Questions About Cancer? 1-800-4-CANCER
  • View entire document
  • Print
  • Email
  • Facebook
  • Twitter
  • Google+
  • Pinterest

Genetics of Breast and Gynecologic Cancers (PDQ®)

High-Penetrance Breast and/or Gynecologic Cancer Susceptibility Genes



Epidemiologic studies have clearly established the role of family history as an important risk factor for both breast and ovarian cancer. After gender and age, a positive family history is the strongest known predictive risk factor for breast cancer. However, it has long been recognized that in some families, there is hereditary breast cancer, which is characterized by an early age of onset, bilaterality, and the presence of breast cancer in multiple generations in an apparent autosomal dominant pattern of transmission (through either the maternal or the paternal lineage), sometimes including tumors of other organs, particularly the ovary and prostate gland.[1,2] It is now known that some of these “cancer families” can be explained by specific mutations in single cancer susceptibility genes. The isolation of several of these genes, which when mutated are associated with a significantly increased risk of breast/ovarian cancer, makes it possible to identify individuals at risk. Although such cancer susceptibility genes are very important, highly penetrant germline mutations are estimated to account for only 5% to 10% of breast cancers overall.

A 1988 study reported the first quantitative evidence that breast cancer segregated as an autosomal dominant trait in some families.[3] The search for genes associated with hereditary susceptibility to breast cancer has been facilitated by studies of large kindreds with multiple affected individuals and has led to the identification of several susceptibility genes, including BRCA1, BRCA2, TP53, PTEN/MMAC1, and STK11. Other genes, such as the mismatch repair genes MLH1, MSH2, MSH6, and PMS2, have been associated with an increased risk of ovarian cancer, but have not been consistently associated with breast cancer.


In 1990, a susceptibility gene for breast cancer was mapped by genetic linkage to the long arm of chromosome 17, in the interval 17q12-21.[4] The linkage between breast cancer and genetic markers on chromosome 17q was soon confirmed by others, and evidence for the coincident transmission of both breast and ovarian cancer susceptibility in linked families was observed.[5] The BRCA1 gene (OMIM) was subsequently identified by positional cloning methods and has been found to contain 24 exons that encode a protein of 1,863 amino acids. Germline mutations in BRCA1 are associated with early-onset breast cancer, ovarian cancer, and fallopian tube cancer. (Refer to the Penetrance of mutations section of this summary for more information.) Male breast cancer, pancreatic cancer, testicular cancer, and early-onset prostate cancer may also be associated with mutations in BRCA1;[6-9] however, male breast cancer, pancreatic cancer, and prostate cancer are more strongly associated with mutations in BRCA2.


A second breast cancer susceptibility gene, BRCA2, was localized to the long arm of chromosome 13 through linkage studies of 15 families with multiple cases of breast cancer that were not linked to BRCA1. Mutations in BRCA2 (OMIM) are associated with multiple cases of breast cancer in families, and are also associated with male breast cancer, ovarian cancer, prostate cancer, melanoma, and pancreatic cancer.[8-14] (Refer to the Penetrance of mutations section of this summary for more information.) BRCA2 is a large gene with 27 exons that encode a protein of 3,418 amino acids.[15] While not homologous genes, both BRCA1 and BRCA2 have an unusually large exon 11 and translational start sites in exon 2. Like BRCA1, BRCA2 appears to behave like a tumor suppressor gene. In tumors associated with both BRCA1 and BRCA2 mutations, there is often loss of the wild-type (nonmutated) allele.

Mutations in BRCA1 and BRCA2 appear to be responsible for disease in 45% of families with multiple cases of breast cancer only and in up to 90% of families with both breast and ovarian cancer.[16]

BRCA1 and BRCA2 function

Most BRCA1 and BRCA2 mutations are predicted to produce a truncated protein product, and thus loss of protein function, although some missense mutations cause loss of function without truncation. Because inherited breast/ovarian cancer is an autosomal dominant condition, persons with a BRCA1 or BRCA2 mutation on one copy of chromosome 17 or 13 also carry a normal allele on the other paired chromosome. In most breast and ovarian cancers that have been studied from mutation carriers, deletion of the normal allele results in loss of all function, leading to the classification of BRCA1 and BRCA2 as tumor suppressor genes. In addition to, and as part of, their roles as tumor suppressor genes, BRCA1 and BRCA2 are involved in myriad functions within cells, including homologous DNA repair, genomic stability, transcriptional regulation, protein ubiquitination, chromatin remodeling, and cell cycle control.[17,18]

Mutations in BRCA1 and BRCA2

Nearly 2,000 distinct mutations and sequence variations in BRCA1 and BRCA2 have already been described.[19] Approximately 1 in 400 to 800 individuals in the general population may carry a pathogenic germline mutation in BRCA1 or BRCA2.[20,21] The mutations that have been associated with increased risk of cancer result in missing or nonfunctional proteins, supporting the hypothesis that BRCA1 and BRCA2 are tumor suppressor genes. While a small number of these mutations have been found repeatedly in unrelated families, most have not been reported in more than a few families.

Mutation-screening methods vary in their sensitivity. Methods widely used in research laboratories, such as single-stranded conformational polymorphism analysis and conformation-sensitive gel electrophoresis, miss nearly a third of the mutations that are detected by DNA sequencing.[22] In addition, large genomic alterations such as translocations, inversions, or large deletions or insertions are missed by most of the techniques, including direct DNA sequencing, but testing for these is commercially available. Such rearrangements are believed to be responsible for 12% to 18% of BRCA1 inactivating mutations but are less frequently seen in BRCA2 and in individuals of Ashkenazi Jewish (AJ) descent.[23-29] Furthermore, studies have suggested that these rearrangements may be more frequently seen in Hispanic and Caribbean populations.[27,29,30]

Variants of uncertain significance

Germline deleterious mutations in the BRCA1/BRCA2 genes are associated with an approximately 60% lifetime risk of breast cancer and a 15% to 40% lifetime risk of ovarian cancer. There are no definitive functional tests for BRCA1 or BRCA2; therefore, the classification of nucleotide changes to predict their functional impact as deleterious or benign relies on imperfect data. The majority of accepted deleterious mutations result in protein truncation and/or loss of important functional domains. However, 10% to 15% of all individuals undergoing genetic testing with full sequencing of BRCA1 and BRCA2 will not have a clearly deleterious mutation detected but will have a variant of uncertain (or unknown) significance (VUS). VUS may cause substantial challenges in counseling, particularly in terms of cancer risk estimates and risk management. Clinical management of such patients needs to be highly individualized and must take into consideration factors such as the patient’s personal and family cancer history, in addition to sources of information to help characterize the VUS as benign or deleterious. Thus an improved classification and reporting system may be of clinical utility.[31]

A comprehensive analysis of 7,461 consecutive full gene sequence analyses performed by Myriad Genetic Laboratories, Inc., described the frequency of VUS over a 3-year period.[32] Among subjects who had no clearly deleterious mutation, 13% had VUS defined as “missense mutations and mutations that occur in analyzed intronic regions whose clinical significance has not yet been determined, chain-terminating mutations that truncate BRCA1 and BRCA2 distal to amino acid positions 1853 and 3308, respectively, and mutations that eliminate the normal stop codons for these proteins.” The classification of a sequence variant as a VUS is a moving target. An additional 6.8% of subjects with no clear deleterious mutations had sequence alterations that were once considered VUS but were reclassified as a polymorphism, or occasionally as a deleterious mutation.

The frequency of VUS varies by ethnicity within the U.S. population. African Americans appear to have the highest rate of VUS.[33] In a 2009 study of data from Myriad, 16.5% of individuals of African ancestry had VUS, the highest rate among all ethnicities. The frequency of VUS in Asian, Middle Eastern, and Hispanic populations clusters between 10% and 14%, although these numbers are based on limited sample sizes. Over time, the rate of changes classified as VUS has decreased in all ethnicities, largely the result of improved mutation classification algorithms.[34] VUS continue to be reclassified as additional information is curated and interpreted.[35,36] Such information may impact the continuing care of affected individuals.

A number of methods for discriminating deleterious from neutral VUS exist and others are in development [37-40] including integrated methods (see below).[41] Interpretation of VUS is greatly aided by efforts to track VUS in the family to determine if there is cosegregation of the VUS with the cancer in the family. In general, a VUS observed in individuals who also have a deleterious mutation, especially when the same VUS has been identified in conjunction with different deleterious mutations, is less likely to be in itself deleterious, although there are rare exceptions. As an adjunct to the clinical information, models to interpret VUS have been developed, based on sequence conservation, biochemical properties of amino acid changes,[37,42-46] incorporation of information on pathologic characteristics of BRCA1- and BRCA2-related tumors (e.g., BRCA1-related breast cancers are usually estrogen receptor [ER]–negative),[47] and functional studies to measure the influence of specific sequence variations on the activity of BRCA1 or BRCA2 proteins.[48,49] When attempting to interpret a VUS, all available information should be examined.

Population estimates of the likelihood of having a BRCA1 or BRCA2 mutation

Statistics regarding the percentage of individuals found to be BRCA mutation carriers among samples of women and men with a variety of personal cancer histories regardless of family history are provided below. These data can help determine who might best benefit from a referral for cancer genetic counseling and consideration of genetic testing but cannot replace a personalized risk assessment, which might indicate a higher or lower mutation likelihood based on additional personal and family history characteristics.

In some cases, the same mutation has been found in multiple apparently unrelated families. This observation is consistent with a founder effect, wherein a mutation identified in a contemporary population can be traced to a small group of founders isolated by geographic, cultural, or other factors. Most notably, two specific BRCA1 mutations (185delAG and 5382insC) and a BRCA2 mutation (6174delT) have been reported to be common in AJs. However, other founder mutations have been identified in African Americans and Hispanics.[30,50,51] The presence of these founder mutations has practical implications for genetic testing. Many laboratories offer directed testing specifically for ethnic-specific alleles. This greatly simplifies the technical aspects of the test but is not without limitations. For example, it is estimated that up to 15% of BRCA1 and BRCA2 mutations that occur among Ashkenazim are nonfounder mutations.[32]

Among the general population, the likelihood of having any BRCA mutation is as follows:

  • General population (excluding Ashkenazim): about 1 in 400 (~0.25%).[21,52]
  • Women with breast cancer (any age): 1 in 50 (2%).[53]
  • Women with breast cancer (younger than 40 years): 1 in 10 (10%).[54-56]
  • Men with breast cancer (any age): 1 in 20 (5%).[57]
  • Women with ovarian cancer (any age): 1 in 8 to 1 in 10 (10%–15%).[58-60]

Among AJ individuals, the likelihood of having any BRCA mutation is as follows:

  • General AJ population: 1 in 40 (2.5%).[61,62]
  • Women with breast cancer (any age): 1 in 10 (10%).[63]
  • Women with breast cancer (younger than 40 years): 1 in 3 (30%–35%).[63-65]
  • Men with breast cancer (any age): 1 in 5 (19%).[66]
  • Women with ovarian cancer or primary peritoneal cancer (all ages): 1 in 3 (36%–41%).[67-69]

Two large U.S. population-based studies of breast cancer patients younger than age 65 years examined the prevalence of BRCA1 [55,70] and BRCA2 [55] mutations in various ethnic groups. The prevalence of BRCA1 mutations in breast cancer patients by ethnic group was 3.5% in Hispanics, 1.3% to 1.4% in African Americans, 0.5% in Asian Americans, 2.2% to 2.9% in non-Ashkenazi whites, and 8.3% to 10.2% in Ashkenazi Jewish individuals.[55,70] The prevalence of BRCA2 mutations by ethnic group was 2.6% in African Americans and 2.1% in whites.[55]

A study of Hispanic patients with a personal or family history of breast cancer and/or ovarian cancer, who were enrolled through multiple clinics in the southwestern United States, examined the prevalence of BRCA1 and BRCA2 mutations. Deleterious BRCA mutations were identified in 189 of 746 patients (25%) (124 BRCA1, 65 BRCA2);[71] 21 of the 189 (11%) deleterious BRCA mutations identified were large rearrangements, of which 13 (62%) were BRCA1 ex9-12 deletions. In another population-based cohort of 492 Hispanic women with breast cancer, the BRCA1 ex9-12 deletion was found in three patients, suggesting that this mutation may be a Mexican founder mutation and may represent 10% to 12% of all BRCA1 mutations in similar clinic- and population-based cohorts in the United States. Within the clinic-based cohort, there were nine recurrent mutations, which accounted for 53% of all mutations observed in this cohort, suggesting the existence of additional founder mutations in this population.

A retrospective review of 29 AJ patients with primary fallopian tube tumors identified germline BRCA mutations in 17%.[69] Another study of 108 women with fallopian tube cancer identified mutations in 55.6% of the Jewish women and 26.4% of non-Jewish women (30.6% overall).[72] Estimates of the frequency of fallopian tube cancer in BRCA mutation carriers are limited by the lack of precision in the assignment of site of origin for high-grade, metastatic, serous carcinomas at initial presentation.[6,69,72,73]

Clinical criteria and models for prediction of the likelihood of a BRCA1 or BRCA2 mutation

Several studies have assessed the frequency of BRCA1 or BRCA2 mutations in women with breast or ovarian cancer.[55,56,70,74-82] Personal characteristics associated with an increased likelihood of a BRCA1 and/or BRCA2 mutation include the following:

  • Breast cancer diagnosed at an early age. (Some studies use age 40 years as a cutoff, while others use age 50 years.)
  • Ovarian cancer.
  • Bilateral breast cancer.
  • A history of both breast and ovarian cancer.
  • Breast cancer diagnosed in a male at any age.[74-77,80]
  • Triple-negative breast cancer diagnosed in women younger than 60 years.[83-86]
  • AJ background.[74,75,77]

Family history characteristics associated with an increased likelihood of carrying a BRCA1 and/or BRCA2 mutation include the following:

  • Multiple cases of breast cancer.
  • Both breast and ovarian cancer.
  • One or more breast cancers in male family members.
  • AJ background.[74-77]
Clinical criteria for identifying individuals who may have a BRCA1 or BRCA2 mutation

Several professional organizations and expert panels, including the American Society of Clinical Oncology,[87] the National Comprehensive Cancer Network (NCCN),[88] the American Society of Human Genetics,[89] the American College of Medical Genetics, the U.S. Preventive Services Task Force,[90] and the Society of Gynecologic Oncologists,[91] have developed clinical criteria that can be helpful to health care providers in identifying individuals who may have a BRCA1 or BRCA2 mutation.

Models for prediction of the likelihood of a BRCA1 or BRCA2 mutation

Many models have been developed to predict the probability of identifying germline BRCA1/BRCA2 mutations in individuals or families. These models include those using logistic regression,[32,74,75,77,80,92,93] genetic models using Bayesian analysis (BRCAPRO and Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm [BOADICEA]),[80,94] and empiric observations,[52,55,58,95-97] including the Myriad prevalence tables. Investigators subsequently used complex segregation analysis, a polygenetic model (BOADICEA) examining both breast cancer risk and the probability of having a BRCA1 or BRCA2 mutation has been published.[94] Even among experienced providers, the use of prediction models has been shown to increase the power to discriminate which patients are most likely to be identified as BRCA1/BRCA2 mutation carriers.[98,99] Most models do not include other cancers seen in the BRCA1 and BRCA2 spectrum such as pancreatic cancer and prostate cancer. Interventions that decrease the likelihood that an individual will develop cancer (such as oophorectomy and mastectomy) may influence the ability to predict BRCA1 and BRCA2 mutation status.[100] One study has shown that the risk models are sensitive to the amount of family history data available and do not perform as well with limited family information.[101]

The performance of the models can vary in specific ethnic groups. The BRCAPRO model appeared to best fit a series of French Canadian families.[102] There have been variable results in the performance of the BRCAPRO model among Hispanics,[103,104] and both the BRCAPRO model and Myriad tables underestimated the proportion of mutation carriers in an Asian American population.[105] Further information is needed to determine which model performs best in each ethnic group.

The power of several of the models has been compared in different studies.[106-109] Four breast cancer genetic risk models, BOADICEA, BRCAPRO, IBIS, and eCLAUS, were evaluated for their diagnostic accuracy in predicting BRCA1/2 mutations in a cohort of 7,352 German families.[110] The family member with the highest likelihood of carrying a mutation from each family was screened for BRCA1/2 mutations. Carrier probabilities from each model were calculated and compared with the actual mutations detected. BRCAPRO and BOADICEA had significantly higher diagnostic accuracy than IBIS or eCLAUS. Accuracy for the BOADICEA model was further improved when information on the tumor markers ER, progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu) were included in the model. The inclusion of these biomarkers has been shown to improve the performance of BRCAPRO.[111,112]

Table 2. Characteristics of Common Models for Estimating the Likelihood of a BRCA1/2 Mutation
 Myriad Prevalence Tables [77]BRCAPRO [80,100]BOADICEA [80,94]Tyrer-Cuzick [113]
AJ = Ashkenazi Jewish; BOADICEA = Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; FDR = first-degree relatives; SDR = second-degree relatives.
Method Empiric data from Myriad Genetics based on family and personal history reported on requisition formsStatistical modelStatistical modelStatistical model
Features of the Model Proband may or may not have breast or ovarian cancerProband may or may not have breast or ovarian cancerProband may or may not have breast or ovarian cancerProband must be unaffected
Considers age of breast cancer diagnosis as <50 y, >50 yConsiders exact age at breast and ovarian cancer diagnosisConsiders exact age at breast and ovarian cancer diagnosisAlso includes reproductive factors and body mass index to estimate breast cancer risk
Considers breast cancer in ≥1 affected relative only if diagnosed <50 yConsiders prior genetic testing in family (i.e., BRCA1/BRCA2 mutation–negative relatives)Includes all FDR and SDR with and without cancer 
Considers ovarian cancer in ≥1 relative at any ageConsiders oophorectomy statusIncludes AJ ancestry 
Includes AJ ancestryIncludes all FDR and SDR with and without cancer  
Very easy to useIncludes AJ ancestry  
Limitations Simplified/limited consideration of family structureRequires computer software and time-consuming data entryRequires computer software and time-consuming data entryDesigned for individuals unaffected with breast cancer
Incorporates only FDR and SDR; may need to change proband to best capture risk and to account for disease in the paternal lineage
May overestimate risk in bilateral breast cancer [114]
Early age of breast cancer onsetMay perform better in whites than minority populations [104,115]Incorporates only FDR and SDR; may need to change proband to best capture risk
May underestimate risk of BRCA mutation in high-grade serous ovarian cancers but overestimate the risk for other histologies [116]

Genetic testing for BRCA1 and BRCA2 mutations has been available to the public since 1996. As more individuals have undergone testing, risk assessment models have improved. This, in turn, gives providers better data to estimate an individual patient’s risk of carrying a mutation, but risk assessment continues to be an art. There are factors that might limit the ability to provide an accurate risk assessment (i.e., small family size, paucity of women, or ethnicity) including the specific circumstances of the individual patient (such as history of disease or prophylactic surgeries).

