In English | En español
Questions About Cancer? 1-800-4-CANCER

Retinoblastoma Treatment (PDQ®)

  • Last Modified: 08/25/2014

Page Options

  • Print This Page
  • Print This Document
  • View Entire Document
  • Email This Document

Treatment Options for Extraocular Retinoblastoma

Standard Treatment Options
        Orbital and locoregional retinoblastoma
        CNS disease
        Trilateral retinoblastoma
        Extracranial metastatic retinoblastoma
Treatment Options Under Clinical Evaluation for Extraocular Retinoblastoma
        Current Clinical Trials

In high-income countries, few patients with retinoblastoma present with extraocular disease. Extraocular disease may be localized to the soft tissues surrounding the eye or to the optic nerve beyond the margin of resection. However, further extension may progress into the brain and meninges with subsequent seeding of the spinal fluid and as distant metastatic disease involving the lungs, bones, and bone marrow.

Standard Treatment Options

Orbital and locoregional retinoblastoma

Standard treatment options for extraocular retinoblastoma (orbital and locoregional) include the following:

  1. Chemotherapy.
  2. Radiation therapy.

Orbital retinoblastoma occurs as a result of progression of the tumor through the emissary vessels and sclera. For this reason, transscleral disease is considered to be extraocular and should be treated as such. Orbital retinoblastoma is isolated in 60% to 70% of cases.

Treatment includes systemic chemotherapy and radiation therapy; with this approach, 60% to 85% of patients can be cured. Because most recurrences occur in the central nervous system (CNS), regimens using drugs with well-documented CNS penetration are used. Different chemotherapy regimens have proven to be effective, including vincristine, cyclophosphamide, and doxorubicin and platinum- and epipodophyllotoxin-based regimens, or a combination of both.[1-3]

For patients with macroscopic orbital disease, delay of surgery until response to chemotherapy is achieved (usually two or three courses of treatment) has been effective. Patients then undergo enucleation and receive an additional four to six courses of chemotherapy. Next, local control is consolidated with orbital irradiation (40 Gy to 45 Gy). Using this approach, orbital exenteration is not indicated.[3]

Patients with isolated involvement of the optic nerve at the transsection level are considered to have extraocular disease and are treated using systemic therapy, similar to that used for macroscopic orbital disease, and irradiation of the entire orbit (36 Gy) with 10 Gy boost to the chiasm (total of 46 Gy).[2]

CNS disease

Standard treatment options for extraocular retinoblastoma (CNS disease) include the following:

  1. Systemic chemotherapy and CNS-directed therapy.
  2. Systemic chemotherapy followed by myeloablative chemotherapy and stem cell rescue.

Intracranial dissemination occurs by direct extension through the optic nerve, and its prognosis is dismal. Treatment for these patients includes platinum-based intensive systemic chemotherapy and CNS-directed therapy. Although intrathecal chemotherapy has been used traditionally, there is no preclinical or clinical evidence to support its use. The administration of radiation therapy to these patients is controversial. Responses have been observed with craniospinal radiation using 25 Gy to 35 Gy to the entire craniospinal axis and a boost (10 Gy) to sites of measurable disease.

Therapeutic intensification with high-dose, marrow-ablative chemotherapy and autologous hematopoietic progenitor cell rescue has been explored, but its role is not yet clear.[4][Level of evidence: 3iiA]

Trilateral retinoblastoma

Standard treatment options for trilateral retinoblastoma include the following:

  1. Systemic chemotherapy followed by surgery and myeloablative chemotherapy with stem cell rescue.
  2. Systemic chemotherapy followed by surgery and radiation therapy.

Trilateral retinoblastoma is usually associated with a pineal lesion or, less commonly, as a suprasellar lesion.[5-7] In patients with the heritable form of retinoblastoma, CNS disease is less likely the result of metastatic or regional spread than of a primary intracranial focus, such as a pineal tumor. The prognosis for patients with trilateral retinoblastoma is very poor; most patients die of disseminated neuraxis disease in less than 9 months.[8,9] Trilateral retinoblastoma has been the principal cause of death from retinoblastoma in the United States during the first decade of life.[7]

While pineoblastomas occurring in older patients are sensitive to radiation therapy, current strategies are directed towards avoiding irradiation by using intensive chemotherapy followed by consolidation with myeloablative chemotherapy and autologous hematopoietic progenitor cell rescue, an approach similar to those being used in the treatment of brain tumors in infants.[10]

Because of the poor prognosis of trilateral retinoblastoma, screening with neuroimaging is a common practice in the follow-up of children with the heritable form of the disease. Routine baseline brain magnetic resonance imaging (MRI) is recommended at diagnosis because it may detect trilateral retinoblastoma at a subclinical stage. In a small series of patients, the 5-year overall survival was 67% for those detected at baseline, compared with 11% for the group with a delayed diagnosis.[5] The value of screening with MRI for those suspected of having heritable disease or those with unilateral disease and a positive family history is not determined. MRI screening may be needed as often as every 6 months until the child is age 5 years. Given the short interval between the diagnosis of retinoblastoma and the occurrence of trilateral retinoblastoma, routine screening might detect most cases within 2 years. However, it is not clear whether screening by neuroimaging improves survival.[8]

Computed tomography scans are avoided for routine screening in these children to minimize exposure to ionizing radiation.

