCA1 germline mutations. Gynecol Oncol 76 (1): 45-50, 2000. [PUBMED Abstract]
  171. Piek JM, Torrenga B, Hermsen B, et al.: Histopathological characteristics of BRCA1- and BRCA2-associated intraperitoneal cancer: a clinic-based study. Fam Cancer 2 (2): 73-8, 2003. [PUBMED Abstract]
  172. Levine DA, Argenta PA, Yee CJ, et al.: Fallopian tube and primary peritoneal carcinomas associated with BRCA mutations. J Clin Oncol 21 (22): 4222-7, 2003. [PUBMED Abstract]
  173. Aziz S, Kuperstein G, Rosen B, et al.: A genetic epidemiological study of carcinoma of the fallopian tube. Gynecol Oncol 80 (3): 341-5, 2001. [PUBMED Abstract]
  174. Kindelberger DW, Lee Y, Miron A, et al.: Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: Evidence for a causal relationship. Am J Surg Pathol 31 (2): 161-9, 2007. [PUBMED Abstract]
  175. Rabban JT, Krasik E, Chen LM, et al.: Multistep level sections to detect occult fallopian tube carcinoma in risk-reducing salpingo-oophorectomies from women with BRCA mutations: implications for defining an optimal specimen dissection protocol. Am J Surg Pathol 33 (12): 1878-85, 2009. [PUBMED Abstract]
  176. Society of Gynecologic Oncologists Clinical Practice Committee Statement on Prophylactic Salpingo-oophorectomy. Gynecol Oncol 98 (2): 179-81, 2005. [PUBMED Abstract]
  177. Chen KT, Schooley JL, Flam MS: Peritoneal carcinomatosis after prophylactic oophorectomy in familial ovarian cancer syndrome. Obstet Gynecol 66 (3 Suppl): 93S-94S, 1985. [PUBMED Abstract]
  178. Lynch HT, Bewtra C, Lynch JF: Familial ovarian carcinoma. Clinical nuances. Am J Med 81 (6): 1073-6, 1986. [PUBMED Abstract]
  179. Lynch HT, Watson P, Bewtra C, et al.: Hereditary ovarian cancer. Heterogeneity in age at diagnosis. Cancer 67 (5): 1460-6, 1991. [PUBMED Abstract]
  180. Tobacman JK, Greene MH, Tucker MA, et al.: Intra-abdominal carcinomatosis after prophylactic oophorectomy in ovarian-cancer-prone families. Lancet 2 (8302): 795-7, 1982. [PUBMED Abstract]
  181. Truong LD, Maccato ML, Awalt H, et al.: Serous surface carcinoma of the peritoneum: a clinicopathologic study of 22 cases. Hum Pathol 21 (1): 99-110, 1990. [PUBMED Abstract]
  182. Piver MS, Jishi MF, Tsukada Y, et al.: Primary peritoneal carcinoma after prophylactic oophorectomy in women with a family history of ovarian cancer. A report of the Gilda Radner Familial Ovarian Cancer Registry. Cancer 71 (9): 2751-5, 1993. [PUBMED Abstract]
  183. Casey MJ, Synder C, Bewtra C, et al.: Intra-abdominal carcinomatosis after prophylactic oophorectomy in women of hereditary breast ovarian cancer syndrome kindreds associated with BRCA1 and BRCA2 mutations. Gynecol Oncol 97 (2): 457-67, 2005. [PUBMED Abstract]
  184. Finch A, Beiner M, Lubinski J, et al.: Salpingo-oophorectomy and the risk of ovarian, fallopian tube, and peritoneal cancers in women with a BRCA1 or BRCA2 Mutation. JAMA 296 (2): 185-92, 2006. [PUBMED Abstract]
  185. Chen S, Iversen ES, Friebel T, et al.: Characterization of BRCA1 and BRCA2 mutations in a large United States sample. J Clin Oncol 24 (6): 863-71, 2006. [PUBMED Abstract]
  186. Antoniou A, Pharoah PD, Narod S, et al.: Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72 (5): 1117-30, 2003. [PUBMED Abstract]
  187. Risch HA, McLaughlin JR, Cole DE, et al.: Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst 98 (23): 1694-706, 2006. [PUBMED Abstract]
  188. Lavie O, Hornreich G, Ben-Arie A, et al.: BRCA germline mutations in Jewish women with uterine serous papillary carcinoma. Gynecol Oncol 92 (2): 521-4, 2004. [PUBMED Abstract]
  189. Goshen R, Chu W, Elit L, et al.: Is uterine papillary serous adenocarcinoma a manifestation of the hereditary breast-ovarian cancer syndrome? Gynecol Oncol 79 (3): 477-81, 2000. [PUBMED Abstract]