Penetrance of mutations

The proportion of individuals carrying a mutation who will manifest the disease is referred to as penetrance. In general, common genetic variants that are associated with cancer susceptibility have a lower penetrance than rare genetic variants. This is depicted in Figure 4. For adult-onset diseases, penetrance is usually described by the individual carrier's age and sex. For example, the penetrance for breast cancer in female BRCA1/BRCA2 mutation carriers is often quoted by age 50 years and by age 70 years. Of the numerous methods for estimating penetrance, none are without potential biases, and determining an individual mutation carrier's risk of cancer involves some level of imprecision.

Graph shows relative risk on the x-axis and allele frequency on the y-axis. A line depicts the general finding of a low relative risk associated with common, low-penetrance genetic variants and a higher relative risk associated with rare, high-penetrance genetic variants.
Figure 4. Genetic architecture of cancer risk. This graph depicts the general finding of a low relative risk associated with common, low-penetrance genetic variants, such as single-nucleotide polymorphisms identified in genome-wide association studies, and a higher relative risk associated with rare, high-penetrance genetic variants, such as mutations in the BRCA1/ BRCA2 genes associated with hereditary breast and ovarian cancer and the mismatch repair genes associated with Lynch syndrome.

Numerous studies have estimated breast and ovarian cancer penetrance in BRCA1 and BRCA2 mutation carriers. Risk of both breast and ovarian cancer is consistently estimated to be higher in BRCA1 than in BRCA2 mutation carriers. Results from two large meta-analyses are shown in Table 3.[117,118] One study [117] analyzed pooled pedigree data from 22 studies involving 289 BRCA1 and 221 BRCA2 mutation–positive individuals. Index cases from these studies had female breast cancer, male breast cancer, or ovarian cancer but were unselected for family history. A subsequent study [118] combined penetrance estimates from the previous study and nine others that included an additional 734 BRCA1 and 400 BRCA2 mutation–positive families. The estimated cumulative risks of breast cancer by age 70 years in these two meta-analyses were 55% to 65% for BRCA1 and 45% to 47% for BRCA2 mutation carriers. Ovarian cancer risks were 39% for BRCA1 and 11% to 17% for BRCA2 mutation carriers.

Table 3. Estimated Cumulative Breast and Ovarian Cancer Risks in BRCA1 and BRCA2 Mutation Carriers
StudyBreast cancer risk (%) by age 70 y (95% CI)Ovarian cancer risk (%) by age 70 y (95% CI)
CI = confidence interval.
Antoniou et al. (2003) [117]65 (44–78)45 (31–56)39 (18–54)11 (2.4–19)
Chen et al. (2007) [118]55 (50–59)47 (42–51)39 (34–45)17 (13–21)

While the cumulative risks of developing cancer by age 70 years are higher for BRCA1 than for BRCA2 mutation carriers, the relative risks (RRs) of breast cancer decline more with age in BRCA1 mutation carriers.[117] Studies of penetrance for carriers of specific individual mutations are not usually large enough to provide stable estimates, but numerous studies of the Ashkenazi founder mutations have been conducted. One group of researchers analyzed the subset of families with one of the Ashkenazi founder mutations from their larger meta-analyses and found that the estimated penetrance for the individual mutations was very similar to the corresponding estimates among all mutation carriers.[119] A later study of 4,649 women with BRCA mutations reported significantly lower relative risks of breast cancer in those with the BRCA2 6174delT mutation than in those with other BRCA2 mutations (hazard ratio [HR], 0.35; confidence interval [CI], 0.18–0.69).[120]

One study provided prospective 10-year risks of developing cancer among asymptomatic carriers at various ages.[118] Nonetheless, making precise penetrance estimates in an individual carrier is difficult.

Risk-reducing salpingo-oophorectomy and/or use of oral contraceptives have been shown to alter risk.[63,117,121-126] (Refer to the Risk-reducing salpingo-oophorectomy section and the Oral contraceptives section of this summary for more information.) Other environmental factors being studied include reproductive and hormonal factors.[127-132] Genetic modifiers of penetrance of breast cancer and ovarian cancer are increasingly under study but are not clinically useful at this time.[133-135] (Refer to the Modifiers of Risk in BRCA1 and BRCA2 Mutation Carriers section for more information.) While the average breast cancer and ovarian cancer penetrances may not be as high as initially estimated, they are substantial, both in relative and absolute terms, particularly in women born after 1940. A higher risk before age 50 years has been consistently seen in more recent birth cohorts,[62,63,136] and additional studies will be required to further characterize potential modifying factors to arrive at more precise individual risk projections. Precise penetrance estimates for less common cancers, such as pancreatic cancer, are lacking.

Cancers other than female breast/ovarian

Female breast and ovarian cancers are clearly the dominant cancers associated with BRCA1 and BRCA2. BRCA mutations also confer an increased risk of fallopian tube and primary peritoneal carcinomas. One large study from a familial registry of BRCA1 mutation carriers has found a 120-fold RR of tubal cancer among BRCA1 mutation carriers compared with the general population.[6] The risk of primary peritoneal cancer among BRCA mutation carriers with intact ovaries is increased but remains poorly quantified, despite a residual risk of 3% to 4% in the 20 years after risk-reducing salpingo-oophorectomy.[137,138] (Refer to the Risk-reducing salpingo-oophorectomy section in the Ovarian cancer section of this summary for more information.)

Pancreatic, male breast, and prostate cancers have also been consistently associated with BRCA mutations, particularly with BRCA2. Other cancers have been associated in some studies. The strength of the association of these cancers with BRCA mutations has been more difficult to estimate because of the lower numbers of these cancers observed in mutation carriers.

Men with BRCA2 mutations, and to a lesser extent BRCA1 mutations, are at increased risk of breast cancer with lifetime risks estimated at 5% to 10% and 1% to 2%, respectively.[6,8,9,139] Men carrying BRCA2 mutations, and to a lesser extent BRCA1 mutations, have an approximately threefold to sevenfold increased risk of prostate cancer.[7,8,12,97,140-142] BRCA2-associated prostate cancer also appears to be more aggressive.[143-148] (Refer to the BRCA1 and BRCA2 section in the PDQ summary on Genetics of Prostate Cancer for more information.)

Studies of familial pancreatic cancer (FPC) [149-153] and unselected series of pancreatic cancer [154-156] have also supported an association with BRCA2, and to a lesser extent, BRCA1.[7] Overall, it appears that between 3% to 15% of families with FPC may have germline BRCA2 mutations, with risks increasing with more affected relatives.[149-151] Similarly, studies of unselected pancreatic cancers have reported BRCA2 mutation frequencies between 3% to 7%, with these numbers approaching 10% in those of AJ descent.[154,155,157] The lifetime risk of pancreatic cancer in BRCA2 carriers is estimated to be 3% to 5%,[8,12] compared with an estimated lifetime risk of 0.5% by age 70 years in the general population.[158] Other cancers associated with BRCA2 mutations in some, but not all, studies include melanoma, biliary cancers, and head and neck cancers, but these risks appear modest (<5% lifetime) and are less well studied.[12]

Table 4. Spectrum of Cancers in BRCA1 and BRCA2 Mutation Carriers
Cancer Sites [6-8,12,61,142]BRCA1 Mutation CarrierBRCA2 Mutation Carrier
aRefer to the PDQ summary on Genetics of Prostate Cancer for more information about the association of BRCA1 and BRCA2 with prostate cancer.
+++ Multiple studies demonstrated association and are relatively consistent.
++ Multiple studies and the predominance of the evidence are positive.
+ May be an association, predominantly single studies; smaller limited studies and/or inconsistent but weighted toward positive.
 Strength of Evidence Magnitude of Absolute Risk Strength of Evidence Magnitude of Absolute Risk
Breast (female)+++High+++High
Ovary, fallopian tube, peritoneum+++High+++Moderate
Breast (male)+Undefined+++Low
Pancreas++Very Low+++Low

The first Breast Cancer Linkage Consortium study investigating cancer risks reported an excess of colorectal cancer in BRCA1 carriers (RR, 4.1; 95% CI, 2.4–7.2).[159] This finding was supported by some,[6,7,160] but not all,[8,61,68,97,161-163] family-based studies. However, unselected series of colorectal cancer that have been exclusively performed in the AJ population have not shown elevated rates of BRCA1 or BRCA2 mutations.[164-166] Taken together, the data suggest little, if any, increased risk of colorectal cancer, and possibly only in specific population groups. Therefore, at this time, BRCA1 mutation carriers should adhere to population-screening recommendations for colorectal cancer.

No increased prevalence of hereditary BRCA mutations was found among 200 Jewish women with endometrial carcinoma or 56 unselected women with uterine papillary serous carcinoma.[167,168] (Refer to the Risk-reducing salpingo-oophorectomy section in the Ovarian cancer section of this summary for more information.)

Cancer risk in individuals who test negative for a known familial BRCA1/BRCA2 mutation ("true negative")

There is conflicting evidence as to the residual familial risk among women who test negative for the BRCA1/BRCA2 mutation segregating in the family. An initial study based on prospective evaluation of 353 women who tested negative for the BRCA1 mutation segregating in the family found that five incident breast cancers occurred during more than 6,000 person-years of observation, for a lifetime risk of 6.8%, a rate similar to the general population.[124] A report that the risk may be as high as fivefold in women who tested negative for the BRCA1 or BRCA2 mutation in the family [169] was followed by numerous letters to the editor suggesting that ascertainment biases account for much of this observed excess risk.[170-175] Four additional analyses have suggested an approximate 1.5-fold to 2-fold excess risk.[174,176-178] In one study, two cases of ovarian cancer were reported.[178] Several studies have involved retrospective analyses; all studies have been based on small observed numbers of cases and have been of uncertain statistical and clinical significance.

Results from numerous other prospective studies have found no increased risk. A study of 375 women who tested negative for a known familial mutation in BRCA1 or BRCA2 reported two invasive breast cancers, two in situ breast cancers, and no ovarian cancers diagnosed, with a mean follow-up of 4.9 years. Four invasive breast cancers were expected, whereas two were observed.[179] Another study of similar size but longer follow-up (395 women and 7,008 person-years of follow-up) also found no statistically significant overall increase in breast cancer risk among mutation-negative women (observed/expected [O/E], 0.82; 95% CI, 0.39–1.51), although women who had at least one first-degree relative with breast cancer had a nonsignificant increased risk (O/E, 1.33; 95% CI, 0.41–2.91).[180] A study of 160 BRCA1 and 132 BRCA2 mutation–positive families from the Breast Cancer Family Registry found no evidence for increased risk among noncarriers in these families.[181] In a large study of 722 mutation-negative women from Australia in whom six invasive breast cancers were observed after a median follow-up of 6.3 years, the standardized incidence ratio (SIR) was not significantly elevated (SIR, 1.14; 95% CI, 0.51–2.53).[182] Based on available data, it appears that women testing negative for known familial BRCA1/BRCA2 mutations can adhere to general population screening guidelines unless they have sufficient additional risk factors, such as a personal history of atypical hyperplasia of the breast or family history of breast cancer in relatives who do not carry the familial mutation.

Breast and ovarian cancer risk in breast cancer families without detectable BRCA1/BRCA2 mutations ("indeterminate")

The majority of families with site-specific breast cancer test negative for BRCA1/BRCA2 and have no features consistent with Cowden syndrome or Li-Fraumeni syndrome.[32] Five studies using population-based and clinic-based approaches have demonstrated no increased risk of ovarian cancer in such families. Although ovarian cancer risk was not increased, breast cancer risk remained elevated.[181,183,183,184,184,185,185-187]

Modifiers of Risk in BRCA1 and BRCA2 Mutation Carriers

Deleterious mutations in BRCA1 and BRCA2 confer high risks of breast and ovarian cancers. The risks, however, are not equal in all mutation carriers and have been found to vary by several factors, including type of cancer, age at onset, and mutation position.[188] This observed variation in penetrance has led to the hypothesis that other genetic and/or environmental factors modify cancer risk in mutation carriers. There is a growing body of literature identifying genetic and nongenetic factors that contribute to the observed variation in rates of cancers seen in families with BRCA1/2 mutations.

Genetic Modifiers of Breast and Ovarian Cancer Risk

The largest studies investigating genetic modifiers of breast and ovarian cancer risk to date have come from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA), a large international effort with genotypic and phenotypic data on more than 15,000 BRCA1 and 10,000 BRCA2 carriers.[189] Using candidate gene analysis and genome-wide association studies, CIMBA has identified several loci associated both with increased and decreased risk of breast cancer and ovarian cancer. Some of the single nucleotide polymorphisms (SNPs) are related to subtypes of breast cancer, such as hormone-receptor and HER2/neu status. The risks conferred are all modest but if operating in a multiplicative fashion could significantly impact risk of cancer in BRCA1/2 mutation carriers. Currently, these SNPs are not being tested for or used in clinical decision making.

Table 5. Genetic Modifiers of Breast Cancer Risk
Putative GeneChromosomeSNPCitationOR (95% CI)Comments
CI = confidence interval; ER+ = estrogen receptor–positive; ER- = estrogen receptor–negative; OR = odds ratio, SNP = single nucleotide polymorphism.
EMBP1 1p11.2rs11249433[190]1.09 (1.02–1.17)BRCA2 carriers
MDM4 1q32.1rs2290854[191]1.14 (1.09–1.20)BRCA1 carriers
CYP1BI-AS1 2p22.2rs184577[192]0.85 (0.79–0.91)BRCA2 carriers
CASP8 2q33D302H variant[193]0.85 (0.76–0.97)BRCA1 carriers
SLC4A/NEKID 3p24.1rs4973768[133]1.10 (1.03–1.18)BRCA2 carriers
MAP3K1 5q11.2rs889312[133]1.10 (1.01–1.19)BRCA2 carriers
FGF10/MRPS30 5p12rs10941679[133]1.09 (1.01–1.19)BRCA2 carriers
TERT 5p15.33rs2736108[194]0.92 (0.88–0.96)BRCA1 carriers
5p15.33rs10069690[194]1.16 (1.11–1.21)BRCA1 carriers
6q22.23rs218341[195]0.89 (0.80–1.00)BRCA1 carriers
6p24rs9348512[192]0.85 (0.80–0.90)BRCA2 carriers
ESR1 6q25.1rs2046210[190]1.17 (1.11–1.23)BRCA1 carriers
6q25.1rs9397435[190]1.28 (1.18–1.40)BRCA1 carriers
6q25.1rs9397435[190]1.14 (1.01–1.28)BRCA2 carriers
LRRC4C 9q31.2rs965686[196]0.95 (0.89–1.01)BRCA2 carriers
ZNF365 10q21.1rs10995190[196]0.90 (0.82–0.98)BRCA2 carriers
10q21.2rs16917302[197]0.84 (0.72–0.97)BRCA1 carriers, mainly ER+
10q21.2rs16917302[198]0.75 (0.60–0.86)BRCA2 carriers
FGFR2 10q26.13rs2981582[133,199]1.30 (1.20–1.40)BRCA2 carriers
10q26.13rs2981582[133,199]1.35 (1.17–1.56)BRCA1 carriers, ER+
10q26.13rs2981582[133,199]0.91 (0.85–0.98)BRCA1 carriers, ER-
LSP1 11p15.5rs3817198[133]1.14 (1.06–1.23)BRCA2 carriers
PTHLH 12p11rs10771399[196]0.87 (0.81–0.94)BRCA1 carriers
RAD51 15q15.1rs1801320[200]3.18 (1.39–7.27)BRCA2 carriers (CC homozygous only)
TOX3/TNRC9 16q12.1rs3803662[133]1.09 (1.03–1.16)BRCA1 carriers
16q12.1rs3803662[133]1.17 (1.07–1.27)BRCA2 carriers
BRCA1-wild type17prs16942[201]0.86 (0.77–0.95)Wild type modifies BRCA1
BABAM1 19p13.11rs8170[202]1.25 (1.18–1.33)BRCA1 carriers, triple negative
19p13.11rs865686[196]0.86 (0.78–0.95)BRCA2 carriers
19p13.11rs67397200[197]1.17 (1.11–1.23)BRCA1 carriers, mainly ER-
GMEB2 20q13.3rs311499[198]0.72 (0.61–0.85)BRCA2 carriers
FGF13 Xq27.1rs619373[192]1.30 (1.16–3.41)BRCA2 carriers
Table 6. Genetic Modifiers of Ovarian Cancer Risk
Putative GeneChromosomeSNPCitationOR (95% CI)Comments
CI = confidence interval; OR = odds ratio, SNP = single nucleotide polymorphism.
HOXD3 2q31rs717852[203]1.25 (1.10-1.42)BRCA2 carriers
CASP8 2q33D302H variant[193]0.69 (0.53–0.89)BRCA1 carriers
IRS1 2q36.3rs1801278[204]1.43 (1.06–1.92)BRCA1 carriers
2q36.3rs1801278[204]2.21 (1.39–3.52)BRCA2 carriers
2q36.3rs13306465[204]2.42 (1.06–5.56)BRCA1 carriers, type II mutations only
TIPARP 3q25.31rs2665390[203]1.48 (1.21–1.83)BRCA2 carriers
3q25.31rs2665390[203]1.25 (1.10–1.43)BRCA1 carriers
4q32.3rs4691139[191]1.20 (1.17–1.38)BRCA1 carriers
8q24rs10088218[203]0.81 (0.67–0.98)BRCA2 carriers
8q24rs10088218[203]0.89 (0.81–0.99)BRCA1 carriers
BCN2/CNTLN 9p22.2rs3814113[134]0.78 (0.72–0.85)BRCA1 carriers
9p22.2rs3814113[134]0.78 (0.67–0.90)BRCA2 carriers
10p13.1rs8170[197]1.15 (1.03–1.30)BRCA1 carriers
10p13.1rs8170[197]1.34 (1.12–1.62)BRCA2 carriers
10p13.1rs8170[197]0.78 (0.67–0.90)BRCA2 carriers
PLEKHM1 17q21.31rs17631303[191]1.27 (1.17–1.38)BRCA1 carriers
17q21.31rs17631303[191]1.32 (1.15–1.52)BRCA2 carriers
SKAP1 17q21.32rs9303542[203]1.16 (1.02–1.33)BRCA2 carriers
CERS6 19p13.1rs6739200[197]1.16 (1.05–1.29)BRCA1carriers
19p13.1rs6739200[197]1.30 (1.10–1.52)BRCA2 carriers