Extracranial metastatic retinoblastoma

Standard treatment options for extracranial metastatic retinoblastoma include the following:

  1. Systemic chemotherapy followed by myeloablative chemotherapy with stem cell rescue and radiation therapy.

Hematogenous metastases may develop in the bones, bone marrow, and less frequently, in the liver. Although long-term survivors have been reported with conventional chemotherapy, these reports should be considered anecdotal; metastatic retinoblastoma is not curable with conventional chemotherapy. In recent years, however, studies of small series of patients have shown that metastatic retinoblastoma can be cured using high-dose, marrow-ablative chemotherapy and autologous hematopoietic stem cell rescue.[11-17]; [18][Level of evidence: 3iiA]

Treatment Options Under Clinical Evaluation for Extraocular Retinoblastoma

The following is an example of a national and/or institutional clinical trial that is currently being conducted. Information about ongoing clinical trials is available from the NCI Web site.

  • COG-ARET0321 (Combination Chemotherapy, Autologous Stem Cell Transplant [SCT], and/or Radiation Therapy in Treating Young Patients With Extraocular Retinoblastoma): Patients with metastatic or recurrent retinoblastoma that is beyond the globe are eligible for treatment with combined conventional chemotherapy, high-dose chemotherapy, and SCT with conventional radiation.
Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with extraocular retinoblastoma. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

References
  1. Antoneli CB, Ribeiro KB, Rodriguez-Galindo C, et al.: The addition of ifosfamide/etoposide to cisplatin/teniposide improves the survival of children with retinoblastoma and orbital involvement. J Pediatr Hematol Oncol 29 (10): 700-4, 2007.  [PUBMED Abstract]

  2. Aerts I, Sastre-Garau X, Savignoni A, et al.: Results of a multicenter prospective study on the postoperative treatment of unilateral retinoblastoma after primary enucleation. J Clin Oncol 31 (11): 1458-63, 2013.  [PUBMED Abstract]

  3. Radhakrishnan V, Kashyap S, Pushker N, et al.: Outcome, pathologic findings, and compliance in orbital retinoblastoma (International Retinoblastoma Staging System stage III) treated with neoadjuvant chemotherapy: a prospective study. Ophthalmology 119 (7): 1470-7, 2012.  [PUBMED Abstract]

  4. Dunkel IJ, Chan HS, Jubran R, et al.: High-dose chemotherapy with autologous hematopoietic stem cell rescue for stage 4B retinoblastoma. Pediatr Blood Cancer 55 (1): 149-52, 2010.  [PUBMED Abstract]

  5. Rodjan F, de Graaf P, Brisse HJ, et al.: Trilateral retinoblastoma: neuroimaging characteristics and value of routine brain screening on admission. J Neurooncol 109 (3): 535-44, 2012.  [PUBMED Abstract]

  6. Paulino AC: Trilateral retinoblastoma: is the location of the intracranial tumor important? Cancer 86 (1): 135-41, 1999.  [PUBMED Abstract]

  7. Blach LE, McCormick B, Abramson DH, et al.: Trilateral retinoblastoma--incidence and outcome: a decade of experience. Int J Radiat Oncol Biol Phys 29 (4): 729-33, 1994.  [PUBMED Abstract]

  8. Kivelä T: Trilateral retinoblastoma: a meta-analysis of hereditary retinoblastoma associated with primary ectopic intracranial retinoblastoma. J Clin Oncol 17 (6): 1829-37, 1999.  [PUBMED Abstract]

  9. Marcus DM, Brooks SE, Leff G, et al.: Trilateral retinoblastoma: insights into histogenesis and management. Surv Ophthalmol 43 (1): 59-70, 1998 Jul-Aug.  [PUBMED Abstract]

  10. Dunkel IJ, Jubran RF, Gururangan S, et al.: Trilateral retinoblastoma: potentially curable with intensive chemotherapy. Pediatr Blood Cancer 54 (3): 384-7, 2010.  [PUBMED Abstract]

  11. Namouni F, Doz F, Tanguy ML, et al.: High-dose chemotherapy with carboplatin, etoposide and cyclophosphamide followed by a haematopoietic stem cell rescue in patients with high-risk retinoblastoma: a SFOP and SFGM study. Eur J Cancer 33 (14): 2368-75, 1997.  [PUBMED Abstract]

  12. Kremens B, Wieland R, Reinhard H, et al.: High-dose chemotherapy with autologous stem cell rescue in children with retinoblastoma. Bone Marrow Transplant 31 (4): 281-4, 2003.  [PUBMED Abstract]

  13. Rodriguez-Galindo C, Wilson MW, Haik BG, et al.: Treatment of metastatic retinoblastoma. Ophthalmology 110 (6): 1237-40, 2003.  [PUBMED Abstract]

  14. Dunkel IJ, Aledo A, Kernan NA, et al.: Successful treatment of metastatic retinoblastoma. Cancer 89 (10): 2117-21, 2000.  [PUBMED Abstract]

  15. Matsubara H, Makimoto A, Higa T, et al.: A multidisciplinary treatment strategy that includes high-dose chemotherapy for metastatic retinoblastoma without CNS involvement. Bone Marrow Transplant 35 (8): 763-6, 2005.  [PUBMED Abstract]

  16. Jubran RF, Erdreich-Epstein A, Butturini A, et al.: Approaches to treatment for extraocular retinoblastoma: Children's Hospital Los Angeles experience. J Pediatr Hematol Oncol 26 (1): 31-4, 2004.  [PUBMED Abstract]

  17. Palma J, Sasso DF, Dufort G, et al.: Successful treatment of metastatic retinoblastoma with high-dose chemotherapy and autologous stem cell rescue in South America. Bone Marrow Transplant 47 (4): 522-7, 2012.  [PUBMED Abstract]

  18. Dunkel IJ, Khakoo Y, Kernan NA, et al.: Intensive multimodality therapy for patients with stage 4a metastatic retinoblastoma. Pediatr Blood Cancer 55 (1): 55-9, 2010.  [PUBMED Abstract]