  190. Beiner ME, Finch A, Rosen B, et al.: The risk of endometrial cancer in women with BRCA1 and BRCA2 mutations. A prospective study. Gynecol Oncol 104 (1): 7-10, 2007. [PUBMED Abstract]
  191. Segev Y, Iqbal J, Lubinski J, et al.: The incidence of endometrial cancer in women with BRCA1 and BRCA2 mutations: an international prospective cohort study. Gynecol Oncol 130 (1): 127-31, 2013. [PUBMED Abstract]
  192. Levine DA, Lin O, Barakat RR, et al.: Risk of endometrial carcinoma associated with BRCA mutation. Gynecol Oncol 80 (3): 395-8, 2001. [PUBMED Abstract]
  193. Karlan BY: Defining cancer risks for BRCA germline mutation carriers: implications for surgical prophylaxis. Gynecol Oncol 92 (2): 519-20, 2004. [PUBMED Abstract]
  194. Biron-Shental T, Drucker L, Altaras M, et al.: High incidence of BRCA1-2 germline mutations, previous breast cancer and familial cancer history in Jewish patients with uterine serous papillary carcinoma. Eur J Surg Oncol 32 (10): 1097-100, 2006. [PUBMED Abstract]
  195. Lu KH, Kauff ND: Does a BRCA mutation plus tamoxifen equal hysterectomy? Gynecol Oncol 104 (1): 3-4, 2007. [PUBMED Abstract]
  196. Madalinska JB, Hollenstein J, Bleiker E, et al.: Quality-of-life effects of prophylactic salpingo-oophorectomy versus gynecologic screening among women at increased risk of hereditary ovarian cancer. J Clin Oncol 23 (28): 6890-8, 2005. [PUBMED Abstract]
  197. Rocca WA, Grossardt BR, de Andrade M, et al.: Survival patterns after oophorectomy in premenopausal women: a population-based cohort study. Lancet Oncol 7 (10): 821-8, 2006. [PUBMED Abstract]
  198. Rocca WA, Bower JH, Maraganore DM, et al.: Increased risk of parkinsonism in women who underwent oophorectomy before menopause. Neurology 70 (3): 200-9, 2008. [PUBMED Abstract]
  199. Shuster LT, Rhodes DJ, Gostout BS, et al.: Premature menopause or early menopause: long-term health consequences. Maturitas 65 (2): 161-6, 2010. [PUBMED Abstract]
  200. Parker WH, Broder MS, Chang E, et al.: Ovarian conservation at the time of hysterectomy and long-term health outcomes in the nurses' health study. Obstet Gynecol 113 (5): 1027-37, 2009. [PUBMED Abstract]
  201. Rivera CM, Grossardt BR, Rhodes DJ, et al.: Increased cardiovascular mortality after early bilateral oophorectomy. Menopause 16 (1): 15-23, 2009 Jan-Feb. [PUBMED Abstract]
  202. Michelsen TM, Pripp AH, Tonstad S, et al.: Metabolic syndrome after risk-reducing salpingo-oophorectomy in women at high risk for hereditary breast ovarian cancer: a controlled observational study. Eur J Cancer 45 (1): 82-9, 2009. [PUBMED Abstract]
  203. Greene MH, Mai PL, Schwartz PE: Does bilateral salpingectomy with ovarian retention warrant consideration as a temporary bridge to risk-reducing bilateral oophorectomy in BRCA1/2 mutation carriers? Am J Obstet Gynecol 204 (1): 19.e1-6, 2011. [PUBMED Abstract]
  204. Dietl J, Wischhusen J, Häusler SF: The post-reproductive Fallopian tube: better removed? Hum Reprod 26 (11): 2918-24, 2011. [PUBMED Abstract]
  205. Leblanc E, Narducci F, Farre I, et al.: Radical fimbriectomy: a reasonable temporary risk-reducing surgery for selected women with a germ line mutation of BRCA 1 or 2 genes? Rationale and preliminary development. Gynecol Oncol 121 (3): 472-6, 2011. [PUBMED Abstract]
  206. Collaborative Group on Epidemiological Studies of Ovarian Cancer, Beral V, Doll R, et al.: Ovarian cancer and oral contraceptives: collaborative reanalysis of data from 45 epidemiological studies including 23,257 women with ovarian cancer and 87,303 controls. Lancet 371 (9609): 303-14, 2008. [PUBMED Abstract]
  207. Narod SA, Sun P, Ghadirian P, et al.: Tubal ligation and risk of ovarian cancer in carriers of BRCA1 or BRCA2 mutations: a case-control study. Lancet 357 (9267): 1467-70, 2001. [PUBMED Abstract]