Role of BRCA1 and BRCA2 in sporadic cancer

Given that germline mutations in BRCA1 or BRCA2 lead to a very high probability of developing breast and/or ovarian cancer, it was a natural assumption that these genes would also be involved in the development of the more common nonhereditary forms of the disease. Although somatic mutations in BRCA1 and BRCA2 are not common in sporadic breast and ovarian cancer tumors,[205-208] there is increasing evidence that downregulation of BRCA1 protein expression may play a role in these tumor types. Compared with normal breast epithelium, many breast cancers have low levels of the BRCA1 mRNA, which may result from hypermethylation of the gene promoter.[209-211] Similar findings have not been reported for BRCA2 mutations, although the BRCA2 locus on chromosome 13q is the target of frequent loss of heterozygosity (LOH) in breast cancer.[212,213] Approximately 10% to 15% of sporadic breast cancers appear to have BRCA1 promoter hypermethylation, and even more have downregulation of BRCA1 by other mechanisms. Basal-type breast cancers (ER-negative, PR-negative, HER2-negative, and cytokeratin 5/6–positive) more commonly have BRCA1 dysregulation than other tumor types.[214-216] BRCA1-related tumor characteristics have also been associated with constitutional methylation of the BRCA1 promoter. In a study of 255 breast cancers diagnosed before age 40 years in women without germline BRCA1 mutations, methylation of BRCA1 in peripheral blood was observed in 31% of women whose tumors had multiple BRCA1-associated pathological characteristics (e.g., high mitotic index and growth pattern including multinucleated cells) compared with less than 4% methylation in controls.[217] (Refer to the BRCA1 pathology section for more information.) Loss of BRCA1 or BRCA2 protein expression is more common in ovarian cancer than in breast cancer,[218] and downregulation of BRCA1 is associated with enhanced sensitivity to cisplatin and improved survival in this disease.[219,220] Targeted therapies are being developed for tumors with loss of BRCA1 or BRCA2 protein expression.[221]

Genotype-phenotype correlations

Some genotype -phenotype correlations have been identified in both BRCA1 and BRCA2 mutation families. None of the studies have had sufficient numbers of mutation-positive individuals to make definitive conclusions, and the findings are probably not sufficiently established to use in individual risk assessment and management. In 25 families with BRCA2 mutations, an ovarian cancer cluster region was identified in exon 11 bordered by nucleotides 3,035 and 6,629.[11,222] This is the region of the gene containing the BRCA1 C-terminal repeat,[223] which has been shown to specifically interact with RAD51. A study of 164 families with BRCA2 mutations collected by the Breast Cancer Linkage Consortium confirmed the initial finding. Mutations within the ovarian cancer cluster region were associated with an increased risk of ovarian cancer and a decreased risk of breast cancer in comparison with families with mutations on either side of this region.[224] In addition, a study of 356 families with protein-truncating BRCA1 mutations collected by the Breast Cancer Linkage Consortium reported breast cancer risk to be lower with mutations in the central region (nucleotides 2,401–4,190) compared with surrounding regions. Ovarian cancer risk was significantly reduced with mutations 3’ to nucleotide 4,191.[225] These observations have generally been confirmed in subsequent studies.[117,226,227] Studies in Ashkenazim, in whom substantial numbers of families with the same mutation can be studied, have also found higher rates of ovarian cancer in carriers of the BRCA1:185delAG mutation, in the 5' end of BRCA1, compared with carriers of the BRCA1:5382insC mutation in the 3' end of the gene.[228,229] The risk of breast cancer, particularly bilateral breast cancer, and the occurrence of both breast and ovarian cancer in the same individual, however, appear to be higher in BRCA1:5382insC mutation carriers compared with carriers of BRCA1:185delAG and BRCA2:6174delT mutations. Ovarian cancer risk is considerably higher in BRCA1 mutation carriers, and it is uncommon before age 45 years in BRCA2:6174delT mutation carriers.[228,229]

Pathology of breast cancer

BRCA1 pathology

Several studies evaluating pathologic patterns seen in BRCA1-associated breast cancers have suggested an association with adverse pathologic and biologic features. These findings include higher than expected frequencies of medullary histology, high histologic grade, areas of necrosis, trabecular growth pattern, aneuploidy, high S-phase fraction, high mitotic index, and frequent TP53 mutations.[230-237] In a large international series of 3,797 BRCA1 mutation carriers, the median age at breast cancer diagnosis was 40 years.[237] Of breast tumors arising in BRCA1 carriers, 78% were ER-negative; 79% were PR-negative; 90% were HER2-negative; and 69% were triple-negative. These findings were consistent with multiple smaller series.[83,233,238-240] In addition, the proportion of ER-negative tumors significantly decreased as the age at breast cancer diagnosis increased.[237]

There is considerable, but not complete, overlap between the triple-negative and basal-like subtype cancers, both of which are common in BRCA1-associated breast cancer,[241,242] particularly in women diagnosed before age 50 years.[83-85] A small proportion of BRCA1-related breast cancers are ER-positive, which are associated with later age of onset.[243,244] These ER-positive cancers have clinical behavior features that are "intermediate" between ER-negative BRCA1 cancers and ER-positive sporadic breast cancers, raising the possibility that there may be a unique mechanism by which they develop.

The prevalence of germline BRCA1 mutations in women with triple-negative breast cancer is significant, both in women undergoing clinical genetic testing (and thus selected in large part for family history) and in unselected triple-negative patients, with mutations reported in 9% to 35%.[85,86,238,245-247] The highest rate reported was in a clinic-based series in women younger than 30 years with high-grade triple-negative breast cancer. In this small, highly selected population, 35% had BRCA1 mutations. Notably, studies have demonstrated a high rate of BRCA1 mutations in unselected women with triple-negative breast cancer, particularly in those diagnosed before age 50 years. One study examined 308 individuals with triple-negative breast cancer; BRCA1 mutations were present in 45. Mutations were seen both in women unselected for family history (11 of 58; 19%) and in those with family history (26 of 111; 23%).[248] A group of researchers reported results of BRCA1/2 testing in 77 unselected patients with triple-negative breast cancer. Of these, 15 (19.5%) had either a germline BRCA1 (n = 11; 14%) or BRCA2 (n = 3; 4%) mutation or a somatic BRCA1 (n = 1) mutation. The median age at cancer diagnosis was 45 years in BRCA1 mutation carriers and 53 years in noncarriers (P = .005). Interestingly, this study also demonstrated a lower risk of relapse in those with BRCA1 mutation–associated triple-negative breast cancer than in those with nonmutated triple-negative breast cancer, although this study was limited by its size.[246] A second study examining clinical outcomes in BRCA1-associated versus non-BRCA1-associated triple-negative breast cancer showed no difference, although there was a trend toward more brain metastases in those with BRCA1-associated breast cancer. In both of these studies, all but one BRCA1 mutation carrier received chemotherapy.[249] A subsequent study of 199 patients with triple-negative breast cancer recruited through a community oncology practice identified 21 BRCA mutations (10.6%), of which 13 were in BRCA1 and 8 were in BRCA2.[250] In another unselected sample, BRCA1 mutations were detected in 16 of 182 women (9%) with triple-negative breast cancer who were aged 26 to 69 years at diagnosis.[247] Five of the 16 women were diagnosed at a later age and/or lacked additional risk factors such as significant family histories.

It has been hypothesized that many BRCA1 tumors are derived from the basal epithelial layer of cells of the normal mammary gland, which account for 3% to 15% of unselected invasive ductal cancers. If the basal epithelial cells of the breast represent the breast stem cells, the regulatory role suggested for wild-type BRCA1 may partly explain the aggressive phenotype of BRCA1-associated breast cancer when BRCA1 function is damaged.[251] Further studies are needed to fully appreciate the significance of this subtype of breast cancer within the hereditary syndromes.

The most accurate method for identifying basal-like breast cancers is through gene expression studies, which have been used to classify breast cancers into biologically- and clinically-meaningful groups.[239,252,253] This technology has also been shown to correctly differentiate BRCA1- and BRCA2-associated tumors from sporadic tumors in a high proportion of cases.[254-256] Notably, among a set of breast tumors studied by gene expression array to determine molecular phenotype, all tumors with BRCA1 alterations fell within the basal tumor subtype;[239] however, this technology is not in routine use due to its high cost. Instead, immunohistochemical markers of basal epithelium have been proposed to identify basal-like breast cancers, which are typically negative for ER, progesterone receptor, and HER2, and stain positive for cytokeratin 5/6, or epidermal growth factor receptor.[257-260] Based on these methods to measure protein expression, a number of studies have shown that the majority of BRCA1-associated breast cancers are positive for basal epithelial markers.[83,233,259]

There is growing evidence that preinvasive lesions are a component of the BRCA phenotype. The Breast Cancer Linkage Consortium initially reported a relative lack of an in situ component in BRCA1-associated breast cancers,[231] also seen in two subsequent studies of BRCA1/BRCA2 carriers.[261,262] However, in a study of 369 ductal carcinoma in situ (DCIS) cases, BRCA1 and BRCA2 mutations were detected in 0.8% and 2.4%, respectively, which is only slightly lower than previously reported prevalence in studies of invasive breast cancer patients.[263] A retrospective study of breast cancer cases in a high-risk clinic found similar rates of preinvasive lesions, particularly DCIS, among 73 BRCA-associated breast cancers and 146 mutation-negative cases.[264,265] A study of AJ women, stratified by whether they were referred to a high-risk clinic or were unselected, showed similar prevalence of DCIS and invasive breast cancers in referred patients compared with one-third lower DCIS cases among unselected subjects.[266] Similarly, data about the prevalence of hyperplastic lesions have been inconsistent, with reports of increased [267,268] and decreased prevalence.[262] Similar to invasive breast cancer, DCIS diagnosed at an early age and/or with a family history of breast and/or ovarian cancer is more likely to be associated with a BRCA1/BRCA2 mutation.[269]

Overall evidence suggests DCIS is part of the BRCA1/BRCA2 spectrum, particularly BRCA2; however, the prevalence of mutations in DCIS patients, unselected for family history, is less than 5%.[263,266]

BRCA2 pathology

The phenotype for BRCA2-related tumors appears to be more heterogeneous and is less well-characterized than that of BRCA1, although they are generally positive for ER and PR.[231,270,271] A large international series of 2,392 BRCA2 mutation carriers found that only 23% of tumors arising in BRCA2 mutation carriers were ER-negative; 36% were PR-negative; 87% were HER2-negative; and 16% were triple-negative.[237] A report from Iceland found less tubule formation, more nuclear pleomorphism, and higher mitotic rates in BRCA2-related tumors than in sporadic controls; however, a single BRCA2 founder mutation (999del5) accounts for nearly all hereditary breast cancer in this population, thus limiting the generalizability of this observation.[272] A large case series from North America and Europe described a greater proportion of BRCA2-associated tumors with continuous pushing margins (a histopathologic description of a pattern of invasion), fewer tubules and lower mitotic counts.[273] Other reports suggest that BRCA2-related tumors include an excess of lobular and tubulolobular histology.[232,270] In summary, histologic characteristics associated with BRCA2 mutations have been inconsistent.

Pathology of ovarian cancer

Ovarian cancers in women with BRCA1 and BRCA2 mutations are more likely to be high-grade serous adenocarcinomas and are less likely to be mucinous or borderline tumors.[274-278] Fallopian tube cancer and peritoneal carcinomas are also part of the BRCA-associated disease spectrum.[69,279]

Histopathologic examinations of fallopian tubes removed from women with a hereditary predisposition to ovarian cancer show dysplastic and hyperplastic lesions that suggest a premalignant phenotype.[280,281] Occult carcinomas have been reported in 2% to 11% of adnexa removed from BRCA mutation carriers at the time of risk-reducing surgery.[282-284] Most of these occult lesions are seen in the fallopian tubes, which has led to the hypothesis that many BRCA-associated ovarian cancers may actually have originated in the fallopian tubes. Specifically, the distal segment of the fallopian tubes (containing the fimbriae) has been implicated as a common origin of the high-grade serous cancers seen in BRCA mutation carriers, based on the close proximity of the fimbriae to the ovarian surface, exposure of the fimbriae to the peritoneal cavity, and the broad surface area in the fimbriae.[285] Because of the multicentric origin of high-grade serous carcinomas from Müllerian-derived tissue, staging of ovarian, tubal, and peritoneal carcinomas is now considered collectively by the International Federation of Gynecology and Obstetrics. The term “high-grade serous ovarian carcinoma” may be used to represent high-grade pelvic serous carcinoma for consistency in language.[286]

High-grade serous ovarian carcinomas have a higher incidence of somatic TP53 mutations.[274,287] DNA microarray technology suggests distinct molecular pathways of carcinogenesis between BRCA1, BRCA2, and sporadic ovarian cancer.[288] Furthermore, data suggest that BRCA-related ovarian cancers metastasize more frequently to the viscera, while sporadic ovarian cancers remain confined to the peritoneum.[289]

Unlike high-grade serous carcinomas, low-grade serous ovarian cancer is not likely to be part of the BRCA1/BRCA2 spectrum.[290]

Other High-Penetrance Syndromes Associated With Breast and/or Gynecologic Cancers

Lynch syndrome

Lynch syndrome (LS) is characterized by autosomal dominant inheritance of susceptibility to predominantly right-sided colon cancer, endometrial cancer, ovarian cancer, and other extracolonic cancers (including cancer of the renal pelvis, ureter, small bowel, and pancreas), multiple primary cancers, and a young age of onset of cancer.[291] The condition is caused by germline mutations in the MMR genes, which are involved in repair of DNA mismatch mutations.[292] The MLH1 and MSH2 genes are the most common susceptibility genes for LS, accounting for 80% to 90% of observed mutations,[293,294] followed by MSH6 and PMS2.[295-300] (Refer to the LS section in the PDQ summary on Genetics of Colorectal Cancer for more information about this syndrome.)

After colorectal cancer, endometrial cancer is the second hallmark cancer of a family with Lynch syndrome. Even in the original Family G, described by Dr. Aldred Scott Warthin, numerous family members were noted to have extracolonic cancers including endometrial cancer. Although the first version of the Amsterdam criteria did not include endometrial cancer,[301] in 1999, the Amsterdam criteria were revised to include endometrial cancer as extracolonic tumors associated with LS to identify families at risk.[302] In addition, the Bethesda guidelines in 1997 (revised in 2004) did include endometrial and ovarian cancers as LS-related cancers to prompt tumor testing for LS.[303,304]

The lifetime risk of ovarian carcinoma in females with LS is estimated to be as high as 12%, and the reported RR of ovarian cancer has ranged from 3.6 to 13, based on families ascertained from high-risk clinics with known or suspected LS.[305-310] Characteristics of LS-associated ovarian cancers may include overrepresentation of the International Federation of Gynecology and Obstetrics stages 1 and 2 at diagnosis (reported as 81.5%), underrepresentation of serous subtypes (reported as 22.9%), and a better 10-year survival (reported as 80.6%) than reported both in population-based series and in BRCA mutation carriers.[311,312]

The issue of breast cancer risk in LS has been controversial. Retrospective studies have been inconsistent, but several have demonstrated microsatellite instability in a proportion of breast cancers from individuals with LS;[313-316] one of these studies evaluated breast cancer risk in individuals with LS and found that it is not elevated.[316] However, the largest prospective study to date of 446 unaffected mutation carriers from the Colon Cancer Family Registry [317] who were followed for up to 10 years reported an elevated SIR of 3.95 for breast cancer (95% CI, 1.59–8.13; P = .001).[317] The same group subsequently analyzed data on 764 MMR gene mutation carriers with a prior diagnosis of colorectal cancer. Results showed that the 10-year risk of breast cancer following colorectal cancer was 2% (95% CI, 1%–4%) and that the SIR was 1.76 (95% CI, 1.07–2.59).[318] However, further studies are needed to define absolute risks and age distribution before surveillance guidelines for breast cancer can be developed for MMR mutation carriers.

Li-Fraumeni syndrome

Breast cancer is also a component of the rare Li-Fraumeni syndrome (LFS) (OMIM), in which germline mutations of the TP53 gene (OMIM) on chromosome 17p have been documented.[319] This syndrome is characterized by premenopausal breast cancer in combination with childhood sarcoma, brain tumors, leukemia, and adrenocortical carcinoma.[320,321] Tumors in LFS families tend to occur in childhood and early adulthood, and often present as multiple primaries in the same individual. Evidence supports a genotype-phenotype correlation, with an association of the location of the mutation, the kind of cancer that develops, and the age of onset.[322] Brain and adrenal gland tumors were associated with specific sites of missense mutations. Age at onset of breast cancer was 34.6 years in families with a TP53 mutation compared with 42.5 years in those families without a mutation. A germline mutation in the TP53 gene has been identified in more than 50% of families exhibiting this syndrome, and inheritance is autosomal dominant, with a penetrance of at least 50% by age 50 years.

Germline TP53 mutations were identified in 17% (n = 91) of 525 samples submitted to City of Hope laboratories for clinical TP53 testing. All families with a TP53 mutation had at least one family member with a sarcoma, breast cancer, brain cancer, or adrenocortical cancer (core cancers). In addition, all eight individuals with a choroid plexus tumor had a TP53 mutation, as did 14 of the 21 individuals with childhood adrenocortical cancer. In women aged 30 to 49 years who had breast cancer but no family history of other core cancers, no TP53 mutations were found. TP53 mutations are uncommon in women with breast cancer before age 30 years with no other indications for TP53 screening (e.g., a family history of sarcoma). In three studies, the numbers of women with TP53 mutations were 0 (of 95), 1 (of 14), and 2 (of 52).[323-325]

Located on chromosome 17p, TP53 encodes a 53kd nuclear phosphoprotein that binds DNA sequences and functions as a negative regulator of cell growth and proliferation in the setting of DNA damage. It is also an active component of programmed cell death.[326] Inactivation of the TP53 gene or disruption of the protein product is thought to allow the persistence of damaged DNA and the possible development of malignant cells.[321] Evidence also exists that patients treated for a TP53-related tumor with chemotherapy or radiation therapy may be at risk of a treatment-related second malignancy. Germline mutations in TP53 are thought to account for fewer than 1% of breast cancer cases.[327] TP53-associated breast cancer is often HER2/neu-positive, in addition to being ER-positive, PR-positive, or both.[328-330]

Screening for breast cancer with annual MRI is recommended;[88] additional screening for other cancers has been studied and is evolving.[331,332]

PTEN hamartoma tumor syndromes (including Cowden syndrome)

Cowden syndrome and Bannayan-Riley-Ruvalcaba Syndrome (BRRS) are part of a spectrum of conditions known collectively as PTEN hamartoma tumor syndromes. Approximately 85% of patients diagnosed with Cowden syndrome, and approximately 60% of patients with BRRS have an identifiable mutation of PTEN.[333] In addition, PTEN mutations have been identified in patients with very diverse clinical phenotypes.[334] The term PTEN hamartoma tumor syndromes refers to any patient with a PTEN mutation, irrespective of clinical presentation.

