Questions About Cancer? 1-800-4-CANCER

Breast Cancer Treatment (PDQ®)

Health Professional Version
Last Modified: 07/11/2014

Ductal Carcinoma In Situ

Introduction
Treatment Option Overview
Treatment Options for Patients With DCIS
Current Clinical Trials



Introduction

Ductal carcinoma in situ (DCIS) is a noninvasive condition. DCIS can progress to become invasive cancer, but estimates of the likelihood of this vary widely. Some people include DCIS in breast cancer statistics. The frequency of the diagnosis of DCIS has increased markedly in the United States since the widespread use of screening mammography. In 1998, DCIS accounted for about 18% of all newly diagnosed invasive plus noninvasive breast tumors in the United States.

Very few cases of DCIS present as a palpable mass; 80% are diagnosed by mammography alone.[1] DCIS comprises a heterogeneous group of histopathologic lesions that have been classified into several subtypes based primarily on architectural pattern: micropapillary, papillary, solid, cribriform, and comedo. Comedo-type DCIS consists of cells that appear cytologically malignant, with the presence of high-grade nuclei, pleomorphism, and abundant central luminal necrosis. Comedo-type DCIS appears to be more aggressive, with a higher probability of associated invasive ductal carcinoma.[2]

Treatment Option Overview

Until recently, the customary treatment of DCIS was mastectomy.[1] The rationale for mastectomy included a 30% incidence of multicentric disease, a 40% prevalence of residual tumor at mastectomy following wide excision alone, and a 25% to 50% incidence of breast recurrence following limited surgery for palpable tumor, with 50% of those recurrences being invasive carcinoma.[1,3] The combined local and distant recurrence rate following mastectomy is 1% to 2%. No randomized comparisons of mastectomy versus breast-conserving surgery plus breast radiation are available.

In view of the success of breast-conserving surgery combined with breast radiation for invasive carcinoma, this conservative approach was extended to the noninvasive entity. To determine whether breast-conserving surgery plus radiation therapy was a reasonable approach to the management of DCIS, the National Surgical Adjuvant Breast and Bowel Project (NSABP) and the European Organisation for Research and Treatment of Cancer (EORTC) have each completed prospective randomized trials in which women with localized DCIS and negative surgical margins following excisional biopsy were randomized to either breast radiation (50 Gy) or to no further therapy.[4-7]

Of the 818 women enrolled in the NSABP-B-17 trial, 80% were diagnosed by mammography, and 70% of the patients' lesions were 1 cm or less. At the 12-year actuarial follow-up interval, the overall rate of in-breast tumor recurrence was reduced from 31.7% to 15.7% when radiation therapy was delivered (P < .005). Radiation therapy reduced the occurrence of invasive cancer from 16.8% to 7.7% (P = .001) and recurrent DCIS from 14.6% to 8.0% (P = .001).[7][Level of evidence: 1iiDii] Nine pathologic features were evaluated for their ability to predict for in-breast recurrence, but only comedo necrosis was determined to be a significant predictor for recurrence.

Similarly, of the 1,010 patients enrolled in the EORTC-10853 trial, mammography detected lesions in 71% of the women. At a median follow-up of 10.5 years, the overall rate of in-breast tumor recurrence was reduced from 26% to 15% (P < .001) with a similarly effective reduction of invasive (13% to 8%, P = .065) and noninvasive (14% to 7%, P = .001) recurrence rates.[7][Level of evidence: 1iiDii] In this analysis, parameters associated with an increased risk of in-breast recurrence included age 40 years or younger, palpable disease, intermediate or poorly differentiated DCIS, cribriform or solid growth pattern, and indeterminate margins. Elsewhere, margins of less than 1 mm have been associated with an unacceptable local recurrence rate, even with radiation therapy.[8] In both of the studies reported here, the effect of radiation therapy was consistent across all assessed risk factors.

Given that lumpectomy and radiation therapy are generally applicable for most patients with DCIS, can a subset of patients be identified with such a low risk of local recurrence that postoperative radiation therapy can be omitted? To identify such a favorable group of patients, several pathologic staging systems have been developed and tested retrospectively, but consensus recommendations have not been achieved.[9-12]

The Van Nuys Prognostic Index, which combines three predictors of local recurrence (i.e., tumor size, margin width, and pathologic classification), was used to retrospectively analyze 333 patients treated with either excision alone or excision and radiation therapy.[12] Using this prognostic index, patients with favorable lesions, who received surgical excision alone, had a low recurrence rate (i.e., 2% with a median follow-up of 79 months). A subsequent analysis of these data was performed to determine the influence of margin width on local control.[13] Patients whose excised lesions had margin widths 10 mm or larger in every direction had an extremely low probability of local recurrence with surgery alone (4% with a mean follow-up of 8 years). These reviews are retrospective, noncontrolled, and are subject to substantial selection bias. By contrast, no subset of patients was identified in the prospective NSABP trial that did not benefit from the addition of radiation therapy to lumpectomy in the management of DCIS.[2,4,14,15]

To determine if tamoxifen adds to the efficacy of local therapy in the management of DCIS, the NSABP performed a double-blind prospective trial (NSABP-B-24) of 1,804 women.[16] Patients were randomly assigned to lumpectomy, radiation therapy (50 Gy), and placebo versus lumpectomy, radiation therapy, and tamoxifen (20 mg/day for 5 years).[16] Positive or unknown surgical margins were present in 23% of patients. Approximately 80% of the lesions measured not larger than 1 cm, and more than 80% were detected mammographically. Breast cancer events were defined as the presence of new ipsilateral disease, contralateral disease, or metastases. Women in the tamoxifen group had fewer breast cancer events at 5 years than did those on a placebo (8.2% vs. 13.4%; P = .009).[16][Level of evidence: 1iDii] With tamoxifen, ipsilateral invasive breast cancer decreased from 4.2% to 2.1% at 5 years (P = .03). Tamoxifen also decreased the incidence of contralateral breast neoplasms (invasive and noninvasive) from 0.8% per year to 0.4% per year (P = .01). The benefit of tamoxifen extended to those patients with positive or uncertain margins.[17] (Refer to the PDQ summary on Breast Cancer Prevention for more information.)