  208. Whittemore AS, Balise RR, Pharoah PD, et al.: Oral contraceptive use and ovarian cancer risk among carriers of BRCA1 or BRCA2 mutations. Br J Cancer 91 (11): 1911-5, 2004. [PUBMED Abstract]
  209. McGuire V, Felberg A, Mills M, et al.: Relation of contraceptive and reproductive history to ovarian cancer risk in carriers and noncarriers of BRCA1 gene mutations. Am J Epidemiol 160 (7): 613-8, 2004. [PUBMED Abstract]
  210. McLaughlin JR, Risch HA, Lubinski J, et al.: Reproductive risk factors for ovarian cancer in carriers of BRCA1 or BRCA2 mutations: a case-control study. Lancet Oncol 8 (1): 26-34, 2007. [PUBMED Abstract]
  211. Modan B, Hartge P, Hirsh-Yechezkel G, et al.: Parity, oral contraceptives, and the risk of ovarian cancer among carriers and noncarriers of a BRCA1 or BRCA2 mutation. N Engl J Med 345 (4): 235-40, 2001. [PUBMED Abstract]
  212. Risch HA: Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. J Natl Cancer Inst 90 (23): 1774-86, 1998. [PUBMED Abstract]
  213. Hankinson SE, Colditz GA, Hunter DJ, et al.: A prospective study of reproductive factors and risk of epithelial ovarian cancer. Cancer 76 (2): 284-90, 1995. [PUBMED Abstract]
  214. Gronwald J, Byrski T, Huzarski T, et al.: Influence of selected lifestyle factors on breast and ovarian cancer risk in BRCA1 mutation carriers from Poland. Breast Cancer Res Treat 95 (2): 105-9, 2006. [PUBMED Abstract]
  215. Whittemore AS, Harris R, Itnyre J: Characteristics relating to ovarian cancer risk: collaborative analysis of 12 US case-control studies. IV. The pathogenesis of epithelial ovarian cancer. Collaborative Ovarian Cancer Group. Am J Epidemiol 136 (10): 1212-20, 1992. [PUBMED Abstract]
  216. Miracle-McMahill HL, Calle EE, Kosinski AS, et al.: Tubal ligation and fatal ovarian cancer in a large prospective cohort study. Am J Epidemiol 145 (4): 349-57, 1997. [PUBMED Abstract]
  217. Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J Natl Cancer Inst 91 (15): 1310-6, 1999. [PUBMED Abstract]
  218. van Asperen CJ, Brohet RM, Meijers-Heijboer EJ, et al.: Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet 42 (9): 711-9, 2005. [PUBMED Abstract]
  219. Risch HA, McLaughlin JR, Cole DE, et al.: Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am J Hum Genet 68 (3): 700-10, 2001. [PUBMED Abstract]
  220. Liede A, Malik IA, Aziz Z, et al.: Contribution of BRCA1 and BRCA2 mutations to breast and ovarian cancer in Pakistan. Am J Hum Genet 71 (3): 595-606, 2002. [PUBMED Abstract]
  221. Moslehi R, Chu W, Karlan B, et al.: BRCA1 and BRCA2 mutation analysis of 208 Ashkenazi Jewish women with ovarian cancer. Am J Hum Genet 66 (4): 1259-72, 2000. [PUBMED Abstract]
  222. Mohamad HB, Apffelstaedt JP: Counseling for male BRCA mutation carriers: a review. Breast 17 (5): 441-50, 2008. [PUBMED Abstract]
  223. Liede A, Karlan BY, Narod SA: Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. J Clin Oncol 22 (4): 735-42, 2004. [PUBMED Abstract]
  224. Mitra A, Fisher C, Foster CS, et al.: Prostate cancer in male BRCA1 and BRCA2 mutation carriers has a more aggressive phenotype. Br J Cancer 98 (2): 502-7, 2008. [PUBMED Abstract]
  225. Tryggvadóttir L, Vidarsdóttir L, Thorgeirsson T, et al.: Prostate cancer progression and survival in BRCA2 mutation carriers. J Natl Cancer Inst 99 (12): 929-35, 2007. [PUBMED Abstract]
  226. Agalliu I, Gern R, Leanza S, et al.: Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res 15 (3): 1112-20, 2009. [PUBMED Abstract]
  227. Narod SA, Neuhausen S, Vichodez G, et al.: Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer 99 (2): 371-4, 2008. [PUBMED Abstract]
  228. Edwards SM, Evans DG, Hope Q, et al.: Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br J Cancer 103 (6): 918-24, 2010. [PUBMED Abstract]