PTEN functions as a dual-specificity phosphatase that removes phosphate groups from tyrosine, serine, and threonine. Mutations of PTEN are diverse, including nonsense, missense, frameshift, and splice-variant mutations. Approximately 40% of mutations are found in exon 5, which represents the phosphate core motif, and several recurrent mutations have been observed.[335] Individuals with mutations in the 5’ end or within the phosphatase core of PTEN tend to have more organ systems involved.[336]

Operational criteria for the diagnosis of Cowden syndrome have been published and subsequently updated.[337,338] These included pathognomonic criteria consisting of certain mucocutaneous manifestations and adult onset dysplastic gangliocytoma of the cerebellum (Lhermitte-Duclos disease). An updated set of criteria have been suggested based on a systematic review.[339] Contrary to previous criteria, the authors concluded that there was insufficient evidence for any features to be classified as pathognomonic. With increased utilization of genetic testing, especially the use of multigene cancer panels, clinical criteria for Cowden syndrome will need to be reconciled with the phenotype of individuals with documented germline PTEN mutations who do not meet these criteria. Until then, whether Cowden syndrome and the other PTEN hamartoma tumor syndromes will be defined clinically or based on the results of genetic testing remains ambiguous.

Over a 10-year period, the International Cowden Consortium (ICC) prospectively recruited a consecutive series of adult and pediatric patients meeting relaxed ICC criteria for PTEN testing in the United States, Europe, and Asia.[340] The vast majority of individuals did not meet the clinical criteria for a diagnosis of Cowden syndrome or BRRS. Of the 3,399 individuals recruited and tested, 295 probands (8.8%) and an additional 73 family members were found to harbor germline PTEN mutations. In addition to breast, thyroid, and endometrial cancers, the authors concluded that on the basis of cancer risk, melanoma, kidney cancer, and colorectal cancers should be considered part of the cancer spectra arising from germline PTEN mutations. A second study of approximately 100 patients with a germline PTEN mutation confirmed these findings and suggested a cumulative cancer risk of 85% by the age of 70 years.[341]

Although PTEN mutations, which are estimated to occur in 1 in 200,000 individuals,[337] account for a small fraction of hereditary breast cancer, the characterization of PTEN function will provide valuable insights into the signal pathway and the maintenance of normal cell physiology.[337,342] Lifetime breast cancer risk is estimated to be between 25% and 50% among women with Cowden syndrome.[343] Other studies have reported risks as high as 85%;[340,341,344] however, there are concerns regarding selection bias in these studies. As in other forms of hereditary breast cancer, onset is often at a young age and may be bilateral.[345] Skin manifestations include multiple trichilemmomas, oral fibromas and papillomas, and acral, palmar, and plantar keratoses. History or observation of the characteristic skin features raises a suspicion of Cowden syndrome. Central nervous system manifestations include macrocephaly, developmental delay, and dysplastic gangliocytomas of the cerebellum.[346,347] (Refer to the PDQ summaries on Genetics of Colorectal Cancer and Genetics of Skin Cancer for more information about PTEN hamartoma tumor syndromes [including Cowden syndrome].)

Diffuse gastric and lobular breast cancer syndrome

The E-cadherin gene CDH1 was first described in 1998 in three Maori families with multiple cases of diffuse gastric cancer (DGC), leading to the designation of hereditary diffuse gastric cancer (HDGC). There have been multiple subsequent reports of an excess of lobular breast cancer in HDGC families.[348] CDH1 is located on chromosome 16q22.1 and encodes the E-cadherin protein, a calcium-dependent homophilic adhesion molecule that plays a key role in cellular adhesion, cell polarity, cell signaling, and maintenance of cellular differentiation and tissue morphology.[349] E-cadherin binds to various catenins to stabilize the cytoplasmic cell adhesion complex and to maintain the E-cadherin interaction with actin filament.[350] Loss of CDH1 can occur as a result of somatic mutations, loss of heterozygosity, or hypermethylation, and can result in dedifferentiation and invasiveness in human cancers.[351,352] Classic histopathologic findings in gastrectomy specimens include in situ signet ring cells and/or pagetoid spread of signet ring cells. Of all gastric cancers, 1% to 3% are attributed to inherited gastric cancer syndromes.[353]

HDGC is an autosomal dominant syndrome associated with poorly differentiated invasive adenocarcinoma of the stomach presenting as linitis plastica. It is a highly penetrant and highly fatal syndrome, with a risk of clinical DGC ranging from 40% to 83%.[348] The risk of lobular breast cancer, which is characterized by small uniform cells that tend to invade in “single files,” is also increased in HDGC. Although invasive lobular breast cancer represents only 10% to 15% of all breast cancers, the lifetime risk of lobular breast cancer in CDH1 mutation carriers ranges from 30% to 50%.[350,351] Guidelines for screening for CDH1 vary but include multiple cases of DGC in a family, early age of DGC, or lobular breast cancer in a family with DGC. Approximately 25% of families meeting these criteria are found to have a deleterious mutation in CDH1.[353] CDH1 mutations have been found in some families with lobular breast cancer but no gastric cancer.[354] The management of individuals with CDH1 mutations without a family history of gastric cancer is unclear.[354]

Peutz-Jeghers syndrome (PJS)

PJS is an early-onset autosomal dominant disorder characterized by melanocytic macules on the lips, the perioral region, and buccal region; and multiple gastrointestinal polyps, both hamartomatous and adenomatous.[355-357] Germline mutations in the STK11 gene at chromosome 19p13.3 have been identified in the vast majority of PJS families.[358-362] The most common cancers in PJS are gastrointestinal. However, other organs are at increased risk of developing malignancies. For example, the cumulative risks have been estimated to be 32% to 54% for breast cancer [363-365] and 21% for ovarian cancer.[363] A systematic review found a lifetime cumulative cancer risk, all sites combined, of up to 93% in patients with PJS.[366] Table 7 shows the cumulative risk of these tumors. The high cumulative risk of cancers in PJS has led to the various screening recommendations summarized in the table of Published Recommendations for Diagnosis and Surveillance of Peutz-Jeghers Syndrome (PJS) in the PDQ summary on Genetics of Colorectal Cancer.

Females with PJS are also predisposed to the development of cervical adenoma malignum, a rare and very aggressive adenocarcinoma of the cervix.[367] In addition, females with PJS commonly develop benign ovarian sex-cord tumors with annular tubules, whereas males with PJS are predisposed to development of Sertoli-cell testicular tumors;[368] although neither of these two tumor types is malignant, they can cause symptoms related to increased estrogen production.

Although the risk of malignancy appears to be exceedingly high in individuals with PJS based on the published literature, the possibility that selection and referral biases have resulted in over-estimates of these risks should be considered.

Table 7. Cumulative Cancer Risks in Peutz-Jeghers Syndrome Up To Specified Agea
SiteAge (y)Cumulative Risk (%)bReference(s)
GI = gastrointestinal.
aReprinted with permission from Macmillan Publishers Ltd: Gastroenterology [366], copyright 2010.
bAll cumulative risks were increased compared with the general population (P < .05), with the exception of cervix and testes.
cGI cancers include colorectal, small intestinal, gastric, esophageal, and pancreatic.
dWesterman et al.: GI cancer does not include pancreatic cancer.[369]
eDid not include adenoma malignum of the cervix or Sertoli cell tumors of the testes.
Any cancer60–7037–93[362-365,369,370]
GI cancerc,d60–7038–66[364,365,369,370]
Gynecological cancer60–7013–18[364,365]
Per origin    
Small bowel6513[363]
Peutz-Jeghers gene(s)

PJS is caused by mutations in the STK11 (also called LKB1) tumor suppressor gene located on chromosome 19p13.[359,360] Unlike the adenomas seen in familial adenomatous polyposis, the polyps arising in PJS are hamartomas. Studies of the hamartomatous polyps and cancers of PJS show allelic imbalance (loss of heterozygosity [LOH]) consistent with the two-hit hypothesis, demonstrating that STK11 is a tumor suppressor gene.[371,372] However, heterozygous STK11 knockout mice develop hamartomas without inactivation of the remaining wild-type allele, suggesting that haploinsufficiency is sufficient for initial tumor development in PJS.[373] Subsequently, the cancers that develop in STK11 +/- mice do show LOH;[374] indeed, compound mutant mice heterozygous for mutations in STK11 +/- and homozygous for mutations in TP53 -/- have accelerated development of both hamartomas and cancers.[375]

Germline mutations of the STK11 gene represent a spectrum of nonsense, frameshift, and missense mutations, and splice-site variants and large deletions.[358,364] Approximately 85% of mutations are localized to regions of the kinase domain of the expressed protein, and no germline mutations have been reported in exon 9. No strong genotype-phenotype correlations have been identified.[364]

STK11 has been unequivocally demonstrated to cause PJS. Although earlier estimates using direct DNA sequencing showed a 50% mutation detection rate in STK11, studies adding techniques to detect large deletions have found mutations in up to 94% of individuals meeting clinical criteria for PJS.[358,366,376] Given the results of these studies, it is unlikely that other major genes cause PJS.

De Novo Mutation Rate

Until the 1990s, the diagnosis of genetically inherited breast and ovarian cancer syndromes was based on clinical manifestations and family history. Now that some of the genes involved in these syndromes have been identified, a few studies have attempted to estimate the spontaneous mutation rate (de novo mutation rate) in these populations. Interestingly, PJS, PTEN hamartoma syndromes, and LFS are all thought to have high rates of spontaneous mutations, in the 10% to 30% range,[377-380] while estimates of de novo mutations in the BRCA genes are thought to be low, primarily on the basis of the few case reports published.[381-389] Additionally, there has been only one case series of breast cancer patients who were tested for BRCA mutations in which a de novo mutation was identified. Specifically, in this study of 193 patients with sporadic breast cancer, 17 mutations were detected, one of which was confirmed to be a de novo mutation.[381] As such, the de novo mutation rate appears to be low and fall into the 5% or less range, based on the limited studies performed.[381-389] Similarly, estimates of de novo mutations in the MMR genes associated with LS are thought to be low, in the 0.9% to 5% range.[390-392] However, it is important to note that these estimates of spontaneous mutation rates in the BRCA genes and LS genes seem to overlap with the estimates of nonpaternity rates in various populations (0.6%–3.3%),[393-395] making the de novo mutation rate for these genes relatively low.


