Skip to main content
An official website of the United States government
Español
Email

Endometrial Cancer Screening (PDQ®)–Health Professional Version

Summary of Evidence

Note: The Summary of Evidence section summarizes the published evidence on this topic. The rest of the summary describes the evidence in more detail.

Other PDQ summaries on Endometrial Cancer Prevention; Endometrial Cancer Treatment; and Uterine Sarcoma Treatment are also available.

Transvaginal Ultrasound: Benefits

There is no evidence that screening by ultrasonography (e.g., endovaginal ultrasound or transvaginal ultrasound) reduces mortality from endometrial cancer. Most cases of endometrial cancer (85%) are diagnosed at low stage because of symptoms, and survival rates are high.

Transvaginal Ultrasound: Harms

Based on solid evidence, screening asymptomatic women will result in unnecessary additional biopsies because of false-positive test results. Risks associated with false-positive tests include anxiety and complications from biopsies.

  • Study Design: Evidence obtained from cohort studies.
  • Internal Validity: Fair.
  • Consistency: One study for endometrial biopsy and one study for hysteroscopy.
  • Magnitude of Effects on Health Outcomes: Small negative magnitude.
  • External Validity: Fair.

Endometrial Sampling (Biopsy): Benefits

There is inadequate evidence that screening by endometrial sampling (i.e., biopsy) reduces mortality from endometrial cancer. Most cases of endometrial cancer (85%) are diagnosed at low stage because of symptoms, and survival rates are high.

Endometrial Sampling (Biopsy): Harms

Based on solid evidence, endometrial biopsy may result in discomfort, bleeding, infection, and rarely, uterine perforation.

  • Study Design: Evidence obtained from cohort studies.
  • Internal Validity: Fair.
  • Consistency: One study for endometrial biopsy and one study for hysteroscopy.
  • Magnitude of Effects on Health Outcomes: Small negative magnitude.
  • External Validity: Fair.

Significance

Epidemiology of Endometrial Cancer

Incidence and mortality

Endometrial cancer is the most common invasive gynecologic cancer in U.S. women, with an estimated 67,880 new cases expected to occur in 2024 and an estimated 13,250 women expected to die of the disease.[1] Endometrial cancer is primarily a disease of postmenopausal women, with a mean age at diagnosis of 60 years.[2] Age-adjusted endometrial cancer incidence in the United States increased from the mid-1960s to 1975 and then declined from 1975 to 1980, with a transient increase in incidence occurring from 1973 to 1978, which was associated with estrogen therapy, also known as hormone therapy.[3] There was no associated increase in mortality. Continuing with more recent trends, incidence rates increased by about 1% per year in White women and by 2% to 3% per year in women of all other racial and ethnic groups. Since the mid-2000s, death rates for endometrial cancer increased by 1.7% per year.[1] Most cases of endometrial cancer are diagnosed because of symptoms, which are nonetheless early stage and have high survival rates.

Risk Factors

Estrogen therapy unopposed by progesterone therapy is a cause of endometrial cancer in women with an intact uterus. However, women taking combination estrogen-progesterone therapy (hormone therapy) exhibit similar risk to women who do not take postmenopausal hormone therapy.[4-8] Tamoxifen therapy is also a cause of endometrial cancer. Results from the National Surgical Adjuvant Breast and Bowel Project P-1 trial, report a doubling of the risk of endometrial cancer associated with an annual rate of 2.30 per 1,000 for women taking tamoxifen compared with 0.91 per 1,000 for women receiving placebo; the increased risk was seen primarily in postmenopausal women.[9]

In addition to the increased risk of developing endometrial cancer that is observed in women who use unopposed estrogen therapy or tamoxifen, a number of additional risk factors have been identified, and most appear to be related to estrogenic effects. Among these factors are obesity, a high-fat diet, and reproductive factors such as nulliparity, polycystic ovary syndrome, early menarche, and late menopause. Hereditary nonpolyposis colorectal cancer (HNPCC) syndrome is associated with a markedly increased risk of endometrial cancer compared with women in the general population. Among women who are HNPCC carriers, the estimated cumulative incidence of endometrial cancer ranges from 20% to 60% by age 70 years (for more information, see Genetics of Colorectal Cancer).[10-12] This risk appears to differ slightly based on the germline mutation; for MLH1 carriers the lifetime risk at age 70 years is 25% while MSH2 mutation carriers have a 35% to 40% lifetime risk of endometrial cancer by age 70 years. The mean age of diagnosis for MLH1 or MSH2 carriers is 47 years compared with 60 years for noninherited forms of endometrial cancer.[13] The prognosis and survival are similar between HNPCC-related and noninherited forms of endometrial cancer.[14]