  229. Gallagher DJ, Gaudet MM, Pal P, et al.: Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res 16 (7): 2115-21, 2010. [PUBMED Abstract]
  230. Schröder FH, Hugosson J, Roobol MJ, et al.: Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 360 (13): 1320-8, 2009. [PUBMED Abstract]
  231. Andriole GL, Grubb RL 3rd, Buys SS, et al.: Mortality results from a randomized prostate-cancer screening trial. N Engl J Med 360 (13): 1310-9, 2009. [PUBMED Abstract]
  232. Fiorentino M, Judson G, Penney K, et al.: Immunohistochemical expression of BRCA1 and lethal prostate cancer. Cancer Res 70 (8): 3136-9, 2010. [PUBMED Abstract]
  233. Horsburgh S, Matthew A, Bristow R, et al.: Male BRCA1 and BRCA2 mutation carriers: a pilot study investigating medical characteristics of patients participating in a prostate cancer prevention clinic. Prostate 65 (2): 124-9, 2005. [PUBMED Abstract]
  234. Hubert A, Peretz T, Manor O, et al.: The Jewish Ashkenazi founder mutations in the BRCA1/BRCA2 genes are not found at an increased frequency in Ashkenazi patients with prostate cancer. Am J Hum Genet 65 (3): 921-4, 1999. [PUBMED Abstract]
  235. Mitra AV, Bancroft EK, Barbachano Y, et al.: Targeted prostate cancer screening in men with mutations in BRCA1 and BRCA2 detects aggressive prostate cancer: preliminary analysis of the results of the IMPACT study. BJU Int 107 (1): 28-39, 2011. [PUBMED Abstract]
  236. Foulkes WD, Metcalfe K, Hanna W, et al.: Disruption of the expected positive correlation between breast tumor size and lymph node status in BRCA1-related breast carcinoma. Cancer 98 (8): 1569-77, 2003. [PUBMED Abstract]
  237. Verhoog LC, Brekelmans CT, Seynaeve C, et al.: Survival and tumour characteristics of breast-cancer patients with germline mutations of BRCA1. Lancet 351 (9099): 316-21, 1998. [PUBMED Abstract]
  238. Jóhannsson OT, Ranstam J, Borg A, et al.: Survival of BRCA1 breast and ovarian cancer patients: a population-based study from southern Sweden. J Clin Oncol 16 (2): 397-404, 1998. [PUBMED Abstract]
  239. Stoppa-Lyonnet D, Ansquer Y, Dreyfus H, et al.: Familial invasive breast cancers: worse outcome related to BRCA1 mutations. J Clin Oncol 18 (24): 4053-9, 2000. [PUBMED Abstract]
  240. Haffty BG, Harrold E, Khan AJ, et al.: Outcome of conservatively managed early-onset breast cancer by BRCA1/2 status. Lancet 359 (9316): 1471-7, 2002. [PUBMED Abstract]
  241. Robson M, Levin D, Federici M, et al.: Breast conservation therapy for invasive breast cancer in Ashkenazi women with BRCA gene founder mutations. J Natl Cancer Inst 91 (24): 2112-7, 1999. [PUBMED Abstract]
  242. Graeser MK, Engel C, Rhiem K, et al.: Contralateral breast cancer risk in BRCA1 and BRCA2 mutation carriers. J Clin Oncol 27 (35): 5887-92, 2009. [PUBMED Abstract]
  243. Robson ME, Chappuis PO, Satagopan J, et al.: A combined analysis of outcome following breast cancer: differences in survival based on BRCA1/BRCA2 mutation status and administration of adjuvant treatment. Breast Cancer Res 6 (1): R8-R17, 2004. [PUBMED Abstract]
  244. Rennert G, Bisland-Naggan S, Barnett-Griness O, et al.: Clinical outcomes of breast cancer in carriers of BRCA1 and BRCA2 mutations. N Engl J Med 357 (2): 115-23, 2007. [PUBMED Abstract]
  245. Kriege M, Seynaeve C, Meijers-Heijboer H, et al.: Sensitivity to first-line chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol 27 (23): 3764-71, 2009. [PUBMED Abstract]
  246. Goodwin PJ, Phillips KA, West DW, et al.: Breast cancer prognosis in BRCA1 and BRCA2 mutation carriers: an International Prospective Breast Cancer Family Registry population-based cohort study. J Clin Oncol 30 (1): 19-26, 2012. [PUBMED Abstract]
  247. Gonzalez-Angulo AM, Timms KM, Liu S, et al.: Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res 17 (5): 1082-9, 2011. [PUBMED Abstract]