  1. Phipps RF, Perry PM: Familial breast cancer. Postgrad Med J 64 (757): 847-9, 1988. [PUBMED Abstract]
  2. Sellers TA, Potter JD, Rich SS, et al.: Familial clustering of breast and prostate cancers and risk of postmenopausal breast cancer. J Natl Cancer Inst 86 (24): 1860-5, 1994. [PUBMED Abstract]
  3. Newman B, Austin MA, Lee M, et al.: Inheritance of human breast cancer: evidence for autosomal dominant transmission in high-risk families. Proceedings of the National Academy of Sciences 85 (9): 3044-48, 1988.
  4. Hall JM, Lee MK, Newman B, et al.: Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250 (4988): 1684-9, 1990. [PUBMED Abstract]
  5. Narod SA, Feunteun J, Lynch HT, et al.: Familial breast-ovarian cancer locus on chromosome 17q12-q23. Lancet 338 (8759): 82-3, 1991. [PUBMED Abstract]
  6. Brose MS, Rebbeck TR, Calzone KA, et al.: Cancer risk estimates for BRCA1 mutation carriers identified in a risk evaluation program. J Natl Cancer Inst 94 (18): 1365-72, 2002. [PUBMED Abstract]
  7. Thompson D, Easton DF; Breast Cancer Linkage Consortium: Cancer Incidence in BRCA1 mutation carriers. J Natl Cancer Inst 94 (18): 1358-65, 2002. [PUBMED Abstract]
  8. Risch HA, McLaughlin JR, Cole DE, et al.: Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst 98 (23): 1694-706, 2006. [PUBMED Abstract]
  9. Tai YC, Domchek S, Parmigiani G, et al.: Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 99 (23): 1811-4, 2007. [PUBMED Abstract]
  10. Wooster R, Neuhausen SL, Mangion J, et al.: Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265 (5181): 2088-90, 1994. [PUBMED Abstract]
  11. Gayther SA, Mangion J, Russell P, et al.: Variation of risks of breast and ovarian cancer associated with different germline mutations of the BRCA2 gene. Nat Genet 15 (1): 103-5, 1997. [PUBMED Abstract]
  12. Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J Natl Cancer Inst 91 (15): 1310-6, 1999. [PUBMED Abstract]
  13. Liede A, Karlan BY, Narod SA: Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. J Clin Oncol 22 (4): 735-42, 2004. [PUBMED Abstract]
  14. Ding YC, Steele L, Kuan CJ, et al.: Mutations in BRCA2 and PALB2 in male breast cancer cases from the United States. Breast Cancer Res Treat 126 (3): 771-8, 2011. [PUBMED Abstract]
  15. Tonin P, Weber B, Offit K, et al.: Frequency of recurrent BRCA1 and BRCA2 mutations in Ashkenazi Jewish breast cancer families. Nat Med 2 (11): 1179-83, 1996. [PUBMED Abstract]
  16. Easton DF, Bishop DT, Ford D, et al.: Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. The Breast Cancer Linkage Consortium. Am J Hum Genet 52 (4): 678-701, 1993. [PUBMED Abstract]
  17. Venkitaraman AR: Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108 (2): 171-82, 2002. [PUBMED Abstract]
  18. Narod SA, Foulkes WD: BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4 (9): 665-76, 2004. [PUBMED Abstract]
  19. An Open Access On-Line Breast Cancer Mutation Data Base [Database]. Bethesda, Md: National Human Genome Research Institute, 2002. Available online. Last accessed October 16, 2013.
  20. Ford D, Easton DF, Peto J: Estimates of the gene frequency of BRCA1 and its contribution to breast and ovarian cancer incidence. Am J Hum Genet 57 (6): 1457-62, 1995. [PUBMED Abstract]
  21. Whittemore AS, Gong G, John EM, et al.: Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic Whites. Cancer Epidemiol Biomarkers Prev 13 (12): 2078-83, 2004. [PUBMED Abstract]
  22. Eng C, Brody LC, Wagner TM, et al.: Interpreting epidemiological research: blinded comparison of methods used to estimate the prevalence of inherited mutations in BRCA1. J Med Genet 38 (12): 824-33, 2001. [PUBMED Abstract]
  23. Unger MA, Nathanson KL, Calzone K, et al.: Screening for genomic rearrangements in families with breast and ovarian cancer identifies BRCA1 mutations previously missed by conformation-sensitive gel electrophoresis or sequencing. Am J Hum Genet 67 (4): 841-50, 2000. [PUBMED Abstract]
  24. Walsh T, Casadei S, Coats KH, et al.: Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 295 (12): 1379-88, 2006. [PUBMED Abstract]
  25. Palma MD, Domchek SM, Stopfer J, et al.: The relative contribution of point mutations and genomic rearrangements in BRCA1 and BRCA2 in high-risk breast cancer families. Cancer Res 68 (17): 7006-14, 2008. [PUBMED Abstract]
  26. Stadler ZK, Saloustros E, Hansen NA, et al.: Absence of genomic BRCA1 and BRCA2 rearrangements in Ashkenazi breast and ovarian cancer families. Breast Cancer Res Treat 123 (2): 581-5, 2010. [PUBMED Abstract]
  27. Judkins T, Rosenthal E, Arnell C, et al.: Clinical significance of large rearrangements in BRCA1 and BRCA2. Cancer 118 (21): 5210-6, 2012. [PUBMED Abstract]
  28. Shannon KM, Rodgers LH, Chan-Smutko G, et al.: Which individuals undergoing BRACAnalysis need BART testing? Cancer Genet 204 (8): 416-22, 2011. [PUBMED Abstract]
  29. Jackson SA, Davis AA, Li J, et al.: Characteristics of individuals with breast cancer rearrangements in BRCA1 and BRCA2. Cancer 120 (10): 1557-64, 2014. [PUBMED Abstract]
  30. Weitzel JN, Lagos VI, Herzog JS, et al.: Evidence for common ancestral origin of a recurring BRCA1 genomic rearrangement identified in high-risk Hispanic families. Cancer Epidemiol Biomarkers Prev 16 (8): 1615-20, 2007. [PUBMED Abstract]
  31. Plon SE, Eccles DM, Easton D, et al.: Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 29 (11): 1282-91, 2008. [PUBMED Abstract]
  32. Frank TS, Deffenbaugh AM, Reid JE, et al.: Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol 20 (6): 1480-90, 2002. [PUBMED Abstract]
  33. Nanda R, Schumm LP, Cummings S, et al.: Genetic testing in an ethnically diverse cohort of high-risk women: a comparative analysis of BRCA1 and BRCA2 mutations in American families of European and African ancestry. JAMA 294 (15): 1925-33, 2005. [PUBMED Abstract]
  34. Hall MJ, Reid JE, Burbidge LA, et al.: BRCA1 and BRCA2 mutations in women of different ethnicities undergoing testing for hereditary breast-ovarian cancer. Cancer 115 (10): 2222-33, 2009. [PUBMED Abstract]
  35. Szabo C, Masiello A, Ryan JF, et al.: The breast cancer information core: database design, structure, and scope. Hum Mutat 16 (2): 123-31, 2000. [PUBMED Abstract]
  36. Spurdle AB, Healey S, Devereau A, et al.: ENIGMA--evidence-based network for the interpretation of germline mutant alleles: an international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes. Hum Mutat 33 (1): 2-7, 2012. [PUBMED Abstract]
  37. Goldgar DE, Easton DF, Deffenbaugh AM, et al.: Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. Am J Hum Genet 75 (4): 535-44, 2004. [PUBMED Abstract]
  38. Thompson D, Easton DF, Goldgar DE: A full-likelihood method for the evaluation of causality of sequence variants from family data. Am J Hum Genet 73 (3): 652-5, 2003. [PUBMED Abstract]
  39. Spearman AD, Sweet K, Zhou XP, et al.: Clinically applicable models to characterize BRCA1 and BRCA2 variants of uncertain significance. J Clin Oncol 26 (33): 5393-400, 2008. [PUBMED Abstract]
  40. Gómez García EB, Oosterwijk JC, Timmermans M, et al.: A method to assess the clinical significance of unclassified variants in the BRCA1 and BRCA2 genes based on cancer family history. Breast Cancer Res 11 (1): R8, 2009. [PUBMED Abstract]
  41. Goldgar DE, Easton DF, Byrnes GB, et al.: Genetic evidence and integration of various data sources for classifying uncertain variants into a single model. Hum Mutat 29 (11): 1265-72, 2008. [PUBMED Abstract]
  42. Fleming MA, Potter JD, Ramirez CJ, et al.: Understanding missense mutations in the BRCA1 gene: an evolutionary approach. Proc Natl Acad Sci U S A 100 (3): 1151-6, 2003. [PUBMED Abstract]
  43. Tavtigian SV, Deffenbaugh AM, Yin L, et al.: Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet 43 (4): 295-305, 2006. [PUBMED Abstract]
  44. Mirkovic N, Marti-Renom MA, Weber BL, et al.: Structure-based assessment of missense mutations in human BRCA1: implications for breast and ovarian cancer predisposition. Cancer Res 64 (11): 3790-7, 2004. [PUBMED Abstract]
  45. Abkevich V, Zharkikh A, Deffenbaugh AM, et al.: Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet 41 (7): 492-507, 2004. [PUBMED Abstract]
  46. Couch FJ, Rasmussen LJ, Hofstra R, et al.: Assessment of functional effects of unclassified genetic variants. Hum Mutat 29 (11): 1314-26, 2008. [PUBMED Abstract]
  47. Chenevix-Trench G, Healey S, Lakhani S, et al.: Genetic and histopathologic evaluation of BRCA1 and BRCA2 DNA sequence variants of unknown clinical significance. Cancer Res 66 (4): 2019-27, 2006. [PUBMED Abstract]
  48. Ostrow KL, McGuire V, Whittemore AS, et al.: The effects of BRCA1 missense variants V1804D and M1628T on transcriptional activity. Cancer Genet Cytogenet 153 (2): 177-80, 2004. [PUBMED Abstract]
  49. Wu K, Hinson SR, Ohashi A, et al.: Functional evaluation and cancer risk assessment of BRCA2 unclassified variants. Cancer Res 65 (2): 417-26, 2005. [PUBMED Abstract]
  50. Weitzel JN, Lagos V, Blazer KR, et al.: Prevalence of BRCA mutations and founder effect in high-risk Hispanic families. Cancer Epidemiol Biomarkers Prev 14 (7): 1666-71, 2005. [PUBMED Abstract]
  51. Mefford HC, Baumbach L, Panguluri RC, et al.: Evidence for a BRCA1 founder mutation in families of West African ancestry. Am J Hum Genet 65 (2): 575-8, 1999. [PUBMED Abstract]
  52. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Anglian Breast Cancer Study Group. Br J Cancer 83 (10): 1301-8, 2000. [PUBMED Abstract]
  53. Papelard H, de Bock GH, van Eijk R, et al.: Prevalence of BRCA1 in a hospital-based population of Dutch breast cancer patients. Br J Cancer 83 (6): 719-24, 2000. [PUBMED Abstract]
  54. Loman N, Johannsson O, Kristoffersson U, et al.: Family history of breast and ovarian cancers and BRCA1 and BRCA2 mutations in a population-based series of early-onset breast cancer. J Natl Cancer Inst 93 (16): 1215-23, 2001. [PUBMED Abstract]
  55. Malone KE, Daling JR, Doody DR, et al.: Prevalence and predictors of BRCA1 and BRCA2 mutations in a population-based study of breast cancer in white and black American women ages 35 to 64 years. Cancer Res 66 (16): 8297-308, 2006. [PUBMED Abstract]
  56. Newman B, Mu H, Butler LM, et al.: Frequency of breast cancer attributable to BRCA1 in a population-based series of American women. JAMA 279 (12): 915-21, 1998. [PUBMED Abstract]
  57. Basham VM, Lipscombe JM, Ward JM, et al.: BRCA1 and BRCA2 mutations in a population-based study of male breast cancer. Breast Cancer Res 4 (1): R2, 2002. [PUBMED Abstract]
  58. Risch HA, McLaughlin JR, Cole DE, et al.: Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am J Hum Genet 68 (3): 700-10, 2001. [PUBMED Abstract]
  59. Rubin SC, Blackwood MA, Bandera C, et al.: BRCA1, BRCA2, and hereditary nonpolyposis colorectal cancer gene mutations in an unselected ovarian cancer population: relationship to family history and implications for genetic testing. Am J Obstet Gynecol 178 (4): 670-7, 1998. [PUBMED Abstract]
  60. Pal T, Permuth-Wey J, Betts JA, et al.: BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer 104 (12): 2807-16, 2005. [PUBMED Abstract]
  61. Struewing JP, Hartge P, Wacholder S, et al.: The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 336 (20): 1401-8, 1997. [PUBMED Abstract]
  62. Gabai-Kapara E, Lahad A, Kaufman B, et al.: Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2. Proc Natl Acad Sci U S A 111 (39): 14205-10, 2014. [PUBMED Abstract]
  63. King MC, Marks JH, Mandell JB, et al.: Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302 (5645): 643-6, 2003. [PUBMED Abstract]
  64. Gershoni-Baruch R, Dagan E, Fried G, et al.: Significantly lower rates of BRCA1/BRCA2 founder mutations in Ashkenazi women with sporadic compared with familial early onset breast cancer. Eur J Cancer 36 (8): 983-6, 2000. [PUBMED Abstract]
  65. Hodgson SV, Heap E, Cameron J, et al.: Risk factors for detecting germline BRCA1 and BRCA2 founder mutations in Ashkenazi Jewish women with breast or ovarian cancer. J Med Genet 36 (5): 369-73, 1999. [PUBMED Abstract]
  66. Struewing JP, Coriaty ZM, Ron E, et al.: Founder BRCA1/2 mutations among male patients with breast cancer in Israel. Am J Hum Genet 65 (6): 1800-2, 1999. [PUBMED Abstract]
  67. Hirsh-Yechezkel G, Chetrit A, Lubin F, et al.: Population attributes affecting the prevalence of BRCA mutation carriers in epithelial ovarian cancer cases in Israel. Gynecol Oncol 89 (3): 494-8, 2003. [PUBMED Abstract]
  68. Moslehi R, Chu W, Karlan B, et al.: BRCA1 and BRCA2 mutation analysis of 208 Ashkenazi Jewish women with ovarian cancer. Am J Hum Genet 66 (4): 1259-72, 2000. [PUBMED Abstract]
  69. Levine DA, Argenta PA, Yee CJ, et al.: Fallopian tube and primary peritoneal carcinomas associated with BRCA mutations. J Clin Oncol 21 (22): 4222-7, 2003. [PUBMED Abstract]
  70. John EM, Miron A, Gong G, et al.: Prevalence of pathogenic BRCA1 mutation carriers in 5 US racial/ethnic groups. JAMA 298 (24): 2869-76, 2007. [PUBMED Abstract]
  71. Weitzel JN, Clague J, Martir-Negron A, et al.: Prevalence and type of BRCA mutations in Hispanics undergoing genetic cancer risk assessment in the southwestern United States: a report from the Clinical Cancer Genetics Community Research Network. J Clin Oncol 31 (2): 210-6, 2013. [PUBMED Abstract]
  72. Vicus D, Finch A, Cass I, et al.: Prevalence of BRCA1 and BRCA2 germ line mutations among women with carcinoma of the fallopian tube. Gynecol Oncol 118 (3): 299-302, 2010. [PUBMED Abstract]
  73. Aziz S, Kuperstein G, Rosen B, et al.: A genetic epidemiological study of carcinoma of the fallopian tube. Gynecol Oncol 80 (3): 341-5, 2001. [PUBMED Abstract]
  74. Couch FJ, DeShano ML, Blackwood MA, et al.: BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. N Engl J Med 336 (20): 1409-15, 1997. [PUBMED Abstract]
  75. Shattuck-Eidens D, Oliphant A, McClure M, et al.: BRCA1 sequence analysis in women at high risk for susceptibility mutations. Risk factor analysis and implications for genetic testing. JAMA 278 (15): 1242-50, 1997. [PUBMED Abstract]
  76. Spiegelman D, Colditz GA, Hunter D, et al.: Validation of the Gail et al. model for predicting individual breast cancer risk. J Natl Cancer Inst 86 (8): 600-7, 1994. [PUBMED Abstract]
  77. Frank TS, Manley SA, Olopade OI, et al.: Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk. J Clin Oncol 16 (7): 2417-25, 1998. [PUBMED Abstract]
  78. Chang-Claude J, Dong J, Schmidt S, et al.: Using gene carrier probability to select high risk families for identifying germline mutations in breast cancer susceptibility genes. J Med Genet 35 (2): 116-21, 1998. [PUBMED Abstract]
  79. Couch FJ, Hartmann LC: BRCA1 testing--advances and retreats. JAMA 279 (12): 955-7, 1998. [PUBMED Abstract]
  80. Parmigiani G, Berry D, Aguilar O: Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet 62 (1): 145-58, 1998. [PUBMED Abstract]
  81. Ready K, Litton JK, Arun BK: Clinical application of breast cancer risk assessment models. Future Oncol 6 (3): 355-65, 2010. [PUBMED Abstract]
  82. Amir E, Freedman OC, Seruga B, et al.: Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst 102 (10): 680-91, 2010. [PUBMED Abstract]
  83. Lakhani SR, Reis-Filho JS, Fulford L, et al.: Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11 (14): 5175-80, 2005. [PUBMED Abstract]
  84. Kwon JS, Gutierrez-Barrera AM, Young D, et al.: Expanding the criteria for BRCA mutation testing in breast cancer survivors. J Clin Oncol 28 (27): 4214-20, 2010. [PUBMED Abstract]
  85. Young SR, Pilarski RT, Donenberg T, et al.: The prevalence of BRCA1 mutations among young women with triple-negative breast cancer. BMC Cancer 9: 86, 2009. [PUBMED Abstract]
  86. Greenup R, Buchanan A, Lorizio W, et al.: Prevalence of BRCA mutations among women with triple-negative breast cancer (TNBC) in a genetic counseling cohort. Ann Surg Oncol 20 (10): 3254-8, 2013. [PUBMED Abstract]
  87. Robson ME, Storm CD, Weitzel J, et al.: American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol 28 (5): 893-901, 2010. [PUBMED Abstract]
  88. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast and Ovarian. Version 1.2014. Rockledge, PA: National Comprehensive Cancer Network, 2014. Available online with free registration. Last accessed June 17, 2014.
  89. Statement of the American Society of Human Genetics on genetic testing for breast and ovarian cancer predisposition. Am J Hum Genet 55 (5): i-iv, 1994. [PUBMED Abstract]
  90. U.S. Preventive Services Task Force: Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility: recommendation statement. Ann Intern Med 143 (5): 355-61, 2005. [PUBMED Abstract]
  91. Lancaster JM, Powell CB, Kauff ND, et al.: Society of Gynecologic Oncologists Education Committee statement on risk assessment for inherited gynecologic cancer predispositions. Gynecol Oncol 107 (2): 159-62, 2007. [PUBMED Abstract]
  92. Evans DG, Eccles DM, Rahman N, et al.: A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO. J Med Genet 41 (6): 474-80, 2004. [PUBMED Abstract]
  93. Apicella C, Dowty JG, Dite GS, et al.: Validation study of the LAMBDA model for predicting the BRCA1 or BRCA2 mutation carrier status of North American Ashkenazi Jewish women. Clin Genet 72 (2): 87-97, 2007. [PUBMED Abstract]
  94. Antoniou AC, Pharoah PP, Smith P, et al.: The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer 91 (8): 1580-90, 2004. [PUBMED Abstract]
  95. Struewing JP, Abeliovich D, Peretz T, et al.: The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nat Genet 11 (2): 198-200, 1995. [PUBMED Abstract]
  96. Oddoux C, Struewing JP, Clayton CM, et al.: The carrier frequency of the BRCA2 6174delT mutation among Ashkenazi Jewish individuals is approximately 1%. Nat Genet 14 (2): 188-90, 1996. [PUBMED Abstract]
  97. Warner E, Foulkes W, Goodwin P, et al.: Prevalence and penetrance of BRCA1 and BRCA2 gene mutations in unselected Ashkenazi Jewish women with breast cancer. J Natl Cancer Inst 91 (14): 1241-7, 1999. [PUBMED Abstract]
  98. Euhus DM, Smith KC, Robinson L, et al.: Pretest prediction of BRCA1 or BRCA2 mutation by risk counselors and the computer model BRCAPRO. J Natl Cancer Inst 94 (11): 844-51, 2002. [PUBMED Abstract]