Treatment Options for Patients With DCIS
  1. Breast-conserving surgery and radiation therapy with or without tamoxifen.

  2. Total mastectomy with or without tamoxifen.

  3. Breast-conserving surgery without radiation therapy. A large national clinical trial by the Radiation Therapy Oncology Group (RTOG-9804) comparing breast-conserving surgery and tamoxifen with or without radiation therapy was closed due to poor accrual, and results are pending.

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with ductal breast carcinoma in situ. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

References
  1. Fonseca R, Hartmann LC, Petersen IA, et al.: Ductal carcinoma in situ of the breast. Ann Intern Med 127 (11): 1013-22, 1997.  [PUBMED Abstract]

  2. Fisher ER, Dignam J, Tan-Chiu E, et al.: Pathologic findings from the National Surgical Adjuvant Breast Project (NSABP) eight-year update of Protocol B-17: intraductal carcinoma. Cancer 86 (3): 429-38, 1999.  [PUBMED Abstract]

  3. Lagios MD, Westdahl PR, Margolin FR, et al.: Duct carcinoma in situ. Relationship of extent of noninvasive disease to the frequency of occult invasion, multicentricity, lymph node metastases, and short-term treatment failures. Cancer 50 (7): 1309-14, 1982.  [PUBMED Abstract]

  4. Fisher B, Dignam J, Wolmark N, et al.: Lumpectomy and radiation therapy for the treatment of intraductal breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-17. J Clin Oncol 16 (2): 441-52, 1998.  [PUBMED Abstract]

  5. Fisher B, Land S, Mamounas E, et al.: Prevention of invasive breast cancer in women with ductal carcinoma in situ: an update of the national surgical adjuvant breast and bowel project experience. Semin Oncol 28 (4): 400-18, 2001.  [PUBMED Abstract]

  6. Julien JP, Bijker N, Fentiman IS, et al.: Radiotherapy in breast-conserving treatment for ductal carcinoma in situ: first results of the EORTC randomised phase III trial 10853. EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. Lancet 355 (9203): 528-33, 2000.  [PUBMED Abstract]

  7. Bijker N, Meijnen P, Peterse JL, et al.: Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in-situ: ten-year results of European Organisation for Research and Treatment of Cancer randomized phase III trial 10853--a study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. J Clin Oncol 24 (21): 3381-7, 2006.  [PUBMED Abstract]

  8. Chan KC, Knox WF, Sinha G, et al.: Extent of excision margin width required in breast conserving surgery for ductal carcinoma in situ. Cancer 91 (1): 9-16, 2001.  [PUBMED Abstract]

  9. Page DL, Lagios MD: Pathologic analysis of the National Surgical Adjuvant Breast Project (NSABP) B-17 Trial. Unanswered questions remaining unanswered considering current concepts of ductal carcinoma in situ. Cancer 75 (6): 1219-22; discussion 1223-7, 1995.  [PUBMED Abstract]

  10. Fisher ER, Costantino J, Fisher B, et al.: Response - blunting the counterpoint. Cancer 75 (6): 1223-1227, 1995. 

  11. Holland R, Peterse JL, Millis RR, et al.: Ductal carcinoma in situ: a proposal for a new classification. Semin Diagn Pathol 11 (3): 167-80, 1994.  [PUBMED Abstract]

  12. Silverstein MJ, Lagios MD, Craig PH, et al.: A prognostic index for ductal carcinoma in situ of the breast. Cancer 77 (11): 2267-74, 1996.  [PUBMED Abstract]

  13. Silverstein MJ, Lagios MD, Groshen S, et al.: The influence of margin width on local control of ductal carcinoma in situ of the breast. N Engl J Med 340 (19): 1455-61, 1999.  [PUBMED Abstract]

  14. Goodwin A, Parker S, Ghersi D, et al.: Post-operative radiotherapy for ductal carcinoma in situ of the breast--a systematic review of the randomised trials. Breast 18 (3): 143-9, 2009.  [PUBMED Abstract]

  15. Goodwin A, Parker S, Ghersi D, et al.: Post-operative radiotherapy for ductal carcinoma in situ of the breast. Cochrane Database Syst Rev (3): CD000563, 2009.  [PUBMED Abstract]

  16. Fisher B, Dignam J, Wolmark N, et al.: Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial. Lancet 353 (9169): 1993-2000, 1999.  [PUBMED Abstract]

  17. Houghton J, George WD, Cuzick J, et al.: Radiotherapy and tamoxifen in women with completely excised ductal carcinoma in situ of the breast in the UK, Australia, and New Zealand: randomised controlled trial. Lancet 362 (9378): 95-102, 2003.  [PUBMED Abstract]