  248. Lee LJ, Alexander B, Schnitt SJ, et al.: Clinical outcome of triple negative breast cancer in BRCA1 mutation carriers and noncarriers. Cancer 117 (14): 3093-100, 2011. [PUBMED Abstract]
  249. Huzarski T, Byrski T, Gronwald J, et al.: Ten-year survival in patients with BRCA1-negative and BRCA1-positive breast cancer. J Clin Oncol 31 (26): 3191-6, 2013. [PUBMED Abstract]
  250. Verhoog LC, Berns EM, Brekelmans CT, et al.: Prognostic significance of germline BRCA2 mutations in hereditary breast cancer patients. J Clin Oncol 18 (21 Suppl): 119S-24S, 2000. [PUBMED Abstract]
  251. Brekelmans CT, Tilanus-Linthorst MM, Seynaeve C, et al.: Tumour characteristics, survival and prognostic factors of hereditary breast cancer from BRCA2-, BRCA1- and non-BRCA1/2 families as compared to sporadic breast cancer cases. Eur J Cancer 43 (5): 867-76, 2007. [PUBMED Abstract]
  252. Budroni M, Cesaraccio R, Coviello V, et al.: Role of BRCA2 mutation status on overall survival among breast cancer patients from Sardinia. BMC Cancer 9: 62, 2009. [PUBMED Abstract]
  253. Moynahan ME, Cui TY, Jasin M: Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res 61 (12): 4842-50, 2001. [PUBMED Abstract]
  254. Husain A, He G, Venkatraman ES, et al.: BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res 58 (6): 1120-3, 1998. [PUBMED Abstract]
  255. Mullan PB, Quinn JE, Gilmore PM, et al.: BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents. Oncogene 20 (43): 6123-31, 2001. [PUBMED Abstract]
  256. Quinn JE, Kennedy RD, Mullan PB, et al.: BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res 63 (19): 6221-8, 2003. [PUBMED Abstract]
  257. Lafarge S, Sylvain V, Ferrara M, et al.: Inhibition of BRCA1 leads to increased chemoresistance to microtubule-interfering agents, an effect that involves the JNK pathway. Oncogene 20 (45): 6597-606, 2001. [PUBMED Abstract]
  258. Tutt A, Ashworth A: Can genetic testing guide treatment in breast cancer? Eur J Cancer 44 (18): 2774-80, 2008. [PUBMED Abstract]
  259. Byrski T, Huzarski T, Dent R, et al.: Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat 115 (2): 359-63, 2009. [PUBMED Abstract]
  260. Chappuis PO, Goffin J, Wong N, et al.: A significant response to neoadjuvant chemotherapy in BRCA1/2 related breast cancer. J Med Genet 39 (8): 608-10, 2002. [PUBMED Abstract]
  261. Byrski T, Gronwald J, Huzarski T, et al.: Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol 28 (3): 375-9, 2010. [PUBMED Abstract]
  262. Fourquet A, Stoppa-Lyonnet D, Kirova YM, et al.: Familial breast cancer: clinical response to induction chemotherapy or radiotherapy related to BRCA1/2 mutations status. Am J Clin Oncol 32 (2): 127-31, 2009. [PUBMED Abstract]
  263. Arun B, Bayraktar S, Liu DD, et al.: Response to neoadjuvant systemic therapy for breast cancer in BRCA mutation carriers and noncarriers: a single-institution experience. J Clin Oncol 29 (28): 3739-46, 2011. [PUBMED Abstract]
  264. Byrski T, Gronwald J, Huzarski T, et al.: Response to neo-adjuvant chemotherapy in women with BRCA1-positive breast cancers. Breast Cancer Res Treat 108 (2): 289-96, 2008. [PUBMED Abstract]
  265. Silver DP, Richardson AL, Eklund AC, et al.: Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol 28 (7): 1145-53, 2010. [PUBMED Abstract]
  266. Byrski T, Dent R, Blecharz P, et al.: Results of a phase II open-label, non-randomized trial of cisplatin chemotherapy in patients with BRCA1-positive metastatic breast cancer. Breast Cancer Res 14 (4): R110, 2012. [PUBMED Abstract]
  267. Farmer H, McCabe N, Lord CJ, et al.: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434 (7035): 917-21, 2005. [PUBMED Abstract]
  268. Bryant HE, Schultz N, Thomas HD, et al.: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434 (7035): 913-7, 2005. [PUBMED Abstract]