Major differences exist between Black and White women in stages of endometrial cancer at detection and at subsequent survival. Although the incidence of endometrial cancer is lower among Black women, mortality is higher. The National Cancer Institute initiated a Black/White Cancer Survival Study [15] and concluded that higher-grade and more aggressive histologies appear to be related to excess risk of advanced-stage disease in Black women. It is difficult to disentangle the effects that biology and socioeconomic status may have on the lower survival rates of African American women with endometrial cancer. Evidence suggests that lower income is associated with advanced-stage disease, lower probability of undergoing a hysterectomy, and lower survival rates.[16] Others, however, assert that there is no Black/White racial difference in the interval from patient-reported symptoms to initial medical consultation, making it unlikely that patient delay after onset of symptoms could explain much of the excess of advanced-stage disease found in Black women.[17] Further research is necessary to understand why Black women tend to be diagnosed with more aggressive disease and have a higher probability of dying than White women, despite their lower incidence of endometrial cancer.

References
  1. American Cancer Society: Cancer Facts and Figures 2024. American Cancer Society, 2024. Available online. Last accessed January 17, 2024.
  2. American Cancer Society: Detailed Guide: Endometrial Cancer: What are the Risk Factors for Endometrial Cancer? Atlanta, Ga: American Cancer Society, 2005. Available online. Last accessed December 18, 2023.
  3. Jick H, Walker AM, Rothman KJ: The epidemic of endometrial cancer: a commentary. Am J Public Health 70 (3): 264-7, 1980. [PUBMED Abstract]
  4. Pike MC, Peters RK, Cozen W, et al.: Estrogen-progestin replacement therapy and endometrial cancer. J Natl Cancer Inst 89 (15): 1110-6, 1997. [PUBMED Abstract]
  5. Persson I, Weiderpass E, Bergkvist L, et al.: Risks of breast and endometrial cancer after estrogen and estrogen-progestin replacement. Cancer Causes Control 10 (4): 253-60, 1999. [PUBMED Abstract]
  6. Heiss G, Wallace R, Anderson GL, et al.: Health risks and benefits 3 years after stopping randomized treatment with estrogen and progestin. JAMA 299 (9): 1036-45, 2008. [PUBMED Abstract]
  7. Doherty JA, Cushing-Haugen KL, Saltzman BS, et al.: Long-term use of postmenopausal estrogen and progestin hormone therapies and the risk of endometrial cancer. Am J Obstet Gynecol 197 (2): 139.e1-7, 2007. [PUBMED Abstract]
  8. Barakat RR, Bundy BN, Spirtos NM, et al.: Randomized double-blind trial of estrogen replacement therapy versus placebo in stage I or II endometrial cancer: a Gynecologic Oncology Group Study. J Clin Oncol 24 (4): 587-92, 2006. [PUBMED Abstract]
  9. Cuzick J, Forbes JF, Sestak I, et al.: Long-term results of tamoxifen prophylaxis for breast cancer--96-month follow-up of the randomized IBIS-I trial. J Natl Cancer Inst 99 (4): 272-82, 2007. [PUBMED Abstract]
  10. Watson P, Vasen HF, Mecklin JP, et al.: The risk of endometrial cancer in hereditary nonpolyposis colorectal cancer. Am J Med 96 (6): 516-20, 1994. [PUBMED Abstract]
  11. Aarnio M, Mecklin JP, Aaltonen LA, et al.: Life-time risk of different cancers in hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Int J Cancer 64 (6): 430-3, 1995. [PUBMED Abstract]
  12. Aarnio M, Sankila R, Pukkala E, et al.: Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 81 (2): 214-8, 1999. [PUBMED Abstract]
  13. Berends MJ, Wu Y, Sijmons RH, et al.: Toward new strategies to select young endometrial cancer patients for mismatch repair gene mutation analysis. J Clin Oncol 21 (23): 4364-70, 2003. [PUBMED Abstract]
  14. Boks DE, Trujillo AP, Voogd AC, et al.: Survival analysis of endometrial carcinoma associated with hereditary nonpolyposis colorectal cancer. Int J Cancer 102 (2): 198-200, 2002. [PUBMED Abstract]
  15. Barrett RJ, Harlan LC, Wesley MN, et al.: Endometrial cancer: stage at diagnosis and associated factors in black and white patients. Am J Obstet Gynecol 173 (2): 414-22; discussion 422-3, 1995. [PUBMED Abstract]
  16. Madison T, Schottenfeld D, James SA, et al.: Endometrial cancer: socioeconomic status and racial/ethnic differences in stage at diagnosis, treatment, and survival. Am J Public Health 94 (12): 2104-11, 2004. [PUBMED Abstract]
  17. Coates RJ, Click LA, Harlan LC, et al.: Differences between black and white patients with cancer of the uterine corpus in interval from symptom recognition to initial medical consultation (United States). Cancer Causes Control 7 (3): 328-36, 1996. [PUBMED Abstract]