  99. de la Hoya M, Díez O, Pérez-Segura P, et al.: Pre-test prediction models of BRCA1 or BRCA2 mutation in breast/ovarian families attending familial cancer clinics. J Med Genet 40 (7): 503-10, 2003. [PUBMED Abstract]
  100. Katki HA: Incorporating medical interventions into carrier probability estimation for genetic counseling. BMC Med Genet 8: 13, 2007. [PUBMED Abstract]
  101. Weitzel JN, Lagos VI, Cullinane CA, et al.: Limited family structure and BRCA gene mutation status in single cases of breast cancer. JAMA 297 (23): 2587-95, 2007. [PUBMED Abstract]
  102. Oros KK, Ghadirian P, Maugard CM, et al.: Application of BRCA1 and BRCA2 mutation carrier prediction models in breast and/or ovarian cancer families of French Canadian descent. Clin Genet 70 (4): 320-9, 2006. [PUBMED Abstract]
  103. Vogel KJ, Atchley DP, Erlichman J, et al.: BRCA1 and BRCA2 genetic testing in Hispanic patients: mutation prevalence and evaluation of the BRCAPRO risk assessment model. J Clin Oncol 25 (29): 4635-41, 2007. [PUBMED Abstract]
  104. Kurian AW, Gong GD, John EM, et al.: Performance of prediction models for BRCA mutation carriage in three racial/ethnic groups: findings from the Northern California Breast Cancer Family Registry. Cancer Epidemiol Biomarkers Prev 18 (4): 1084-91, 2009. [PUBMED Abstract]
  105. Kurian AW, Gong GD, Chun NM, et al.: Performance of BRCA1/2 mutation prediction models in Asian Americans. J Clin Oncol 26 (29): 4752-8, 2008. [PUBMED Abstract]
  106. Berry DA, Parmigiani G, Sanchez J, et al.: Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history. J Natl Cancer Inst 89 (3): 227-38, 1997. [PUBMED Abstract]
  107. Barcenas CH, Hosain GM, Arun B, et al.: Assessing BRCA carrier probabilities in extended families. J Clin Oncol 24 (3): 354-60, 2006. [PUBMED Abstract]
  108. Kang HH, Williams R, Leary J, et al.: Evaluation of models to predict BRCA germline mutations. Br J Cancer 95 (7): 914-20, 2006. [PUBMED Abstract]
  109. Antoniou AC, Hardy R, Walker L, et al.: Predicting the likelihood of carrying a BRCA1 or BRCA2 mutation: validation of BOADICEA, BRCAPRO, IBIS, Myriad and the Manchester scoring system using data from UK genetics clinics. J Med Genet 45 (7): 425-31, 2008. [PUBMED Abstract]
  110. Fischer C, Kuchenbäcker K, Engel C, et al.: Evaluating the performance of the breast cancer genetic risk models BOADICEA, IBIS, BRCAPRO and Claus for predicting BRCA1/2 mutation carrier probabilities: a study based on 7352 families from the German Hereditary Breast and Ovarian Cancer Consortium. J Med Genet 50 (6): 360-7, 2013. [PUBMED Abstract]
  111. Biswas S, Tankhiwale N, Blackford A, et al.: Assessing the added value of breast tumor markers in genetic risk prediction model BRCAPRO. Breast Cancer Res Treat 133 (1): 347-55, 2012. [PUBMED Abstract]
  112. Tai YC, Chen S, Parmigiani G, et al.: Incorporating tumor immunohistochemical markers in BRCA1 and BRCA2 carrier prediction. Breast Cancer Res 10 (2): 401, 2008. [PUBMED Abstract]
  113. Tyrer J, Duffy SW, Cuzick J: A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 23 (7): 1111-30, 2004. [PUBMED Abstract]
  114. Ready KJ, Vogel KJ, Atchley DP, et al.: Accuracy of the BRCAPRO model among women with bilateral breast cancer. Cancer 115 (4): 725-30, 2009. [PUBMED Abstract]
  115. Huo D, Senie RT, Daly M, et al.: Prediction of BRCA Mutations Using the BRCAPRO Model in Clinic-Based African American, Hispanic, and Other Minority Families in the United States. J Clin Oncol 27 (8): 1184-90, 2009. [PUBMED Abstract]
  116. Daniels MS, Babb SA, King RH, et al.: Underestimation of risk of a BRCA1 or BRCA2 mutation in women with high-grade serous ovarian cancer by BRCAPRO: a multi-institution study. J Clin Oncol 32 (12): 1249-55, 2014. [PUBMED Abstract]
  117. Antoniou A, Pharoah PD, Narod S, et al.: Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72 (5): 1117-30, 2003. [PUBMED Abstract]
  118. Chen S, Parmigiani G: Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25 (11): 1329-33, 2007. [PUBMED Abstract]
  119. Antoniou AC, Pharoah PD, Narod S, et al.: Breast and ovarian cancer risks to carriers of the BRCA1 5382insC and 185delAG and BRCA2 6174delT mutations: a combined analysis of 22 population based studies. J Med Genet 42 (7): 602-3, 2005. [PUBMED Abstract]
  120. Finkelman BS, Rubinstein WS, Friedman S, et al.: Breast and ovarian cancer risk and risk reduction in Jewish BRCA1/2 mutation carriers. J Clin Oncol 30 (12): 1321-8, 2012. [PUBMED Abstract]
  121. Wang WW, Spurdle AB, Kolachana P, et al.: A single nucleotide polymorphism in the 5' untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers. Cancer Epidemiol Biomarkers Prev 10 (9): 955-60, 2001. [PUBMED Abstract]
  122. Levy-Lahad E, Lahad A, Eisenberg S, et al.: A single nucleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carriers. Proc Natl Acad Sci U S A 98 (6): 3232-6, 2001. [PUBMED Abstract]
  123. Narod SA: Modifiers of risk of hereditary breast and ovarian cancer. Nat Rev Cancer 2 (2): 113-23, 2002. [PUBMED Abstract]
  124. Kramer JL, Velazquez IA, Chen BE, et al.: Prophylactic oophorectomy reduces breast cancer penetrance during prospective, long-term follow-up of BRCA1 mutation carriers. J Clin Oncol 23 (34): 8629-35, 2005. [PUBMED Abstract]
  125. Antoniou AC, Spurdle AB, Sinilnikova OM, et al.: Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am J Hum Genet 82 (4): 937-48, 2008. [PUBMED Abstract]
  126. Iodice S, Barile M, Rotmensz N, et al.: Oral contraceptive use and breast or ovarian cancer risk in BRCA1/2 carriers: a meta-analysis. Eur J Cancer 46 (12): 2275-84, 2010. [PUBMED Abstract]
  127. Antoniou AC, Rookus M, Andrieu N, et al.: Reproductive and hormonal factors, and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers: results from the International BRCA1/2 Carrier Cohort Study. Cancer Epidemiol Biomarkers Prev 18 (2): 601-10, 2009. [PUBMED Abstract]
  128. Milne RL, Osorio A, Ramón y Cajal T, et al.: Parity and the risk of breast and ovarian cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat 119 (1): 221-32, 2010. [PUBMED Abstract]
  129. Friedman E, Kotsopoulos J, Lubinski J, et al.: Spontaneous and therapeutic abortions and the risk of breast cancer among BRCA mutation carriers. Breast Cancer Res 8 (2): R15, 2006. [PUBMED Abstract]
  130. Jernström H, Lubinski J, Lynch HT, et al.: Breast-feeding and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 96 (14): 1094-8, 2004. [PUBMED Abstract]
  131. Terry P, Jain M, Miller AB, et al.: Dietary carotenoids and risk of breast cancer. Am J Clin Nutr 76 (4): 883-8, 2002. [PUBMED Abstract]
  132. Breast Cancer Family Registry, Kathleen Cuningham Consortium for Research into Familial Breast Cancer (Australasia), Ontario Cancer Genetics Network (Canada): Smoking and risk of breast cancer in carriers of mutations in BRCA1 or BRCA2 aged less than 50 years. Breast Cancer Res Treat 109 (1): 67-75, 2008. [PUBMED Abstract]
  133. Antoniou AC, Beesley J, McGuffog L, et al.: Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. Cancer Res 70 (23): 9742-54, 2010. [PUBMED Abstract]
  134. Ramus SJ, Kartsonaki C, Gayther SA, et al.: Genetic variation at 9p22.2 and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 103 (2): 105-16, 2011. [PUBMED Abstract]
  135. Milne RL, Antoniou AC: Genetic modifiers of cancer risk for BRCA1 and BRCA2 mutation carriers. Ann Oncol 22 (Suppl 1): i11-7, 2011. [PUBMED Abstract]
  136. Litton JK, Ready K, Chen H, et al.: Earlier age of onset of BRCA mutation-related cancers in subsequent generations. Cancer 118 (2): 321-5, 2012. [PUBMED Abstract]
  137. Casey MJ, Synder C, Bewtra C, et al.: Intra-abdominal carcinomatosis after prophylactic oophorectomy in women of hereditary breast ovarian cancer syndrome kindreds associated with BRCA1 and BRCA2 mutations. Gynecol Oncol 97 (2): 457-67, 2005. [PUBMED Abstract]
  138. Finch A, Beiner M, Lubinski J, et al.: Salpingo-oophorectomy and the risk of ovarian, fallopian tube, and peritoneal cancers in women with a BRCA1 or BRCA2 Mutation. JAMA 296 (2): 185-92, 2006. [PUBMED Abstract]
  139. Evans DG, Susnerwala I, Dawson J, et al.: Risk of breast cancer in male BRCA2 carriers. J Med Genet 47 (10): 710-1, 2010. [PUBMED Abstract]
  140. Edwards SM, Kote-Jarai Z, Meitz J, et al.: Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 72 (1): 1-12, 2003. [PUBMED Abstract]
  141. Giusti RM, Rutter JL, Duray PH, et al.: A twofold increase in BRCA mutation related prostate cancer among Ashkenazi Israelis is not associated with distinctive histopathology. J Med Genet 40 (10): 787-92, 2003. [PUBMED Abstract]
  142. van Asperen CJ, Brohet RM, Meijers-Heijboer EJ, et al.: Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet 42 (9): 711-9, 2005. [PUBMED Abstract]
  143. Mitra A, Fisher C, Foster CS, et al.: Prostate cancer in male BRCA1 and BRCA2 mutation carriers has a more aggressive phenotype. Br J Cancer 98 (2): 502-7, 2008. [PUBMED Abstract]
  144. Tryggvadóttir L, Vidarsdóttir L, Thorgeirsson T, et al.: Prostate cancer progression and survival in BRCA2 mutation carriers. J Natl Cancer Inst 99 (12): 929-35, 2007. [PUBMED Abstract]
  145. Agalliu I, Gern R, Leanza S, et al.: Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res 15 (3): 1112-20, 2009. [PUBMED Abstract]
  146. Narod SA, Neuhausen S, Vichodez G, et al.: Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer 99 (2): 371-4, 2008. [PUBMED Abstract]
  147. Edwards SM, Evans DG, Hope Q, et al.: Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br J Cancer 103 (6): 918-24, 2010. [PUBMED Abstract]
  148. Gallagher DJ, Gaudet MM, Pal P, et al.: Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res 16 (7): 2115-21, 2010. [PUBMED Abstract]
  149. Couch FJ, Johnson MR, Rabe KG, et al.: The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiol Biomarkers Prev 16 (2): 342-6, 2007. [PUBMED Abstract]
  150. Hahn SA, Greenhalf B, Ellis I, et al.: BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst 95 (3): 214-21, 2003. [PUBMED Abstract]
  151. Murphy KM, Brune KA, Griffin C, et al.: Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%. Cancer Res 62 (13): 3789-93, 2002. [PUBMED Abstract]
  152. Real FX, Malats N, Lesca G, et al.: Family history of cancer and germline BRCA2 mutations in sporadic exocrine pancreatic cancer. Gut 50 (5): 653-7, 2002. [PUBMED Abstract]
  153. Dagan E: Predominant Ashkenazi BRCA1/2 mutations in families with pancreatic cancer. Genet Test 12 (2): 267-71, 2008. [PUBMED Abstract]
  154. Goggins M, Schutte M, Lu J, et al.: Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res 56 (23): 5360-4, 1996. [PUBMED Abstract]
  155. Lal G, Liu G, Schmocker B, et al.: Inherited predisposition to pancreatic adenocarcinoma: role of family history and germ-line p16, BRCA1, and BRCA2 mutations. Cancer Res 60 (2): 409-16, 2000. [PUBMED Abstract]
  156. Ozçelik H, Schmocker B, Di Nicola N, et al.: Germline BRCA2 6174delT mutations in Ashkenazi Jewish pancreatic cancer patients. Nat Genet 16 (1): 17-8, 1997. [PUBMED Abstract]
  157. Ferrone CR, Levine DA, Tang LH, et al.: BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. J Clin Oncol 27 (3): 433-8, 2009. [PUBMED Abstract]
  158. DevCan: Probability of Developing or Dying of Cancer Software. Version 6.5.0. Bethesda, Md: Statistical Research and Applications Branch, National Cancer Institute, 2010. Available online. Last accessed October 16, 2013.
  159. Ford D, Easton DF, Bishop DT, et al.: Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 343 (8899): 692-5, 1994. [PUBMED Abstract]
  160. Anton-Culver H, Cohen PF, Gildea ME, et al.: Characteristics of BRCA1 mutations in a population-based case series of breast and ovarian cancer. Eur J Cancer 36 (10): 1200-8, 2000. [PUBMED Abstract]
  161. Peelen T, de Leeuw W, van Lent K, et al.: Genetic analysis of a breast-ovarian cancer family, with 7 cases of colorectal cancer linked to BRCA1, fails to support a role for BRCA1 in colorectal tumorigenesis. Int J Cancer 88 (5): 778-82, 2000. [PUBMED Abstract]
  162. Berman DB, Costalas J, Schultz DC, et al.: A common mutation in BRCA2 that predisposes to a variety of cancers is found in both Jewish Ashkenazi and non-Jewish individuals. Cancer Res 56 (15): 3409-14, 1996. [PUBMED Abstract]
  163. Aretini P, D'Andrea E, Pasini B, et al.: Different expressivity of BRCA1 and BRCA2: analysis of 179 Italian pedigrees with identified mutation. Breast Cancer Res Treat 81 (1): 71-9, 2003. [PUBMED Abstract]
  164. Kirchhoff T, Satagopan JM, Kauff ND, et al.: Frequency of BRCA1 and BRCA2 mutations in unselected Ashkenazi Jewish patients with colorectal cancer. J Natl Cancer Inst 96 (1): 68-70, 2004. [PUBMED Abstract]
  165. Niell BL, Rennert G, Bonner JD, et al.: BRCA1 and BRCA2 founder mutations and the risk of colorectal cancer. J Natl Cancer Inst 96 (1): 15-21, 2004. [PUBMED Abstract]
  166. Chen-Shtoyerman R, Figer A, Fidder HH, et al.: The frequency of the predominant Jewish mutations in BRCA1 and BRCA2 in unselected Ashkenazi colorectal cancer patients. Br J Cancer 84 (4): 475-7, 2001. [PUBMED Abstract]
  167. Levine DA, Lin O, Barakat RR, et al.: Risk of endometrial carcinoma associated with BRCA mutation. Gynecol Oncol 80 (3): 395-8, 2001. [PUBMED Abstract]
  168. Goshen R, Chu W, Elit L, et al.: Is uterine papillary serous adenocarcinoma a manifestation of the hereditary breast-ovarian cancer syndrome? Gynecol Oncol 79 (3): 477-81, 2000. [PUBMED Abstract]
  169. Smith A, Moran A, Boyd MC, et al.: Phenocopies in BRCA1 and BRCA2 families: evidence for modifier genes and implications for screening. J Med Genet 44 (1): 10-15, 2007. [PUBMED Abstract]
  170. Goldgar D, Venne V, Conner T, et al.: BRCA phenocopies or ascertainment bias? J Med Genet 44 (8): e86; author reply e88, 2007. [PUBMED Abstract]
  171. Eisinger F: Phenocopies: actual risk or self-fulfilling prophecy? J Med Genet 44 (8): e87; author reply e88, 2007. [PUBMED Abstract]
  172. Sasieni P: Phenocopies in families seen by cancer geneticists. J Med Genet 44 (6): e82, 2007. [PUBMED Abstract]
  173. Tilanus-Linthorst MM: No screening yet after a negative test for the family mutation. J Med Genet 44 (5): e79, 2007. [PUBMED Abstract]
  174. Katki HA, Gail MH, Greene MH: Breast-cancer risk in BRCA-mutation-negative women from BRCA-mutation-positive families. Lancet Oncol 8 (12): 1042-3, 2007. [PUBMED Abstract]
  175. Raskin L, Lejbkowicz F, Barnett-Griness O, et al.: BRCA1 breast cancer risk is modified by CYP19 polymorphisms in Ashkenazi Jews. Cancer Epidemiol Biomarkers Prev 18 (5): 1617-23, 2009. [PUBMED Abstract]
  176. Gronwald J, Cybulski C, Lubinski J, et al.: Phenocopies in breast cancer 1 (BRCA1) families: implications for genetic counselling. J Med Genet 44 (4): e76, 2007. [PUBMED Abstract]
  177. Rowan E, Poll A, Narod SA: A prospective study of breast cancer risk in relatives of BRCA1/BRCA2 mutation carriers. J Med Genet 44 (8): e89; author reply e88, 2007. [PUBMED Abstract]
  178. Vos JR, de Bock GH, Teixeira N, et al.: Proven non-carriers in BRCA families have an earlier age of onset of breast cancer. Eur J Cancer 49 (9): 2101-6, 2013. [PUBMED Abstract]
  179. Domchek SM, Gaudet MM, Stopfer JE, et al.: Breast cancer risks in individuals testing negative for a known family mutation in BRCA1 or BRCA2. Breast Cancer Res Treat 119 (2): 409-14, 2010. [PUBMED Abstract]
  180. Korde LA, Mueller CM, Loud JT, et al.: No evidence of excess breast cancer risk among mutation-negative women from BRCA mutation-positive families. Breast Cancer Res Treat 125 (1): 169-73, 2011. [PUBMED Abstract]
  181. Kurian AW, Gong GD, John EM, et al.: Breast cancer risk for noncarriers of family-specific BRCA1 and BRCA2 mutations: findings from the Breast Cancer Family Registry. J Clin Oncol 29 (34): 4505-9, 2011. [PUBMED Abstract]
  182. Harvey SL, Milne RL, McLachlan SA, et al.: Prospective study of breast cancer risk for mutation negative women from BRCA1 or BRCA2 mutation positive families. Breast Cancer Res Treat 130 (3): 1057-61, 2011. [PUBMED Abstract]
  183. Kauff ND, Mitra N, Robson ME, et al.: Risk of ovarian cancer in BRCA1 and BRCA2 mutation-negative hereditary breast cancer families. J Natl Cancer Inst 97 (18): 1382-4, 2005. [PUBMED Abstract]
  184. Lee JS, John EM, McGuire V, et al.: Breast and ovarian cancer in relatives of cancer patients, with and without BRCA mutations. Cancer Epidemiol Biomarkers Prev 15 (2): 359-63, 2006. [PUBMED Abstract]
  185. Metcalfe KA, Finch A, Poll A, et al.: Breast cancer risks in women with a family history of breast or ovarian cancer who have tested negative for a BRCA1 or BRCA2 mutation. Br J Cancer 100 (2): 421-5, 2009. [PUBMED Abstract]
  186. Liede A, Karlan BY, Baldwin RL, et al.: Cancer incidence in a population of Jewish women at risk of ovarian cancer. J Clin Oncol 20 (6): 1570-7, 2002. [PUBMED Abstract]
  187. Ingham SL, Warwick J, Buchan I, et al.: Ovarian cancer among 8,005 women from a breast cancer family history clinic: no increased risk of invasive ovarian cancer in families testing negative for BRCA1 and BRCA2. J Med Genet 50 (6): 368-72, 2013. [PUBMED Abstract]
  188. Barnes DR, Antoniou AC: Unravelling modifiers of breast and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers: update on genetic modifiers. J Intern Med 271 (4): 331-43, 2012. [PUBMED Abstract]
  189. Chenevix-Trench G, Milne RL, Antoniou AC, et al.: An international initiative to identify genetic modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). Breast Cancer Res 9 (2): 104, 2007. [PUBMED Abstract]
  190. Antoniou AC, Kartsonaki C, Sinilnikova OM, et al.: Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers. Hum Mol Genet 20 (16): 3304-21, 2011. [PUBMED Abstract]
  191. Couch FJ, Wang X, McGuffog L, et al.: Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk. PLoS Genet 9 (3): e1003212, 2013. [PUBMED Abstract]
  192. Gaudet MM, Kuchenbaecker KB, Vijai J, et al.: Identification of a BRCA2-specific modifier locus at 6p24 related to breast cancer risk. PLoS Genet 9 (3): e1003173, 2013. [PUBMED Abstract]