  269. Fong PC, Boss DS, Yap TA, et al.: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361 (2): 123-34, 2009. [PUBMED Abstract]
  270. Tutt A, Robson M, Garber JE, et al.: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376 (9737): 235-44, 2010. [PUBMED Abstract]
  271. Audeh MW, Carmichael J, Penson RT, et al.: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376 (9737): 245-51, 2010. [PUBMED Abstract]
  272. Rottenberg S, Jaspers JE, Kersbergen A, et al.: High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci U S A 105 (44): 17079-84, 2008. [PUBMED Abstract]
  273. Evers B, Drost R, Schut E, et al.: Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin Cancer Res 14 (12): 3916-25, 2008. [PUBMED Abstract]
  274. Leong T, Whitty J, Keilar M, et al.: Mutation analysis of BRCA1 and BRCA2 cancer predisposition genes in radiation hypersensitive cancer patients. Int J Radiat Oncol Biol Phys 48 (4): 959-65, 2000. [PUBMED Abstract]
  275. Pierce LJ, Strawderman M, Narod SA, et al.: Effect of radiotherapy after breast-conserving treatment in women with breast cancer and germline BRCA1/2 mutations. J Clin Oncol 18 (19): 3360-9, 2000. [PUBMED Abstract]
  276. Shanley S, McReynolds K, Ardern-Jones A, et al.: Late toxicity is not increased in BRCA1/BRCA2 mutation carriers undergoing breast radiotherapy in the United Kingdom. Clin Cancer Res 12 (23): 7025-32, 2006. [PUBMED Abstract]
  277. Pierce LJ, Phillips KA, Griffith KA, et al.: Local therapy in BRCA1 and BRCA2 mutation carriers with operable breast cancer: comparison of breast conservation and mastectomy. Breast Cancer Res Treat 121 (2): 389-98, 2010. [PUBMED Abstract]
  278. Kirova YM, Savignoni A, Sigal-Zafrani B, et al.: Is the breast-conserving treatment with radiotherapy appropriate in BRCA1/2 mutation carriers? Long-term results and review of the literature. Breast Cancer Res Treat 120 (1): 119-26, 2010. [PUBMED Abstract]
  279. Metcalfe K, Lynch HT, Ghadirian P, et al.: Risk of ipsilateral breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat 127 (1): 287-96, 2011. [PUBMED Abstract]
  280. Reding KW, Bernstein JL, Langholz BM, et al.: Adjuvant systemic therapy for breast cancer in BRCA1/BRCA2 mutation carriers in a population-based study of risk of contralateral breast cancer. Breast Cancer Res Treat 123 (2): 491-8, 2010. [PUBMED Abstract]
  281. Bernstein JL, Thomas DC, Shore RE, et al.: Contralateral breast cancer after radiotherapy among BRCA1 and BRCA2 mutation carriers: a WECARE study report. Eur J Cancer 49 (14): 2979-85, 2013. [PUBMED Abstract]
  282. Easton DF, Ford D, Bishop DT: Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet 56 (1): 265-71, 1995. [PUBMED Abstract]
  283. Robson M, Gilewski T, Haas B, et al.: BRCA-associated breast cancer in young women. J Clin Oncol 16 (5): 1642-9, 1998. [PUBMED Abstract]
  284. Robson M, Svahn T, McCormick B, et al.: Appropriateness of breast-conserving treatment of breast carcinoma in women with germline mutations in BRCA1 or BRCA2: a clinic-based series. Cancer 103 (1): 44-51, 2005. [PUBMED Abstract]
  285. Verhoog LC, Brekelmans CT, Seynaeve C, et al.: Contralateral breast cancer risk is influenced by the age at onset in BRCA1-associated breast cancer. Br J Cancer 83 (3): 384-6, 2000. [PUBMED Abstract]
  286. Verhoog LC, Brekelmans CT, Seynaeve C, et al.: Survival in hereditary breast cancer associated with germline mutations of BRCA2. J Clin Oncol 17 (11): 3396-402, 1999. [PUBMED Abstract]
  287. van der Kolk DM, de Bock GH, Leegte BK, et al.: Penetrance of breast cancer, ovarian cancer and contralateral breast cancer in BRCA1 and BRCA2 families: high cancer incidence at older age. Breast Cancer Res Treat 124 (3): 643-51, 2010. [PUBMED Abstract]