Evidence of Benefit

Measuring endometrial thickness (ET) with transvaginal ultrasound (TVU) and endometrial sampling with cytological examination have been proposed as possible screening modalities for endometrial cancer. The Papanicolaou (Pap) test, used successfully for screening for cervical cancer, is too insensitive to be used as a screening technique for the detection of endometrial cancer,[1] although occasionally the Pap test may fortuitously identify endometrial abnormalities, such as endometrial cancer.

Routine screening of asymptomatic women for endometrial cancer has not been evaluated for its impact on endometrial cancer mortality.[2,3] Although high-risk groups can be identified, the benefit of screening in reducing endometrial cancer mortality in these high-risk groups has not been evaluated. Using the same cutoffs to define an abnormal ET in asymptomatic women [4] as used in symptomatic women [5] would result in large numbers of false-positive test results and larger numbers of unnecessary referrals for cytological evaluations. Published recommendations for screening certain groups of women at high risk of endometrial carcinoma are based on opinion regarding presumptive benefit.[6]

Modalities of Endometrial Cancer Screening

Ultrasonography in women with vaginal bleeding

TVU is used as a diagnostic tool to evaluate symptomatic women with vaginal bleeding. Among women with postmenopausal uterine bleeding and cancer, 96% will have an abnormal ET (>6 mm). The specificity varies by whether women used hormone therapy. Among nonusers, the specificity was 92%.[5] Much less work has been done to evaluate the accuracy of TVU among asymptomatic women. If the same ET cutoff is used among asymptomatic women, the false positives will be extremely high, resulting in a very low positive predictive value.[4] No studies have evaluated the efficacy of screening with TVU in reducing mortality from endometrial cancer.

A group of researchers used dilation and curettage (D&C) as a gold standard, to evaluate TVU measurement of ET as a predictor of endometrial cancer in women reporting postmenopausal bleeding (PMB) (estrogen-progestin therapy [hormone therapy] and nonhormone therapy users). Of the 339 participants, 39 (11.5%) were diagnosed with endometrial cancer (four had an ET of 5–7 mm and 35 had an ET >8 mm) based on histopathology from curettage. No cancers were detected in women with an ET of less than 4 mm. Using a cutoff point of 4 mm, TVU has 100% sensitivity and 60% specificity.[7] In this population, 46% (156) of the women had an ET greater than 4 mm.

Ultrasonography in women without vaginal bleeding

A comparison of TVU and endometrial aspiration was conducted among asymptomatic postmenopausal women potentially eligible for an osteoporosis prevention trial [8] as part of determination of eligibility for randomization. TVU was performed on 1,926 women. Of these, 93 women had ET greater than 6 mm. Among the 93 women with abnormal ET, 42 had endometrial aspiration with one finding of abnormal pathology (defined as adenocarcinoma or atypical hyperplasia). Of the 1,833 women with ET measuring 6 mm or less, 1,750 women had endometrial aspiration and five of these women had an abnormal pathological biopsy. Among this population of asymptomatic postmenopausal women, the estimated sensitivity for TVU with a threshold value of 6 mm was 17% and 33% for a threshold value of 5 mm.

