In English | En español
Questions About Cancer? 1-800-4-CANCER

Langerhans Cell Histiocytosis Treatment (PDQ®)

  • Last Modified: 02/03/2014

Page Options

  • Print This Page
  • Print This Document
  • View Entire Document
  • Email This Document

Diagnostic Evaluation of Childhood LCH

The complete evaluation of any patient, whether presenting with single-system or multisystem disease, should include the following:[1]

  • History and physical exam: A complete history and physical exam with special attention to the skin, lymph nodes, ears, oral pharynx, gingiva, tongue, teeth, bones, lungs, thyroid, liver and spleen size, bone abnormalities, growth velocity, and history of excessive thirst and urination.
  • Neurologic exam.

Other tests and procedures include the following:

  • Blood tests: Blood tests include complete blood count with leukocyte differential and platelet count, liver function tests (e.g., bilirubin, albumin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and prothrombin time/partial thromboplastin time in patients with hepatomegaly, jaundice, elevations of liver enzymes, or low albumin), and serum electrolytes.

  • Urine tests: Urine tests include urinalysis and a water-deprivation test if diabetes insipidus is suspected.

  • Bone marrow aspirate and biopsy: The bone marrow aspirate and biopsy is indicated for patients with multisystem disease who have unexplained anemia or thrombocytopenia. The biopsy should be stained with anti-CD1a and/or anti-CD207 (langerin) and anti-CD163 immunostains to facilitate the detection of Langerhans cell histiocytosis (LCH) cells.

  • Radiologic and imaging tests: Radiologic tests for the first level of screening include skeletal survey, skull series, bone scans, and chest x-ray. Newer diagnostic imaging modalities, such as somatostatin analogue scintigraphy or fludeoxyglucose F 18 (18F-FDG) PET scans, augment, but do not replace the standard tests.[2-6]
    • Computed tomographic (CT) scan: CT scan of the head may be indicated if orbital, mastoid, or other maxillofacial involvement is suspected. Imaging tests may include magnetic resonance imaging (MRI) scan with gadolinium contrast of the brain for patients with diabetes insipidus or suspected brain or vertebral involvement.[7]

      CT scan of the lungs may be indicated for patients with abnormal chest x-rays or pulmonary symptoms. High-resolution CT scans may show evidence of pulmonary LCH when the chest x-ray is normal, thus in infants and toddlers with normal chest x-rays, a CT scan may be considered.[8]

      LCH causes fatty changes in the liver or hypodense areas along the portal tract, which can be identified by CT scans.[9]

    • 18F-FDG PET scan: 18F-FDG PET scan abnormalities have been reported in the brains of seven LCH patients with neurologic and radiographic signs of neurodegenerative disease.[6] There was good correlation with MRI findings in the cerebellar white matter, but less so in the caudate nuclei and frontal cortex. It was suggested that PET scans of patients at high risk for developing neurodegenerative LCH could show abnormalities earlier than MRI.[6]

    • MRI: MRI findings of patients with diabetes insipidus include thickening and nodularity of the pituitary stalk with loss of the pituitary bright spot reflecting absence of anti-diuretic hormone. Later in the course, the stalk generally atrophies and this should not be used as evidence of response to therapy.

      All patients with vertebral body involvement need careful assessment of associated soft tissue which may impinge on the spinal cord.

      MRI findings of central nervous system LCH include T2 FLAIR enhancement in the pons, basal ganglia, white matter of the cerebellum, and mass lesions or meningeal enhancement. In a report of 163 patients,[10] meningeal lesions were found in 29% and choroid plexus involvement in 6%. Paranasal sinus or mastoid lesions were found in 55% of patients versus 20% of controls, and accentuated Virchow-Robin spaces in 70% of patients versus 27% of controls.

  • Biopsy: Lytic bone lesions, skin, and lymph nodes are the most frequent sites biopsied for diagnosis of LCH. A liver biopsy is indicated when a child with LCH presents with hypoalbuminemia not caused by gastrointestinal LCH or other etiology. These patients usually have elevated levels of bilirubin or liver enzymes. An open lung biopsy may be necessary for obtaining tissue for diagnosis of pulmonary LCH when bronchoalveolar lavage is nondiagnostic.

    A pathologic diagnosis is always required except in the case of isolated vertebra plana without a soft tissue mass or isolated pituitary stalk disease when the risk outweighs the benefit of a firm diagnosis. The LCH cells are large cells with abundant pink cytoplasm on hematoxylin and eosin staining with a bean-shaped folded nucleus. LCH cells should stain with antibodies to CD1a or anti-langerin (CD207) to confirm the diagnosis of LCH.[11] Other types of histiocytes and macrophages may stain with S-100, so this is not considered sufficient to establish the diagnosis of LCH.[11]

References
  1. Haupt R, Minkov M, Astigarraga I, et al.: Langerhans cell histiocytosis (LCH): guidelines for diagnosis, clinical work-up, and treatment for patients till the age of 18 years. Pediatr Blood Cancer 60 (2): 175-84, 2013.  [PUBMED Abstract]

  2. Calming U, Jacobsson H, Henter JI: Detection of Langerhans cell histiocytosis lesions with somatostatin analogue scintigraphy--a preliminary report. Med Pediatr Oncol 35 (5): 462-7, 2000.  [PUBMED Abstract]

  3. Calming U, Bemstrand C, Mosskin M, et al.: Brain 18-FDG PET scan in central nervous system langerhans cell histiocytosis. J Pediatr 141 (3): 435-40, 2002.  [PUBMED Abstract]

  4. Binkovitz LA, Olshefski RS, Adler BH: Coincidence FDG-PET in the evaluation of Langerhans' cell histiocytosis: preliminary findings. Pediatr Radiol 33 (9): 598-602, 2003.  [PUBMED Abstract]

  5. Phillips M, Allen C, Gerson P, et al.: Comparison of FDG-PET scans to conventional radiography and bone scans in management of Langerhans cell histiocytosis. Pediatr Blood Cancer 52 (1): 97-101, 2009.  [PUBMED Abstract]

  6. Ribeiro MJ, Idbaih A, Thomas C, et al.: 18F-FDG PET in neurodegenerative Langerhans cell histiocytosis : results and potential interest for an early diagnosis of the disease. J Neurol 255 (4): 575-80, 2008.  [PUBMED Abstract]

  7. Grois N, Prayer D, Prosch H, et al.: Course and clinical impact of magnetic resonance imaging findings in diabetes insipidus associated with Langerhans cell histiocytosis. Pediatr Blood Cancer 43 (1): 59-65, 2004.  [PUBMED Abstract]

  8. Ha SY, Helms P, Fletcher M, et al.: Lung involvement in Langerhans' cell histiocytosis: prevalence, clinical features, and outcome. Pediatrics 89 (3): 466-9, 1992.  [PUBMED Abstract]

  9. Prasad SR, Wang H, Rosas H, et al.: Fat-containing lesions of the liver: radiologic-pathologic correlation. Radiographics 25 (2): 321-31, 2005 Mar-Apr.  [PUBMED Abstract]

  10. Prayer D, Grois N, Prosch H, et al.: MR imaging presentation of intracranial disease associated with Langerhans cell histiocytosis. AJNR Am J Neuroradiol 25 (5): 880-91, 2004.  [PUBMED Abstract]

  11. Chikwava K, Jaffe R: Langerin (CD207) staining in normal pediatric tissues, reactive lymph nodes, and childhood histiocytic disorders. Pediatr Dev Pathol 7 (6): 607-14, 2004 Nov-Dec.  [PUBMED Abstract]