  193. Engel C, Versmold B, Wappenschmidt B, et al.: Association of the variants CASP8 D302H and CASP10 V410I with breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev 19 (11): 2859-68, 2010. [PUBMED Abstract]
  194. Bojesen SE, Pooley KA, Johnatty SE, et al.: Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet 45 (4): 371-84, 384e1-2, 2013. [PUBMED Abstract]
  195. Kirchhoff T, Gaudet MM, Antoniou AC, et al.: Breast cancer risk and 6q22.33: combined results from Breast Cancer Association Consortium and Consortium of Investigators on Modifiers of BRCA1/2. PLoS One 7 (6): e35706, 2012. [PUBMED Abstract]
  196. Antoniou AC, Kuchenbaecker KB, Soucy P, et al.: Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. Breast Cancer Res 14 (1): R33, 2012. [PUBMED Abstract]
  197. Couch FJ, Gaudet MM, Antoniou AC, et al.: Common variants at the 19p13.1 and ZNF365 loci are associated with ER subtypes of breast cancer and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev 21 (4): 645-57, 2012. [PUBMED Abstract]
  198. Gaudet MM, Kirchhoff T, Green T, et al.: Common genetic variants and modification of penetrance of BRCA2-associated breast cancer. PLoS Genet 6 (10): e1001183, 2010. [PUBMED Abstract]
  199. Mulligan AM, Couch FJ, Barrowdale D, et al.: Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Res 13 (6): R110, 2011. [PUBMED Abstract]
  200. Antoniou AC, Sinilnikova OM, Simard J, et al.: RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 81 (6): 1186-200, 2007. [PUBMED Abstract]
  201. Cox DG, Simard J, Sinnett D, et al.: Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers. Hum Mol Genet 20 (23): 4732-47, 2011. [PUBMED Abstract]
  202. Stevens KN, Fredericksen Z, Vachon CM, et al.: 19p13.1 is a triple-negative-specific breast cancer susceptibility locus. Cancer Res 72 (7): 1795-803, 2012. [PUBMED Abstract]
  203. Ramus SJ, Antoniou AC, Kuchenbaecker KB, et al.: Ovarian cancer susceptibility alleles and risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers. Hum Mutat 33 (4): 690-702, 2012. [PUBMED Abstract]
  204. Ding YC, McGuffog L, Healey S, et al.: A nonsynonymous polymorphism in IRS1 modifies risk of developing breast and ovarian cancers in BRCA1 and ovarian cancer in BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev 21 (8): 1362-70, 2012. [PUBMED Abstract]
  205. Futreal PA, Liu Q, Shattuck-Eidens D, et al.: BRCA1 mutations in primary breast and ovarian carcinomas. Science 266 (5182): 120-2, 1994. [PUBMED Abstract]
  206. Lancaster JM, Wooster R, Mangion J, et al.: BRCA2 mutations in primary breast and ovarian cancers. Nat Genet 13 (2): 238-40, 1996. [PUBMED Abstract]
  207. Miki Y, Katagiri T, Kasumi F, et al.: Mutation analysis in the BRCA2 gene in primary breast cancers. Nat Genet 13 (2): 245-7, 1996. [PUBMED Abstract]
  208. Teng DH, Bogden R, Mitchell J, et al.: Low incidence of BRCA2 mutations in breast carcinoma and other cancers. Nat Genet 13 (2): 241-4, 1996. [PUBMED Abstract]
  209. Berchuck A, Heron KA, Carney ME, et al.: Frequency of germline and somatic BRCA1 mutations in ovarian cancer. Clin Cancer Res 4 (10): 2433-7, 1998. [PUBMED Abstract]
  210. Thompson ME, Jensen RA, Obermiller PS, et al.: Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet 9 (4): 444-50, 1995. [PUBMED Abstract]
  211. Dobrovic A, Simpfendorfer D: Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res 57 (16): 3347-50, 1997. [PUBMED Abstract]
  212. Cleton-Jansen AM, Collins N, Lakhani SR, et al.: Loss of heterozygosity in sporadic breast tumours at the BRCA2 locus on chromosome 13q12-q13. Br J Cancer 72 (5): 1241-4, 1995. [PUBMED Abstract]
  213. Hamann U, Herbold C, Costa S, et al.: Allelic imbalance on chromosome 13q: evidence for the involvement of BRCA2 and RB1 in sporadic breast cancer. Cancer Res 56 (9): 1988-90, 1996. [PUBMED Abstract]
  214. Birgisdottir V, Stefansson OA, Bodvarsdottir SK, et al.: Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res 8 (4): R38, 2006. [PUBMED Abstract]
  215. Turner NC, Reis-Filho JS, Russell AM, et al.: BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26 (14): 2126-32, 2007. [PUBMED Abstract]
  216. Rakha EA, El-Sheikh SE, Kandil MA, et al.: Expression of BRCA1 protein in breast cancer and its prognostic significance. Hum Pathol 39 (6): 857-65, 2008. [PUBMED Abstract]
  217. Wong EM, Southey MC, Fox SB, et al.: Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. Cancer Prev Res (Phila) 4 (1): 23-33, 2011. [PUBMED Abstract]
  218. Hilton JL, Geisler JP, Rathe JA, et al.: Inactivation of BRCA1 and BRCA2 in ovarian cancer. J Natl Cancer Inst 94 (18): 1396-406, 2002. [PUBMED Abstract]
  219. Quinn JE, James CR, Stewart GE, et al.: BRCA1 mRNA expression levels predict for overall survival in ovarian cancer after chemotherapy. Clin Cancer Res 13 (24): 7413-20, 2007. [PUBMED Abstract]
  220. Geisler JP, Hatterman-Zogg MA, Rathe JA, et al.: Frequency of BRCA1 dysfunction in ovarian cancer. J Natl Cancer Inst 94 (1): 61-7, 2002. [PUBMED Abstract]
  221. Farmer H, McCabe N, Lord CJ, et al.: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434 (7035): 917-21, 2005. [PUBMED Abstract]
  222. Ford D, Easton DF, Stratton M, et al.: Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 62 (3): 676-89, 1998. [PUBMED Abstract]
  223. Koonin EV, Altschul SF, Bork P: BRCA1 protein products ... Functional motifs... Nat Genet 13 (3): 266-8, 1996. [PUBMED Abstract]
  224. Thompson D, Easton D; Breast Cancer Linkage Consortium: Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am J Hum Genet 68 (2): 410-9, 2001. [PUBMED Abstract]
  225. Thompson D, Easton D; Breast Cancer Linkage Consortium: Variation in BRCA1 cancer risks by mutation position. Cancer Epidemiol Biomarkers Prev 11 (4): 329-36, 2002. [PUBMED Abstract]
  226. Scott CL, Jenkins MA, Southey MC, et al.: Average age-specific cumulative risk of breast cancer according to type and site of germline mutations in BRCA1 and BRCA2 estimated from multiple-case breast cancer families attending Australian family cancer clinics. Hum Genet 112 (5-6): 542-51, 2003. [PUBMED Abstract]
  227. Lubinski J, Phelan CM, Ghadirian P, et al.: Cancer variation associated with the position of the mutation in the BRCA2 gene. Fam Cancer 3 (1): 1-10, 2004. [PUBMED Abstract]
  228. Satagopan JM, Boyd J, Kauff ND, et al.: Ovarian cancer risk in Ashkenazi Jewish carriers of BRCA1 and BRCA2 mutations. Clin Cancer Res 8 (12): 3776-81, 2002. [PUBMED Abstract]
  229. Rennert G, Dishon S, Rennert HS, et al.: Differences in the characteristics of families with BRCA1 and BRCA2 mutations in Israel. Eur J Cancer Prev 14 (4): 357-61, 2005. [PUBMED Abstract]
  230. Eisinger F, Jacquemier J, Charpin C, et al.: Mutations at BRCA1: the medullary breast carcinoma revisited. Cancer Res 58 (8): 1588-92, 1998. [PUBMED Abstract]
  231. Pathology of familial breast cancer: differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases. Breast Cancer Linkage Consortium. Lancet 349 (9064): 1505-10, 1997. [PUBMED Abstract]
  232. Armes JE, Egan AJ, Southey MC, et al.: The histologic phenotypes of breast carcinoma occurring before age 40 years in women with and without BRCA1 or BRCA2 germline mutations: a population-based study. Cancer 83 (11): 2335-45, 1998. [PUBMED Abstract]
  233. Foulkes WD, Stefansson IM, Chappuis PO, et al.: Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95 (19): 1482-5, 2003. [PUBMED Abstract]
  234. Verhoog LC, Brekelmans CT, Seynaeve C, et al.: Survival and tumour characteristics of breast-cancer patients with germline mutations of BRCA1. Lancet 351 (9099): 316-21, 1998. [PUBMED Abstract]
  235. Manié E, Vincent-Salomon A, Lehmann-Che J, et al.: High frequency of TP53 mutation in BRCA1 and sporadic basal-like carcinomas but not in BRCA1 luminal breast tumors. Cancer Res 69 (2): 663-71, 2009. [PUBMED Abstract]
  236. Southey MC, Ramus SJ, Dowty JG, et al.: Morphological predictors of BRCA1 germline mutations in young women with breast cancer. Br J Cancer 104 (6): 903-9, 2011. [PUBMED Abstract]
  237. Mavaddat N, Barrowdale D, Andrulis IL, et al.: Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev 21 (1): 134-47, 2012. [PUBMED Abstract]
  238. Lakhani SR, Van De Vijver MJ, Jacquemier J, et al.: The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 20 (9): 2310-8, 2002. [PUBMED Abstract]
  239. Sorlie T, Tibshirani R, Parker J, et al.: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100 (14): 8418-23, 2003. [PUBMED Abstract]
  240. Lee E, McKean-Cowdin R, Ma H, et al.: Characteristics of triple-negative breast cancer in patients with a BRCA1 mutation: results from a population-based study of young women. J Clin Oncol 29 (33): 4373-80, 2011. [PUBMED Abstract]
  241. Anders C, Carey LA: Understanding and treating triple-negative breast cancer. Oncology (Williston Park) 22 (11): 1233-9; discussion 1239-40, 1243, 2008. [PUBMED Abstract]
  242. Atchley DP, Albarracin CT, Lopez A, et al.: Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol 26 (26): 4282-8, 2008. [PUBMED Abstract]
  243. Tung N, Wang Y, Collins LC, et al.: Estrogen receptor positive breast cancers in BRCA1 mutation carriers: clinical risk factors and pathologic features. Breast Cancer Res 12 (1): R12, 2010. [PUBMED Abstract]
  244. Lakhani SR, Khanna KK, Chenevix-Trench G: Are estrogen receptor-positive breast cancers in BRCA1 mutation carriers sporadic? Breast Cancer Res 12 (2): 104, 2010. [PUBMED Abstract]
  245. Foulkes WD, Metcalfe K, Sun P, et al.: Estrogen receptor status in BRCA1- and BRCA2-related breast cancer: the influence of age, grade, and histological type. Clin Cancer Res 10 (6): 2029-34, 2004. [PUBMED Abstract]
  246. Gonzalez-Angulo AM, Timms KM, Liu S, et al.: Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res 17 (5): 1082-9, 2011. [PUBMED Abstract]
  247. Rummel S, Varner E, Shriver CD, et al.: Evaluation of BRCA1 mutations in an unselected patient population with triple-negative breast cancer. Breast Cancer Res Treat 137 (1): 119-25, 2013. [PUBMED Abstract]
  248. Robertson L, Hanson H, Seal S, et al.: BRCA1 testing should be offered to individuals with triple-negative breast cancer diagnosed below 50 years. Br J Cancer 106 (6): 1234-8, 2012. [PUBMED Abstract]
  249. Lee LJ, Alexander B, Schnitt SJ, et al.: Clinical outcome of triple negative breast cancer in BRCA1 mutation carriers and noncarriers. Cancer 117 (14): 3093-100, 2011. [PUBMED Abstract]
  250. Hartman AR, Kaldate RR, Sailer LM, et al.: Prevalence of BRCA mutations in an unselected population of triple-negative breast cancer. Cancer 118 (11): 2787-95, 2012. [PUBMED Abstract]
  251. Foulkes WD: BRCA1 functions as a breast stem cell regulator. J Med Genet 41 (1): 1-5, 2004. [PUBMED Abstract]
  252. Perou CM, Sørlie T, Eisen MB, et al.: Molecular portraits of human breast tumours. Nature 406 (6797): 747-52, 2000. [PUBMED Abstract]
  253. Sørlie T, Perou CM, Tibshirani R, et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98 (19): 10869-74, 2001. [PUBMED Abstract]
  254. Hedenfalk I, Duggan D, Chen Y, et al.: Gene-expression profiles in hereditary breast cancer. N Engl J Med 344 (8): 539-48, 2001. [PUBMED Abstract]
  255. Wessels LF, van Welsem T, Hart AA, et al.: Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res 62 (23): 7110-7, 2002. [PUBMED Abstract]
  256. Palacios J, Honrado E, Osorio A, et al.: Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clin Cancer Res 9 (10 Pt 1): 3606-14, 2003. [PUBMED Abstract]
  257. Nielsen TO, Hsu FD, Jensen K, et al.: Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10 (16): 5367-74, 2004. [PUBMED Abstract]
  258. Palacios J, Honrado E, Osorio A, et al.: Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Res Treat 90 (1): 5-14, 2005. [PUBMED Abstract]
  259. Laakso M, Loman N, Borg A, et al.: Cytokeratin 5/14-positive breast cancer: true basal phenotype confined to BRCA1 tumors. Mod Pathol 18 (10): 1321-8, 2005. [PUBMED Abstract]
  260. Cheang MC, Voduc D, Bajdik C, et al.: Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14 (5): 1368-76, 2008. [PUBMED Abstract]
  261. Hwang ES, McLennan JL, Moore DH, et al.: Ductal carcinoma in situ in BRCA mutation carriers. J Clin Oncol 25 (6): 642-7, 2007. [PUBMED Abstract]
  262. Adem C, Reynolds C, Soderberg CL, et al.: Pathologic characteristics of breast parenchyma in patients with hereditary breast carcinoma, including BRCA1 and BRCA2 mutation carriers. Cancer 97 (1): 1-11, 2003. [PUBMED Abstract]
  263. Claus EB, Petruzella S, Matloff E, et al.: Prevalence of BRCA1 and BRCA2 mutations in women diagnosed with ductal carcinoma in situ. JAMA 293 (8): 964-9, 2005. [PUBMED Abstract]
  264. Arun B, Vogel KJ, Lopez A, et al.: High prevalence of preinvasive lesions adjacent to BRCA1/2-associated breast cancers. Cancer Prev Res (Phila Pa) 2 (2): 122-7, 2009. [PUBMED Abstract]
  265. Garber JE: BRCA1/2-associated and sporadic breast cancers: fellow travelers or not? Cancer Prev Res (Phila Pa) 2 (2): 100-3, 2009. [PUBMED Abstract]
  266. Smith KL, Adank M, Kauff N, et al.: BRCA mutations in women with ductal carcinoma in situ. Clin Cancer Res 13 (14): 4306-10, 2007. [PUBMED Abstract]
  267. Hoogerbrugge N, Bult P, Bonenkamp JJ, et al.: Numerous high-risk epithelial lesions in familial breast cancer. Eur J Cancer 42 (15): 2492-8, 2006. [PUBMED Abstract]
  268. Kauff ND, Brogi E, Scheuer L, et al.: Epithelial lesions in prophylactic mastectomy specimens from women with BRCA mutations. Cancer 97 (7): 1601-8, 2003. [PUBMED Abstract]
  269. Hall MJ, Reid JE, Wenstrup RJ: Prevalence of BRCA1 and BRCA2 mutations in women with breast carcinoma In Situ and referred for genetic testing. Cancer Prev Res (Phila) 3 (12): 1579-85, 2010. [PUBMED Abstract]
  270. Marcus JN, Watson P, Page DL, et al.: Hereditary breast cancer: pathobiology, prognosis, and BRCA1 and BRCA2 gene linkage. Cancer 77 (4): 697-709, 1996. [PUBMED Abstract]
  271. Marcus JN, Watson P, Page DL, et al.: BRCA2 hereditary breast cancer pathophenotype. Breast Cancer Res Treat 44 (3): 275-7, 1997. [PUBMED Abstract]
  272. Agnarsson BA, Jonasson JG, Björnsdottir IB, et al.: Inherited BRCA2 mutation associated with high grade breast cancer. Breast Cancer Res Treat 47 (2): 121-7, 1998. [PUBMED Abstract]
  273. Lakhani SR, Jacquemier J, Sloane JP, et al.: Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst 90 (15): 1138-45, 1998. [PUBMED Abstract]
  274. Lakhani SR, Manek S, Penault-Llorca F, et al.: Pathology of ovarian cancers in BRCA1 and BRCA2 carriers. Clin Cancer Res 10 (7): 2473-81, 2004. [PUBMED Abstract]
  275. Evans DG, Young K, Bulman M, et al.: Probability of BRCA1/2 mutation varies with ovarian histology: results from screening 442 ovarian cancer families. Clin Genet 73 (4): 338-45, 2008. [PUBMED Abstract]
  276. Tonin PN, Maugard CM, Perret C, et al.: A review of histopathological subtypes of ovarian cancer in BRCA-related French Canadian cancer families. Fam Cancer 6 (4): 491-7, 2007. [PUBMED Abstract]
  277. Bolton KL, Chenevix-Trench G, Goh C, et al.: Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA 307 (4): 382-90, 2012. [PUBMED Abstract]
  278. Liu J, Cristea MC, Frankel P, et al.: Clinical characteristics and outcomes of BRCA-associated ovarian cancer: genotype and survival. Cancer Genet 205 (1-2): 34-41, 2012 Jan-Feb. [PUBMED Abstract]
  279. Crum CP, Drapkin R, Kindelberger D, et al.: Lessons from BRCA: the tubal fimbria emerges as an origin for pelvic serous cancer. Clin Med Res 5 (1): 35-44, 2007. [PUBMED Abstract]
  280. Piek JM, van Diest PJ, Zweemer RP, et al.: Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. J Pathol 195 (4): 451-6, 2001. [PUBMED Abstract]
  281. Carcangiu ML, Radice P, Manoukian S, et al.: Atypical epithelial proliferation in fallopian tubes in prophylactic salpingo-oophorectomy specimens from BRCA1 and BRCA2 germline mutation carriers. Int J Gynecol Pathol 23 (1): 35-40, 2004. [PUBMED Abstract]
  282. Mehra K, Mehrad M, Ning G, et al.: STICS, SCOUTs and p53 signatures; a new language for pelvic serous carcinogenesis. Front Biosci (Elite Ed) 3: 625-34, 2011. [PUBMED Abstract]
  283. Powell CB, Chen LM, McLennan J, et al.: Risk-reducing salpingo-oophorectomy (RRSO) in BRCA mutation carriers: experience with a consecutive series of 111 patients using a standardized surgical-pathological protocol. Int J Gynecol Cancer 21 (5): 846-51, 2011. [PUBMED Abstract]
  284. Finch A, Shaw P, Rosen B, et al.: Clinical and pathologic findings of prophylactic salpingo-oophorectomies in 159 BRCA1 and BRCA2 carriers. Gynecol Oncol 100 (1): 58-64, 2006. [PUBMED Abstract]
  285. Medeiros F, Muto MG, Lee Y, et al.: The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am J Surg Pathol 30 (2): 230-6, 2006. [PUBMED Abstract]
  286. Prat J; FIGO Committee on Gynecologic Oncology: Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int J Gynaecol Obstet 124 (1): 1-5, 2014. [PUBMED Abstract]
  287. Schorge JO, Muto MG, Lee SJ, et al.: BRCA1-related papillary serous carcinoma of the peritoneum has a unique molecular pathogenesis. Cancer Res 60 (5): 1361-4, 2000. [PUBMED Abstract]
  288. Jazaeri AA, Yee CJ, Sotiriou C, et al.: Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J Natl Cancer Inst 94 (13): 990-1000, 2002. [PUBMED Abstract]
  289. Gourley C, Michie CO, Roxburgh P, et al.: Increased incidence of visceral metastases in scottish patients with BRCA1/2-defective ovarian cancer: an extension of the ovarian BRCAness phenotype. J Clin Oncol 28 (15): 2505-11, 2010. [PUBMED Abstract]
  290. Vineyard MA, Daniels MS, Urbauer DL, et al.: Is low-grade serous ovarian cancer part of the tumor spectrum of hereditary breast and ovarian cancer? Gynecol Oncol 120 (2): 229-32, 2011. [PUBMED Abstract]
  291. Vasen HF: Clinical description of the Lynch syndrome [hereditary nonpolyposis colorectal cancer (HNPCC)]. Fam Cancer 4 (3): 219-25, 2005. [PUBMED Abstract]
  292. Jascur T, Boland CR: Structure and function of the components of the human DNA mismatch repair system. Int J Cancer 119 (9): 2030-5, 2006. [PUBMED Abstract]
  293. Papadopoulos N, Nicolaides NC, Wei YF, et al.: Mutation of a mutL homolog in hereditary colon cancer. Science 263 (5153): 1625-9, 1994. [PUBMED Abstract]