One study assessed the usefulness of TVU among a cohort of postmenopausal, asymptomatic women receiving hormone therapy. Utilizing the Postmenopausal Estrogen and Progestin Interventions Trial participants who had undergone both TVU and endometrial biopsy, sensitivity, specificity, positive predictive value, and negative predictive value were determined for women who received placebo, estrogen alone, and estrogen-progestin therapy. At a threshold value of 5 mm for ET, TVU had 90% sensitivity and 48% specificity. Using this threshold, more than half the women would receive a biopsy while only 4% of them had serious disease.[9]

Another study obtained endometrial biopsy specimens from 801 asymptomatic perimenopausal and postmenopausal women prior to enrollment in a hormone therapy study. Of the specimens, 75% of the samples contained sufficient tissue for diagnosis. Among these women, one case of endometrial cancer was diagnosed, illustrating the low yield of screening among asymptomatic women and the difficulty with endometrial cavity access.[10]

Although TVU can be used to evaluate asymptomatic and occult endometrial pathology, the technique has not been evaluated as a screening method for reducing mortality in asymptomatic women.

Ultrasonography in women using tamoxifen

Tamoxifen is widely used as part of adjuvant therapy for breast cancer and as chemoprevention for women at increased risk of breast cancer. In addition to the protective effects for breast cancer, the biological and endocrine effects of tamoxifen increase patients’ risk of developing endometrial pathology, including endometrial polyps, endometrial hyperplasia, and endometrial carcinoma.

There is interest in trying to reduce the morbidity from endometrial cancer through early detection, and there has been interest in using endovaginal ultrasound as a method to screen women to detect endometrial cancer.

In a prospective, observational study of 304 women using tamoxifen over 6 years, women underwent annual endovaginal ultrasound screening; women with abnormal ultrasound findings and women who were symptomatic with bleeding all underwent endometrial biopsy. Thirty-two percent of the ultrasound examinations had associated significant uterine abnormalities identified that required further medical or surgical investigation and treatment. However, most abnormalities (80%) represented benign polyps for which no treatment was needed. Six cases of primary endometrial cancer were detected, and all cases presented with irregular bleeding. The sensitivity of ultrasound was only 63.3%, with a specificity of 60.4%, and had a low positive predictive value for cancer of only 1%.[11]

Other reports have noted similar results. Routine ultrasound surveillance in asymptomatic women using tamoxifen is not useful because of its low specificity and low positive predictive value. Evaluation of the endometrium in women taking tamoxifen should be limited to women symptomatic with vaginal bleeding.

Sonohysterography

Sonohysterography (hydrosonography) is a diagnostic test used to help guide biopsies in asymptomatic women that is able to separate space occupied by endometrial lesions from an abnormal endometrial-myometrial junction. There is no evidence that routine screening sonohysterography will confer clinical benefit.

Endometrial sampling in women with uterine bleeding

In the setting of abnormal uterine bleeding, endometrial sampling has gained favor largely as an alternative to more invasive procedures such as fractional D&C. Several methods of biopsy exist (e.g., Pipelle, Tao Brush, and Uterine Explora Curette) to identify endometrial pathology. Although endometrial sampling has largely replaced D&C as the first choice in the evaluation of women with bleeding, issues of access to the endometrial cavity and sampling error limit the clinical significance of a negative result. In the Arimidex, Tamoxifen, Alone or in Combination trial, 36% of biopsies had insufficient tissue for diagnosis. A meta-analysis of PMB reported that 91% (95% confidence interval [CI], 87%–93%) of women with endometrial cancer reported PMB. However, among women with PMB, only 9% (95% CI, 8%–11%) were diagnosed with endometrial cancer. This report is limited by a lack of histology-specific estimates.[12,13]

No studies have evaluated the use of endometrial sampling as routine screening in reducing endometrial cancer mortality.