  288. Kirova YM, Stoppa-Lyonnet D, Savignoni A, et al.: Risk of breast cancer recurrence and contralateral breast cancer in relation to BRCA1 and BRCA2 mutation status following breast-conserving surgery and radiotherapy. Eur J Cancer 41 (15): 2304-11, 2005. [PUBMED Abstract]
  289. Metcalfe K, Lynch HT, Ghadirian P, et al.: Contralateral breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol 22 (12): 2328-35, 2004. [PUBMED Abstract]
  290. Weitzel JN, Robson M, Pasini B, et al.: A comparison of bilateral breast cancers in BRCA carriers. Cancer Epidemiol Biomarkers Prev 14 (6): 1534-8, 2005. [PUBMED Abstract]
  291. Malone KE, Begg CB, Haile RW, et al.: Population-based study of the risk of second primary contralateral breast cancer associated with carrying a mutation in BRCA1 or BRCA2. J Clin Oncol 28 (14): 2404-10, 2010. [PUBMED Abstract]
  292. Rubin SC, Benjamin I, Behbakht K, et al.: Clinical and pathological features of ovarian cancer in women with germ-line mutations of BRCA1. N Engl J Med 335 (19): 1413-6, 1996. [PUBMED Abstract]
  293. Ben David Y, Chetrit A, Hirsh-Yechezkel G, et al.: Effect of BRCA mutations on the length of survival in epithelial ovarian tumors. J Clin Oncol 20 (2): 463-6, 2002. [PUBMED Abstract]
  294. Jazaeri AA, Yee CJ, Sotiriou C, et al.: Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J Natl Cancer Inst 94 (13): 990-1000, 2002. [PUBMED Abstract]
  295. Cass I, Baldwin RL, Varkey T, et al.: Improved survival in women with BRCA-associated ovarian carcinoma. Cancer 97 (9): 2187-95, 2003. [PUBMED Abstract]
  296. Aida H, Takakuwa K, Nagata H, et al.: Clinical features of ovarian cancer in Japanese women with germ-line mutations of BRCA1. Clin Cancer Res 4 (1): 235-40, 1998. [PUBMED Abstract]
  297. Boyd J, Sonoda Y, Federici MG, et al.: Clinicopathologic features of BRCA-linked and sporadic ovarian cancer. JAMA 283 (17): 2260-5, 2000. [PUBMED Abstract]
  298. Tan DS, Rothermundt C, Thomas K, et al.: "BRCAness" syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J Clin Oncol 26 (34): 5530-6, 2008. [PUBMED Abstract]
  299. Hyman DM, Zhou Q, Iasonos A, et al.: Improved survival for BRCA2-associated serous ovarian cancer compared with both BRCA-negative and BRCA1-associated serous ovarian cancer. Cancer 118 (15): 3703-9, 2012. [PUBMED Abstract]
  300. Liu J, Cristea MC, Frankel P, et al.: Clinical characteristics and outcomes of BRCA-associated ovarian cancer: genotype and survival. Cancer Genet 205 (1-2): 34-41, 2012 Jan-Feb. [PUBMED Abstract]
  301. Chetrit A, Hirsh-Yechezkel G, Ben-David Y, et al.: Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: the national Israeli study of ovarian cancer. J Clin Oncol 26 (1): 20-5, 2008. [PUBMED Abstract]
  302. Lacour RA, Westin SN, Meyer LA, et al.: Improved survival in non-Ashkenazi Jewish ovarian cancer patients with BRCA1 and BRCA2 gene mutations. Gynecol Oncol 121 (2): 358-63, 2011. [PUBMED Abstract]
  303. Vencken PM, Kriege M, Hoogwerf D, et al.: Chemosensitivity and outcome of BRCA1- and BRCA2-associated ovarian cancer patients after first-line chemotherapy compared with sporadic ovarian cancer patients. Ann Oncol 22 (6): 1346-52, 2011. [PUBMED Abstract]
  304. Pal T, Permuth-Wey J, Kapoor R, et al.: Improved survival in BRCA2 carriers with ovarian cancer. Fam Cancer 6 (1): 113-9, 2007. [PUBMED Abstract]
  305. Yang D, Khan S, Sun Y, et al.: Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 306 (14): 1557-65, 2011. [PUBMED Abstract]
  306. Bolton KL, Chenevix-Trench G, Goh C, et al.: Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA 307 (4): 382-90, 2012. [PUBMED Abstract]
  307. Zweemer RP, Verheijen RH, Coebergh JW, et al.: Survival analysis in familial ovarian cancer, a case control study. Eur J Obstet Gynecol Reprod Biol 98 (2): 219-23, 2001. [PUBMED Abstract]