  294. Peltomäki P, Vasen HF: Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 113 (4): 1146-58, 1997. [PUBMED Abstract]
  295. Akiyama Y, Sato H, Yamada T, et al.: Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res 57 (18): 3920-3, 1997. [PUBMED Abstract]
  296. Miyaki M, Konishi M, Tanaka K, et al.: Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 17 (3): 271-2, 1997. [PUBMED Abstract]
  297. Huang J, Kuismanen SA, Liu T, et al.: MSH6 and MSH3 are rarely involved in genetic predisposition to nonpolypotic colon cancer. Cancer Res 61 (4): 1619-23, 2001. [PUBMED Abstract]
  298. Nicolaides NC, Papadopoulos N, Liu B, et al.: Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371 (6492): 75-80, 1994. [PUBMED Abstract]
  299. Hendriks YM, Jagmohan-Changur S, van der Klift HM, et al.: Heterozygous mutations in PMS2 cause hereditary nonpolyposis colorectal carcinoma (Lynch syndrome). Gastroenterology 130 (2): 312-22, 2006. [PUBMED Abstract]
  300. Worthley DL, Walsh MD, Barker M, et al.: Familial mutations in PMS2 can cause autosomal dominant hereditary nonpolyposis colorectal cancer. Gastroenterology 128 (5): 1431-6, 2005. [PUBMED Abstract]
  301. Vasen HF, Mecklin JP, Khan PM, et al.: The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum 34 (5): 424-5, 1991. [PUBMED Abstract]
  302. Vasen HF, Watson P, Mecklin JP, et al.: New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116 (6): 1453-6, 1999. [PUBMED Abstract]
  303. Rodriguez-Bigas MA, Boland CR, Hamilton SR, et al.: A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst 89 (23): 1758-62, 1997. [PUBMED Abstract]
  304. Umar A, Boland CR, Terdiman JP, et al.: Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96 (4): 261-8, 2004. [PUBMED Abstract]
  305. Watson P, Lynch HT: Cancer risk in mismatch repair gene mutation carriers. Fam Cancer 1 (1): 57-60, 2001. [PUBMED Abstract]
  306. Vasen HF, Wijnen JT, Menko FH, et al.: Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology 110 (4): 1020-7, 1996. [PUBMED Abstract]
  307. Aarnio M, Mecklin JP, Aaltonen LA, et al.: Life-time risk of different cancers in hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Int J Cancer 64 (6): 430-3, 1995. [PUBMED Abstract]
  308. Watson P, Lynch HT: Extracolonic cancer in hereditary nonpolyposis colorectal cancer. Cancer 71 (3): 677-85, 1993. [PUBMED Abstract]
  309. Brown GJ, St John DJ, Macrae FA, et al.: Cancer risk in young women at risk of hereditary nonpolyposis colorectal cancer: implications for gynecologic surveillance. Gynecol Oncol 80 (3): 346-9, 2001. [PUBMED Abstract]
  310. Aarnio M, Sankila R, Pukkala E, et al.: Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 81 (2): 214-8, 1999. [PUBMED Abstract]
  311. Grindedal EM, Renkonen-Sinisalo L, Vasen H, et al.: Survival in women with MMR mutations and ovarian cancer: a multicentre study in Lynch syndrome kindreds. J Med Genet 47 (2): 99-102, 2010. [PUBMED Abstract]
  312. Pal T, Permuth-Wey J, Sellers TA: A review of the clinical relevance of mismatch-repair deficiency in ovarian cancer. Cancer 113 (4): 733-42, 2008. [PUBMED Abstract]
  313. Jensen UB, Sunde L, Timshel S, et al.: Mismatch repair defective breast cancer in the hereditary nonpolyposis colorectal cancer syndrome. Breast Cancer Res Treat 120 (3): 777-82, 2010. [PUBMED Abstract]
  314. Shanley S, Fung C, Milliken J, et al.: Breast cancer immunohistochemistry can be useful in triage of some HNPCC families. Fam Cancer 8 (3): 251-5, 2009. [PUBMED Abstract]
  315. Walsh MD, Buchanan DD, Cummings MC, et al.: Lynch syndrome-associated breast cancers: clinicopathologic characteristics of a case series from the colon cancer family registry. Clin Cancer Res 16 (7): 2214-24, 2010. [PUBMED Abstract]
  316. Buerki N, Gautier L, Kovac M, et al.: Evidence for breast cancer as an integral part of Lynch syndrome. Genes Chromosomes Cancer 51 (1): 83-91, 2012. [PUBMED Abstract]
  317. Win AK, Young JP, Lindor NM, et al.: Colorectal and other cancer risks for carriers and noncarriers from families with a DNA mismatch repair gene mutation: a prospective cohort study. J Clin Oncol 30 (9): 958-64, 2012. [PUBMED Abstract]
  318. Win AK, Lindor NM, Young JP, et al.: Risks of primary extracolonic cancers following colorectal cancer in lynch syndrome. J Natl Cancer Inst 104 (18): 1363-72, 2012. [PUBMED Abstract]
  319. Garber JE, Goldstein AM, Kantor AF, et al.: Follow-up study of twenty-four families with Li-Fraumeni syndrome. Cancer Res 51 (22): 6094-7, 1991. [PUBMED Abstract]
  320. Bottomley RH, Condit PT: Cancer families. Cancer Bull 20: 22-24, 1968.
  321. Malkin D: The Li-Fraumeni syndrome. Cancer: Principles and Practice of Oncology Updates 7(7): 1-14, 1993.
  322. Olivier M, Goldgar DE, Sodha N, et al.: Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res 63 (20): 6643-50, 2003. [PUBMED Abstract]
  323. Gonzalez KD, Noltner KA, Buzin CH, et al.: Beyond Li Fraumeni Syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 27 (8): 1250-6, 2009. [PUBMED Abstract]
  324. Ginsburg OM, Akbari MR, Aziz Z, et al.: The prevalence of germ-line TP53 mutations in women diagnosed with breast cancer before age 30. Fam Cancer 8 (4): 563-7, 2009. [PUBMED Abstract]
  325. Mouchawar J, Korch C, Byers T, et al.: Population-based estimate of the contribution of TP53 mutations to subgroups of early-onset breast cancer: Australian Breast Cancer Family Study. Cancer Res 70 (12): 4795-800, 2010. [PUBMED Abstract]
  326. Harris CC, Hollstein M: Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 329 (18): 1318-27, 1993. [PUBMED Abstract]
  327. Sidransky D, Tokino T, Helzlsouer K, et al.: Inherited p53 gene mutations in breast cancer. Cancer Res 52 (10): 2984-6, 1992. [PUBMED Abstract]
  328. Wilson JR, Bateman AC, Hanson H, et al.: A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. J Med Genet 47 (11): 771-4, 2010. [PUBMED Abstract]
  329. Melhem-Bertrandt A, Bojadzieva J, Ready KJ, et al.: Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer 118 (4): 908-13, 2012. [PUBMED Abstract]
  330. Masciari S, Dillon DA, Rath M, et al.: Breast cancer phenotype in women with TP53 germline mutations: a Li-Fraumeni syndrome consortium effort. Breast Cancer Res Treat 133 (3): 1125-30, 2012. [PUBMED Abstract]
  331. Villani A, Tabori U, Schiffman J, et al.: Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol 12 (6): 559-67, 2011. [PUBMED Abstract]
  332. Masciari S, Van den Abbeele AD, Diller LR, et al.: F18-fluorodeoxyglucose-positron emission tomography/computed tomography screening in Li-Fraumeni syndrome. JAMA 299 (11): 1315-9, 2008. [PUBMED Abstract]
  333. Zhou XP, Waite KA, Pilarski R, et al.: Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am J Hum Genet 73 (2): 404-11, 2003. [PUBMED Abstract]
  334. Mester J, Eng C: When overgrowth bumps into cancer: the PTEN-opathies. Am J Med Genet C Semin Med Genet 163C (2): 114-21, 2013. [PUBMED Abstract]
  335. Eng C: PTEN: one gene, many syndromes. Hum Mutat 22 (3): 183-98, 2003. [PUBMED Abstract]
  336. Marsh DJ, Kum JB, Lunetta KL, et al.: PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet 8 (8): 1461-72, 1999. [PUBMED Abstract]
  337. Pilarski R, Eng C: Will the real Cowden syndrome please stand up (again)? Expanding mutational and clinical spectra of the PTEN hamartoma tumour syndrome. J Med Genet 41 (5): 323-6, 2004. [PUBMED Abstract]
  338. Eng C: PTEN Hamartoma Tumor Syndrome (PHTS). In: Pagon RA, Adam MP, Bird TD, et al., eds.: GeneReviews. Seattle, WA: University of Washington, 2013, pp. Available online. Last accessed August 28, 2014.
  339. Pilarski R, Burt R, Kohlman W, et al.: Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst 105 (21): 1607-16, 2013. [PUBMED Abstract]
  340. Tan MH, Mester JL, Ngeow J, et al.: Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res 18 (2): 400-7, 2012. [PUBMED Abstract]
  341. Bubien V, Bonnet F, Brouste V, et al.: High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet 50 (4): 255-63, 2013. [PUBMED Abstract]
  342. Myers MP, Tonks NK: PTEN: sometimes taking it off can be better than putting it on. Am J Hum Genet 61 (6): 1234-8, 1997. [PUBMED Abstract]
  343. Hobert JA, Eng C: PTEN hamartoma tumor syndrome: an overview. Genet Med 11 (10): 687-94, 2009. [PUBMED Abstract]
  344. Nieuwenhuis MH, Kets CM, Murphy-Ryan M, et al.: Cancer risk and genotype-phenotype correlations in PTEN hamartoma tumor syndrome. Fam Cancer 13 (1): 57-63, 2014. [PUBMED Abstract]
  345. Olopade OI, Weber BL: Breast cancer genetics: toward molecular characterization of individuals at increased risk for breast cancer: part I. Cancer: Principles and Practice of Oncology Updates 12(10): 1-12, 1998.
  346. Nelen MR, Padberg GW, Peeters EA, et al.: Localization of the gene for Cowden disease to chromosome 10q22-23. Nat Genet 13 (1): 114-6, 1996. [PUBMED Abstract]
  347. Lachlan KL, Lucassen AM, Bunyan D, et al.: Cowden syndrome and Bannayan Riley Ruvalcaba syndrome represent one condition with variable expression and age-related penetrance: results of a clinical study of PTEN mutation carriers. J Med Genet 44 (9): 579-85, 2007. [PUBMED Abstract]
  348. Benusiglio PR, Malka D, Rouleau E, et al.: CDH1 germline mutations and the hereditary diffuse gastric and lobular breast cancer syndrome: a multicentre study. J Med Genet 50 (7): 486-9, 2013. [PUBMED Abstract]
  349. Beeghly-Fadiel A, Lu W, Gao YT, et al.: E-cadherin polymorphisms and breast cancer susceptibility: a report from the Shanghai Breast Cancer Study. Breast Cancer Res Treat 121 (2): 445-52, 2010. [PUBMED Abstract]
  350. McVeigh TP, Choi JK, Miller NM, et al.: Lobular breast cancer in a CDH1 splice site mutation carrier: case report and review of the literature. Clin Breast Cancer 14 (2): e47-51, 2014. [PUBMED Abstract]
  351. Petridis C, Shinomiya I, Kohut K, et al.: Germline CDH1 mutations in bilateral lobular carcinoma in situ. Br J Cancer 110 (4): 1053-7, 2014. [PUBMED Abstract]
  352. Tipirisetti NR, Govatati S, Govatati S, et al.: Association of E-cadherin single-nucleotide polymorphisms with the increased risk of breast cancer: a study in South Indian women. Genet Test Mol Biomarkers 17 (6): 494-500, 2013. [PUBMED Abstract]
  353. Fitzgerald RC, Hardwick R, Huntsman D, et al.: Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J Med Genet 47 (7): 436-44, 2010. [PUBMED Abstract]
  354. Xie ZM, Li LS, Laquet C, et al.: Germline mutations of the E-cadherin gene in families with inherited invasive lobular breast carcinoma but no diffuse gastric cancer. Cancer 117 (14): 3112-7, 2011. [PUBMED Abstract]
  355. Peutz JL: Very remarkable case of familial polyposis of mucous membrane of intestinal tract and nasopharynx accompanied by peculiar pigmentations of skin and mucous membrane. Ned Tijdschr Geneeskd 10: 134-146, 1921.
  356. Jeghers H, McKusick VA, Katz KH: Generalized intestinal polyposis and melanin spots of the oral mucosa, lips and digits; a syndrome of diagnostic significance. N Engl J Med 241 (26): 1031-6, 1949. [PUBMED Abstract]
  357. Spigelman AD, Murday V, Phillips RK: Cancer and the Peutz-Jeghers syndrome. Gut 30 (11): 1588-90, 1989. [PUBMED Abstract]
  358. Aretz S, Stienen D, Uhlhaas S, et al.: High proportion of large genomic STK11 deletions in Peutz-Jeghers syndrome. Hum Mutat 26 (6): 513-9, 2005. [PUBMED Abstract]
  359. Hemminki A, Markie D, Tomlinson I, et al.: A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391 (6663): 184-7, 1998. [PUBMED Abstract]
  360. Jenne DE, Reimann H, Nezu J, et al.: Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18 (1): 38-43, 1998. [PUBMED Abstract]
  361. Boudeau J, Kieloch A, Alessi DR, et al.: Functional analysis of LKB1/STK11 mutants and two aberrant isoforms found in Peutz-Jeghers Syndrome patients. Hum Mutat 21 (2): 172, 2003. [PUBMED Abstract]
  362. Lim W, Hearle N, Shah B, et al.: Further observations on LKB1/STK11 status and cancer risk in Peutz-Jeghers syndrome. Br J Cancer 89 (2): 308-13, 2003. [PUBMED Abstract]
  363. Giardiello FM, Brensinger JD, Tersmette AC, et al.: Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119 (6): 1447-53, 2000. [PUBMED Abstract]
  364. Hearle N, Schumacher V, Menko FH, et al.: Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res 12 (10): 3209-15, 2006. [PUBMED Abstract]
  365. Lim W, Olschwang S, Keller JJ, et al.: Relative frequency and morphology of cancers in STK11 mutation carriers. Gastroenterology 126 (7): 1788-94, 2004. [PUBMED Abstract]
  366. van Lier MG, Wagner A, Mathus-Vliegen EM, et al.: High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol 105 (6): 1258-64; author reply 1265, 2010. [PUBMED Abstract]
  367. Srivatsa PJ, Keeney GL, Podratz KC: Disseminated cervical adenoma malignum and bilateral ovarian sex cord tumors with annular tubules associated with Peutz-Jeghers syndrome. Gynecol Oncol 53 (2): 256-64, 1994. [PUBMED Abstract]
  368. Scully RE: Sex cord tumor with annular tubules a distinctive ovarian tumor of the Peutz-Jeghers syndrome. Cancer 25 (5): 1107-21, 1970. [PUBMED Abstract]
  369. Westerman AM, Entius MM, de Baar E, et al.: Peutz-Jeghers syndrome: 78-year follow-up of the original family. Lancet 353 (9160): 1211-5, 1999. [PUBMED Abstract]
  370. Mehenni H, Resta N, Park JG, et al.: Cancer risks in LKB1 germline mutation carriers. Gut 55 (7): 984-90, 2006. [PUBMED Abstract]
  371. Gruber SB, Entius MM, Petersen GM, et al.: Pathogenesis of adenocarcinoma in Peutz-Jeghers syndrome. Cancer Res 58 (23): 5267-70, 1998. [PUBMED Abstract]
  372. Wang ZJ, Ellis I, Zauber P, et al.: Allelic imbalance at the LKB1 (STK11) locus in tumours from patients with Peutz-Jeghers' syndrome provides evidence for a hamartoma-(adenoma)-carcinoma sequence. J Pathol 188 (1): 9-13, 1999. [PUBMED Abstract]
  373. Miyoshi H, Nakau M, Ishikawa TO, et al.: Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res 62 (8): 2261-6, 2002. [PUBMED Abstract]
  374. Nakau M, Miyoshi H, Seldin MF, et al.: Hepatocellular carcinoma caused by loss of heterozygosity in Lkb1 gene knockout mice. Cancer Res 62 (16): 4549-53, 2002. [PUBMED Abstract]
  375. Takeda H, Miyoshi H, Kojima Y, et al.: Accelerated onsets of gastric hamartomas and hepatic adenomas/carcinomas in Lkb1+/-p53-/- compound mutant mice. Oncogene 25 (12): 1816-20, 2006. [PUBMED Abstract]
  376. Amos CI, Keitheri-Cheteri MB, Sabripour M, et al.: Genotype-phenotype correlations in Peutz-Jeghers syndrome. J Med Genet 41 (5): 327-33, 2004. [PUBMED Abstract]
  377. Westerman AM, Entius MM, Boor PP, et al.: Novel mutations in the LKB1/STK11 gene in Dutch Peutz-Jeghers families. Hum Mutat 13 (6): 476-81, 1999. [PUBMED Abstract]
  378. Schreibman IR, Baker M, Amos C, et al.: The hamartomatous polyposis syndromes: a clinical and molecular review. Am J Gastroenterol 100 (2): 476-90, 2005. [PUBMED Abstract]
  379. Gonzalez KD, Buzin CH, Noltner KA, et al.: High frequency of de novo mutations in Li-Fraumeni syndrome. J Med Genet 46 (10): 689-93, 2009. [PUBMED Abstract]
  380. Bendig I, Mohr N, Kramer F, et al.: Identification of novel TP53 mutations in familial and sporadic cancer cases of German and Swiss origin. Cancer Genet Cytogenet 154 (1): 22-6, 2004. [PUBMED Abstract]
  381. De Leeneer K, Coene I, Crombez B, et al.: Prevalence of BRCA1/2 mutations in sporadic breast/ovarian cancer patients and identification of a novel de novo BRCA1 mutation in a patient diagnosed with late onset breast and ovarian cancer: implications for genetic testing. Breast Cancer Res Treat 132 (1): 87-95, 2012. [PUBMED Abstract]
  382. Diez O, Gutiérrez-Enríquez S, Mediano C, et al.: A novel de novo BRCA2 mutation of paternal origin identified in a Spanish woman with early onset bilateral breast cancer. Breast Cancer Res Treat 121 (1): 221-5, 2010. [PUBMED Abstract]
  383. Garcia-Casado Z, Romero I, Fernandez-Serra A, et al.: A de novo complete BRCA1 gene deletion identified in a Spanish woman with early bilateral breast cancer. BMC Med Genet 12: 134, 2011. [PUBMED Abstract]
  384. Hansen TV, Bisgaard ML, Jønson L, et al.: Novel de novo BRCA2 mutation in a patient with a family history of breast cancer. BMC Med Genet 9: 58, 2008. [PUBMED Abstract]
  385. Kwong A, Ng EK, Tang EY, et al.: A novel de novo BRCA1 mutation in a Chinese woman with early onset breast cancer. Fam Cancer 10 (2): 233-7, 2011. [PUBMED Abstract]
  386. Marshall M, Solomon S, Lawrence Wickerham D: Case report: de novo BRCA2 gene mutation in a 35-year-old woman with breast cancer. Clin Genet 76 (5): 427-30, 2009. [PUBMED Abstract]
  387. Robson M, Scheuer L, Nafa K, et al.: Unique de novo mutation of BRCA2 in a woman with early onset breast cancer. J Med Genet 39 (2): 126-8, 2002. [PUBMED Abstract]
  388. Tesoriero A, Andersen C, Southey M, et al.: De novo BRCA1 mutation in a patient with breast cancer and an inherited BRCA2 mutation. Am J Hum Genet 65 (2): 567-9, 1999. [PUBMED Abstract]
  389. van der Luijt RB, van Zon PH, Jansen RP, et al.: De novo recurrent germline mutation of the BRCA2 gene in a patient with early onset breast cancer. J Med Genet 38 (2): 102-5, 2001. [PUBMED Abstract]
  390. Morak M, Laner A, Scholz M, et al.: Report on de-novo mutation in the MSH2 gene as a rare event in hereditary nonpolyposis colorectal cancer. Eur J Gastroenterol Hepatol 20 (11): 1101-5, 2008. [PUBMED Abstract]
  391. Plasilova M, Zhang J, Okhowat R, et al.: A de novo MLH1 germ line mutation in a 31-year-old colorectal cancer patient. Genes Chromosomes Cancer 45 (12): 1106-10, 2006. [PUBMED Abstract]
  392. Win AK, Jenkins MA, Buchanan DD, et al.: Determining the frequency of de novo germline mutations in DNA mismatch repair genes. J Med Genet 48 (8): 530-4, 2011. [PUBMED Abstract]
  393. Anderson KG: How well does paternity confidence match actual paternity? Evidence from worldwide nonpaternity rates. Curr Anthropol 47 (3): 513-20, 2006. Also available online. Last accessed October 16, 2013.
  394. Sasse G, Müller H, Chakraborty R, et al.: Estimating the frequency of nonpaternity in Switzerland. Hum Hered 44 (6): 337-43, 1994 Nov-Dec. [PUBMED Abstract]
  395. Voracek M, Haubner T, Fisher ML: Recent decline in nonpaternity rates: a cross-temporal meta-analysis. Psychol Rep 103 (3): 799-811, 2008. [PUBMED Abstract]
  • Updated: December 19, 2014