Hysteroscopy

Hysteroscopy is used in the office setting to directly visualize the uterine cavity. A group of researchers noted that hysteroscopy is not as useful in detecting endometrial cancer as biopsy or D&C.[14] It has not been evaluated as a screening tool.[15]

References
  1. Burk JR, Lehman HF, Wolf FS: Inadequacy of papanicolaou smears in the detection of endometrial cancer. N Engl J Med 291 (4): 191-2, 1974. [PUBMED Abstract]
  2. Pritchard KI: Screening for endometrial cancer: is it effective? Ann Intern Med 110 (3): 177-9, 1989. [PUBMED Abstract]
  3. Eddy D: ACS report on the cancer-related health checkup. CA Cancer J Clin 30 (4): 193-240, 1980 Jul-Aug. [PUBMED Abstract]
  4. Smith-Bindman R, Weiss E, Feldstein V: How thick is too thick? When endometrial thickness should prompt biopsy in postmenopausal women without vaginal bleeding. Ultrasound Obstet Gynecol 24 (5): 558-65, 2004. [PUBMED Abstract]
  5. Smith-Bindman R, Kerlikowske K, Feldstein VA, et al.: Endovaginal ultrasound to exclude endometrial cancer and other endometrial abnormalities. JAMA 280 (17): 1510-7, 1998. [PUBMED Abstract]
  6. Burke W, Petersen G, Lynch P, et al.: Recommendations for follow-up care of individuals with an inherited predisposition to cancer. I. Hereditary nonpolyposis colon cancer. Cancer Genetics Studies Consortium. JAMA 277 (11): 915-9, 1997. [PUBMED Abstract]
  7. Gull B, Karlsson B, Milsom I, et al.: Can ultrasound replace dilation and curettage? A longitudinal evaluation of postmenopausal bleeding and transvaginal sonographic measurement of the endometrium as predictors of endometrial cancer. Am J Obstet Gynecol 188 (2): 401-8, 2003. [PUBMED Abstract]
  8. Fleischer AC, Wheeler JE, Lindsay I, et al.: An assessment of the value of ultrasonographic screening for endometrial disease in postmenopausal women without symptoms. Am J Obstet Gynecol 184 (2): 70-5, 2001. [PUBMED Abstract]
  9. Langer RD, Pierce JJ, O'Hanlan KA, et al.: Transvaginal ultrasonography compared with endometrial biopsy for the detection of endometrial disease. Postmenopausal Estrogen/Progestin Interventions Trial. N Engl J Med 337 (25): 1792-8, 1997. [PUBMED Abstract]
  10. Archer DF, McIntyre-Seltman K, Wilborn WW, et al.: Endometrial morphology in asymptomatic postmenopausal women. Am J Obstet Gynecol 165 (2): 317-20; discussion 320-2, 1991. [PUBMED Abstract]
  11. Fung MF, Reid A, Faught W, et al.: Prospective longitudinal study of ultrasound screening for endometrial abnormalities in women with breast cancer receiving tamoxifen. Gynecol Oncol 91 (1): 154-9, 2003. [PUBMED Abstract]
  12. Clarke MA, Long BJ, Del Mar Morillo A, et al.: Association of Endometrial Cancer Risk With Postmenopausal Bleeding in Women: A Systematic Review and Meta-analysis. JAMA Intern Med 178 (9): 1210-1222, 2018. [PUBMED Abstract]
  13. Duffy S, Jackson TL, Lansdown M, et al.: The ATAC adjuvant breast cancer trial in postmenopausal women: baseline endometrial subprotocol data. BJOG 110 (12): 1099-106, 2003. [PUBMED Abstract]
  14. Bradley WH, Boente MP, Brooker D, et al.: Hysteroscopy and cytology in endometrial cancer. Obstet Gynecol 104 (5 Pt 1): 1030-3, 2004. [PUBMED Abstract]
  15. Gumus II, Keskin EA, Kiliç E, et al.: Diagnostic value of hysteroscopy and hysterosonography in endometrial abnormalities in asymptomatic postmenopausal women. Arch Gynecol Obstet 278 (3): 241-4, 2008. [PUBMED Abstract]

Special Populations

Hormone Therapy

There is no evidence to suggest that screening women prior to or during estrogen-progestin therapy, also known as hormone therapy, would decrease endometrial cancer mortality.[1,2] Thus, women on hormone therapy should have a prompt diagnostic work-up for abnormal bleeding. Although women using certain hormone regimens have an increased risk of endometrial cancer, most women who develop cancer will have vaginal bleeding. There is no evidence that screening these women would decrease mortality from endometrial cancer.