  308. Pharoah PD, Easton DF, Stockton DL, et al.: Survival in familial, BRCA1-associated, and BRCA2-associated epithelial ovarian cancer. United Kingdom Coordinating Committee for Cancer Research (UKCCCR) Familial Ovarian Cancer Study Group. Cancer Res 59 (4): 868-71, 1999. [PUBMED Abstract]
  309. Buller RE, Shahin MS, Geisler JP, et al.: Failure of BRCA1 dysfunction to alter ovarian cancer survival. Clin Cancer Res 8 (5): 1196-202, 2002. [PUBMED Abstract]
  310. McLaughlin JR, Rosen B, Moody J, et al.: Long-term ovarian cancer survival associated with mutation in BRCA1 or BRCA2. J Natl Cancer Inst 105 (2): 141-8, 2013. [PUBMED Abstract]
  311. Yang H, Jeffrey PD, Miller J, et al.: BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science 297 (5588): 1837-48, 2002. [PUBMED Abstract]
  312. Xu X, Weaver Z, Linke SP, et al.: Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 3 (3): 389-95, 1999. [PUBMED Abstract]
  313. Fong PC, Yap TA, Boss DS, et al.: Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 28 (15): 2512-9, 2010. [PUBMED Abstract]
  314. Hennessy BT, Timms KM, Carey MS, et al.: Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer. J Clin Oncol 28 (22): 3570-6, 2010. [PUBMED Abstract]
  315. Kaye SB, Lubinski J, Matulonis U, et al.: Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J Clin Oncol 30 (4): 372-9, 2012. [PUBMED Abstract]
  316. Adams SF, Marsh EB, Elmasri W, et al.: A high response rate to liposomal doxorubicin is seen among women with BRCA mutations treated for recurrent epithelial ovarian cancer. Gynecol Oncol 123 (3): 486-91, 2011. [PUBMED Abstract]
  317. Safra T, Borgato L, Nicoletto MO, et al.: BRCA mutation status and determinant of outcome in women with recurrent epithelial ovarian cancer treated with pegylated liposomal doxorubicin. Mol Cancer Ther 10 (10): 2000-7, 2011. [PUBMED Abstract]
  318. Gelmon KA, Tischkowitz M, Mackay H, et al.: Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 12 (9): 852-61, 2011. [PUBMED Abstract]
  319. Ledermann J, Harter P, Gourley C, et al.: Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med 366 (15): 1382-92, 2012. [PUBMED Abstract]
  320. Domchek SM, Jhaveri K, Patil S, et al.: Risk of metachronous breast cancer after BRCA mutation-associated ovarian cancer. Cancer 119 (7): 1344-8, 2013. [PUBMED Abstract]
  321. Vencken PM, Kriege M, Hooning M, et al.: The risk of primary and contralateral breast cancer after ovarian cancer in BRCA1/BRCA2 mutation carriers: Implications for counseling. Cancer 119 (5): 955-62, 2013. [PUBMED Abstract]
  322. Gangi A, Cass I, Paik D, et al.: Breast cancer following ovarian cancer in BRCA mutation carriers. JAMA Surg 149 (12): 1306-13, 2014. [PUBMED Abstract]
  323. American College of Obstetricians and Gynecologists, ACOG Committee on Practice Bulletins--Gynecology, ACOG Committee on Genetics, et al.: ACOG Practice Bulletin No. 103: Hereditary breast and ovarian cancer syndrome. Obstet Gynecol 113 (4): 957-66, 2009. [PUBMED Abstract]
  324. National Accreditation Program for Breast Centers: 2013 Breast Center Standards Manual. Chicago, IL: National Accreditation Program for Breast Centers, 2013. Available online. Last accessed April 15, 2014.
  325. Berliner JL, Fay AM, Cummings SA, et al.: NSGC practice guideline: risk assessment and genetic counseling for hereditary breast and ovarian cancer. J Genet Couns 22 (2): 155-63, 2013. [PUBMED Abstract]
  326. Society of Gynecologic Oncology: SGO Clinical Practice Statement: Genetic Testing for Ovarian Cancer. 2014. Available online. Last accessed April 15, 2014.
  327. Moyer VA; U.S. Preventive Services Task Force: Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 160 (4): 271-81, 2014. [PUBMED Abstract]
  • Updated: April 3, 2015