Questions About Cancer? 1-800-4-CANCER

Cervical Cancer Treatment (PDQ®)

Health Professional Version
Last Modified: 10/23/2014

Treatment Option Overview for Cervical Cancer

Chemoradiation Therapy
Surgery and Radiation Therapy

Patterns-of-care studies clearly demonstrate the negative prognostic effect of increasing tumor volume and spread pattern.[1] Treatment, therefore, may vary within each stage as the individual stages are currently defined by Féderation Internationale de Gynécologie et d’Obstétrique (FIGO).

Table 5. Standard Treatment Options for Cervical Cancer
Stage (FIGO Staging Criteria) Standard Treatment Options 
FIGO = Féderation Internationale de Gynécologie et d’Obstétrique.
In situ carcinoma of the cervix (this stage is not recognized by FIGO)Conization
Hysterectomy for postreproductive patients
Internal radiation therapy for medically inoperable patients
Stage IA cervical cancerConization
Total hysterectomy
Modified radical hysterectomy with lymphadenectomy
Radical trachelectomy
Intracavitary radiation therapy
Stages IB, IIA cervical cancerRadiation therapy with concomitant chemotherapy
Radical hysterectomy and bilateral pelvic lymphadenectomy with or without total pelvic radiation therapy plus chemotherapy
Radical trachelectomy
Neoadjuvant chemotherapy
Radiation therapy alone
Intensity Modulated Radiation Therapy (IMRT)
Stages IIB, III, and IVA cervical cancerRadiation therapy with concomitant chemotherapy
Interstitial brachytherapy
Neoadjuvant chemotherapy
Stage IVB cervical cancerPalliative radiation therapy
Palliative chemotherapy
Recurrent cervical cancerRadiation therapy and chemotherapy
Palliative chemotherapy
Pelvic exenteration

Chemoradiation Therapy

Five randomized, phase III trials (GOG-85, RTOG-9001, GOG-120, GOG-123, and SWOG-8797) have shown an overall survival advantage for cisplatin-based therapy given concurrently with radiation therapy,[2-6] while one trial examining this regimen demonstrated no benefit.[7] The patient populations in these studies included women with FIGO stages IB2 to IVA cervical cancer treated with primary radiation therapy and women with FIGO stages I to IIA disease who were found to have poor prognostic factors (metastatic disease in pelvic lymph nodes, parametrial disease, or positive surgical margins) at the time of primary surgery.

  • Although the positive trials vary in terms of the stage of disease, dose of radiation, and schedule of cisplatin and radiation, the trials demonstrate significant survival benefit for this combined approach. The risk of death from cervical cancer was decreased by 30% to 50% with the use of concurrent chemoradiation therapy.

  • Based on these results, strong consideration should be given to the incorporation of concurrent cisplatin-based chemotherapy with radiation therapy in women who require radiation therapy for treatment of cervical cancer.[2-6]

Other studies have validated these results.[8-10]

Surgery and Radiation Therapy

Surgery and radiation therapy are equally effective for early stage, small-volume disease.[11] Younger patients may benefit from surgery to preserve the ovaries and avoid vaginal atrophy and stenosis.

Therapy for patients with cancer of the cervical stump is effective and yields results that are comparable with those seen in patients with an intact uterus.[12]

References
  1. Lanciano RM, Won M, Hanks GE: A reappraisal of the International Federation of Gynecology and Obstetrics staging system for cervical cancer. A study of patterns of care. Cancer 69 (2): 482-7, 1992.  [PUBMED Abstract]

  2. Whitney CW, Sause W, Bundy BN, et al.: Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes: a Gynecologic Oncology Group and Southwest Oncology Group study. J Clin Oncol 17 (5): 1339-48, 1999.  [PUBMED Abstract]

  3. Morris M, Eifel PJ, Lu J, et al.: Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med 340 (15): 1137-43, 1999.  [PUBMED Abstract]

  4. Rose PG, Bundy BN, Watkins EB, et al.: Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med 340 (15): 1144-53, 1999.  [PUBMED Abstract]

  5. Keys HM, Bundy BN, Stehman FB, et al.: Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. N Engl J Med 340 (15): 1154-61, 1999.  [PUBMED Abstract]

  6. Peters WA 3rd, Liu PY, Barrett RJ 2nd, et al.: Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol 18 (8): 1606-13, 2000.  [PUBMED Abstract]

  7. Pearcey R, Brundage M, Drouin P, et al.: Phase III trial comparing radical radiotherapy with and without cisplatin chemotherapy in patients with advanced squamous cell cancer of the cervix. J Clin Oncol 20 (4): 966-72, 2002.  [PUBMED Abstract]

  8. Thomas GM: Improved treatment for cervical cancer--concurrent chemotherapy and radiotherapy. N Engl J Med 340 (15): 1198-200, 1999.  [PUBMED Abstract]

  9. Rose PG, Bundy BN: Chemoradiation for locally advanced cervical cancer: does it help? J Clin Oncol 20 (4): 891-3, 2002.  [PUBMED Abstract]

  10. Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration: Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. J Clin Oncol 26 (35): 5802-12, 2008.  [PUBMED Abstract]

  11. Eifel PJ, Burke TW, Delclos L, et al.: Early stage I adenocarcinoma of the uterine cervix: treatment results in patients with tumors less than or equal to 4 cm in diameter. Gynecol Oncol 41 (3): 199-205, 1991.  [PUBMED Abstract]

  12. Kovalic JJ, Grigsby PW, Perez CA, et al.: Cervical stump carcinoma. Int J Radiat Oncol Biol Phys 20 (5): 933-8, 1991.  [PUBMED Abstract]