Hereditary Nonpolyposis Colorectal Cancer

The lifetime risk of endometrial cancer for women with hereditary nonpolyposis colorectal cancer (HNPCC) and for women who are at high risk for HNPCC is as high as 60%. These cases are often diagnosed in the fifth decade, 10 to 20 years earlier than sporadic cases.[3-7] Based on limited evidence, it appears that 5-year survival among women with HNPCC diagnosed with endometrial cancer is similar to that of nonhereditary cases in the general population.[8] Because the risk of endometrial cancer is so high among these women, international guidelines suggest gynecologic surveillance including annual transvaginal ultrasound with endometrial biopsy for women aged 25 to 35 years.[9,10] The most recent American Cancer Society Cancer Detection Guidelines (updated January 2005) recommend annual screening with endometrial biopsy beginning at age 35 years.[11]

Women Treated With Tamoxifen

The risk of endometrial cancer is increased in women who are treated with tamoxifen and is even greater in the subset of women who have a history of prior estrogen therapy.[12] Beyond a routine gynecologic examination eliciting any history of abnormal bleeding, it has been recommended that screening studies and procedures for detecting endometrial pathology in women taking tamoxifen should be left to the discretion of the individual gynecologist.[13] Commonly, there are endometrial abnormalities in women taking tamoxifen, especially in false-positive endovaginal ultrasound screening tests. More importantly, any abnormal uterine bleeding should be completely evaluated.

Endometrial cancers that occur in tamoxifen-treated women are very similar to those cancers occurring in the general population, with respect to stage, grade, and histology.[14-16] Prognosis is good and not affected by early detection.[17]

There have been no published studies evaluating the effect of endometrial cancer-screening modalities on mortality among women taking tamoxifen for breast cancer treatment or prevention.

References
  1. ACOG committee opinion. Routine cancer screening. Number 185, September 1997 (replaces no. 128, October 1993). Committee on Gynecologic Practice. American College of Obstetricians and Gynecologists. Int J Gynaecol Obstet 59 (2): 157-61, 1997. [PUBMED Abstract]
  2. Korhonen MO, Symons JP, Hyde BM, et al.: Histologic classification and pathologic findings for endometrial biopsy specimens obtained from 2964 perimenopausal and postmenopausal women undergoing screening for continuous hormones as replacement therapy (CHART 2 Study). Am J Obstet Gynecol 176 (2): 377-80, 1997. [PUBMED Abstract]
  3. Watson P, Vasen HF, Mecklin JP, et al.: The risk of endometrial cancer in hereditary nonpolyposis colorectal cancer. Am J Med 96 (6): 516-20, 1994. [PUBMED Abstract]
  4. Aarnio M, Sankila R, Pukkala E, et al.: Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 81 (2): 214-8, 1999. [PUBMED Abstract]
  5. Vasen HF, Wijnen JT, Menko FH, et al.: Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology 110 (4): 1020-7, 1996. [PUBMED Abstract]
  6. Dunlop MG, Farrington SM, Carothers AD, et al.: Cancer risk associated with germline DNA mismatch repair gene mutations. Hum Mol Genet 6 (1): 105-10, 1997. [PUBMED Abstract]
  7. Lancaster JM, Powell CB, Kauff ND, et al.: Society of Gynecologic Oncologists Education Committee statement on risk assessment for inherited gynecologic cancer predispositions. Gynecol Oncol 107 (2): 159-62, 2007. [PUBMED Abstract]
  8. Boks DE, Trujillo AP, Voogd AC, et al.: Survival analysis of endometrial carcinoma associated with hereditary nonpolyposis colorectal cancer. Int J Cancer 102 (2): 198-200, 2002. [PUBMED Abstract]
  9. Burke W, Petersen G, Lynch P, et al.: Recommendations for follow-up care of individuals with an inherited predisposition to cancer. I. Hereditary nonpolyposis colon cancer. Cancer Genetics Studies Consortium. JAMA 277 (11): 915-9, 1997. [PUBMED Abstract]
  10. Vasen HF, Mecklin JP, Khan PM, et al.: The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum 34 (5): 424-5, 1991. [PUBMED Abstract]
  11. Smith RA, Cokkinides V, Eyre HJ: American Cancer Society Guidelines for the Early Detection of Cancer, 2005. CA Cancer J Clin 55 (1): 31-44; quiz 55-6, 2005 Jan-Feb. [PUBMED Abstract]
  12. Barakat RR: Tamoxifen and endometrial neoplasia. Clin Obstet Gynecol 39 (3): 629-40, 1996. [PUBMED Abstract]
  13. ACOG committee opinion. Tamoxifen and endometrial cancer. Number 169, February 1996. Committee on Gynecologic Practice. American College of Obstetricians and Gynecologists. Int J Gynaecol Obstet 53 (2): 197-9, 1996. [PUBMED Abstract]
  14. Fisher B, Costantino JP, Wickerham DL, et al.: Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90 (18): 1371-88, 1998. [PUBMED Abstract]
  15. Barakat RR, Wong G, Curtin JP, et al.: Tamoxifen use in breast cancer patients who subsequently develop corpus cancer is not associated with a higher incidence of adverse histologic features. Gynecol Oncol 55 (2): 164-8, 1994. [PUBMED Abstract]
  16. Fornander T, Hellström AC, Moberger B: Descriptive clinicopathologic study of 17 patients with endometrial cancer during or after adjuvant tamoxifen in early breast cancer. J Natl Cancer Inst 85 (22): 1850-5, 1993. [PUBMED Abstract]
  17. Barakat RR, Gilewski TA, Almadrones L, et al.: Effect of adjuvant tamoxifen on the endometrium in women with breast cancer: a prospective study using office endometrial biopsy. J Clin Oncol 18 (20): 3459-63, 2000. [PUBMED Abstract]

Evidence of Harms

Abnormal ultrasound typically requires further investigation including endometrial biopsy (sampling). The evidence is solid that endometrial sampling may result in discomfort, bleeding, infection, and rarely uterine perforation. A study designed to evaluate performance, patient acceptance, and cost-effectiveness of blind biopsy, hysteroscopy with biopsy, and ultrasound, in 683 women with vaginal bleeding, reported that minor events, including discomfort and distress, occurred in 16% of women who had hysteroscopy with biopsy, and in 10% of the women who had a blind biopsy.[1] A group of researchers studied 13,600 diagnostic and operative hysteroscopic procedures and found a lower complication rate among diagnostic procedures (0.13%) compared with operative procedures (0.28%).[2] Risks associated with false-positive test results include anxiety and additional diagnostic testing and surgery. Endometrial cancers may be missed on endometrial sampling and ultrasound.

References
  1. Critchley HO, Warner P, Lee AJ, et al.: Evaluation of abnormal uterine bleeding: comparison of three outpatient procedures within cohorts defined by age and menopausal status. Health Technol Assess 8 (34): iii-iv, 1-139, 2004. [PUBMED Abstract]
  2. Jansen FW, Vredevoogd CB, van Ulzen K, et al.: Complications of hysteroscopy: a prospective, multicenter study. Obstet Gynecol 96 (2): 266-70, 2000. [PUBMED Abstract]

Latest Updates to This Summary (03/15/2024)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Significance

Updated statistics with estimated new cases and deaths for 2024 (cited American Cancer Society as reference 1). Also revised text to state that continuing with more recent trends, incidence rates increased by about 1% per year in White women and by 2% to 3% per year in women of all other racial and ethnic groups. Since the mid-2000s, death rates for endometrial cancer increased by 1.7% per year.

This summary is written and maintained by the PDQ Screening and Prevention Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about endometrial cancer screening. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Screening and Prevention Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Screening and Prevention Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

PDQ® Screening and Prevention Editorial Board. PDQ Endometrial Cancer Screening. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/uterine/hp/endometrial-screening-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389229]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

  • Updated:

If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Endometrial Cancer Screening (PDQ®)–Health Professional Version was originally published by the National Cancer Institute.”

Email