Questions About Cancer? 1-800-4-CANCER

Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies Treatment (PDQ®)

Health Professional Version
Last Modified: 10/27/2014

Survivorship and Adverse Late Sequelae

While the issues of long-term complications of cancer and its treatment cross many disease categories, there are several important issues that relate to the treatment of myeloid malignancies that are worth stressing. (Refer to the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information.)

The Children’s Cancer Survivor Study examined 272 survivors of childhood acute myeloid leukemia (AML) who did not undergo a hematopoietic stem cell transplant (HSCT).[1] This study identified second malignancies (cumulative incidence, 1.7%) and cardiac toxic effects (cumulative incidence, 4.7%) as significant long-term risks. Cardiomyopathy has been reported in 4.3% of survivors of AML based on Berlin-Frankfurt-Münster studies. Of these, 2.5% showed clinical symptoms.[2] A retrospective study of cardiac function of children treated with United Kingdom Medical Research Council-based regimens at a median of 13 months following treatment reported a mean detrimental change in left ventricular stroke volume of 8.4% compared with baseline values.[3] For pediatric patients, the risk of developing early toxicity was 13.7% and the risk of developing late cardiac toxic effects (defined as 1 year after completing first-line therapy) was 17.4%. Early cardiac toxic effects was a significant predictor of late cardiac toxic effects and the development of clinical cardiomyopathy requiring long-term therapy.[4] Retrospective analysis of a single study suggests cardiac risk may be increased in children with Down syndrome,[5] but prospective studies are required to confirm this finding.

For children undergoing chemotherapy only for treatment of AML, renal, gastrointestinal, and hepatic late adverse effects have been reported to be rare.[6] A Nordic Society for Pediatric Hematology and Oncology retrospective trial of children treated for AML with chemotherapy only at a median follow-up of 11 years, based on a self-reported use of health care services, demonstrated similar health care usage and marital status as their siblings.[7] A COG study using a health-related, quality-of-life comparison reported an overall 21% of 5-year survivors having a severe or life-threatening chronic health condition; when compared by type of treatment, this percentage was 16% for the chemotherapy-only treated group, 21% for the autologous HSCT treated group, and 33% for those who received an allogeneic HSCT.[8]

In a review from one institution, the highest frequency of adverse long-term sequelae for children treated for AML included the following incidence rates: growth abnormalities (51%), neurocognitive abnormalities (30%), transfusion-acquired hepatitis (28%), infertility (25%), endocrinopathies (16%), restrictive lung disease (20%), chronic graft-versus-host disease (20%), secondary malignancies (14%), and cataracts (12%).[9] Most of these adverse sequelae are the consequence of myeloablative, allogeneic HSCT. Although cardiac abnormalities were reported in 8% of patients, this is an issue that may be particularly relevant with the current use of increased anthracyclines in clinical trials for children with newly diagnosed AML. Another study examined outcomes for children younger than 3 years with AML or acute lymphoblastic leukemia (ALL) who underwent HSCT.[10] The toxicities reported include growth hormone deficiency (59%), dyslipidemias (59%), hypothyroidism (35%), osteochondromas (24%), and decreased bone mineral density (24%). Two of the 33 patients developed secondary malignancies. Of note, survivors had average intelligence but frequent attention-deficit problems and fine-movement abnormalities, compared with population controls. In contrast, The Bone Marrow Transplant Survivor Study compared childhood AML or ALL survivors with siblings using a self-reporting questionnaire.[11] The median follow-up was 8.4 years and 86% of patients received total-body irradiation (TBI) as part of their preparative transplant regimen. Survivors of leukemia who received an HSCT had significantly higher frequencies of several adverse effects, including diabetes, hypothyroidism, osteoporosis, cataracts, osteonecrosis, exercise-induced shortness of breath, neurosensory impairments and problems with balance, tremor, and weakness than siblings. The overall assessment of health was significantly decreased in survivors compared with siblings (odds ratio = 2.2; P = .03). Significant differences were not observed between regimens using TBI compared with chemotherapy only, which mostly included busulfan. The outcomes were similar for patients with AML and ALL, suggesting that the primary cause underlying the adverse late effects was undergoing an HSCT.

A population-based study of survivors of childhood AML who had not undergone an HSCT reported equivalent rates of educational achievement, employment, and marital status compared with siblings. AML survivors were, however, significantly more likely to be receiving prescription drugs, especially for asthma, compared with siblings (23% vs. 9%; P = .03). Chronic fatigue has also been demonstrated to be a significantly more likely adverse late effect in survivors of childhood AML than in survivors of other malignancies.[12]

New therapeutic approaches to reduce long-term adverse sequelae are needed, especially for reducing the late sequelae associated with myeloablative HSCT.

Important resources for details on follow-up and risks for survivors of cancer have been developed by the Children Oncology Group’s Long-Term Follow-Up Guidelines for Survivors of Childhood, Adolescent, and Young Adult Cancers and the National Comprehensive Cancer Network Guidelines for Acute Myeloid Leukemia. Furthermore, having access to past medical history that can be shared with subsequent medical providers has become increasingly recognized as important for cancer survivors. Different templates that address this issue are available, such as those from the Cancer Survivor’s Treatment Record and the Cancer Survivor’s Medical Treatment Summary.

References
  1. Mulrooney DA, Dover DC, Li S, et al.: Twenty years of follow-up among survivors of childhood and young adult acute myeloid leukemia: a report from the Childhood Cancer Survivor Study. Cancer 112 (9): 2071-9, 2008.  [PUBMED Abstract]

  2. Creutzig U, Diekamp S, Zimmermann M, et al.: Longitudinal evaluation of early and late anthracycline cardiotoxicity in children with AML. Pediatr Blood Cancer 48 (7): 651-62, 2007.  [PUBMED Abstract]

  3. Orgel E, Zung L, Ji L, et al.: Early cardiac outcomes following contemporary treatment for childhood acute myeloid leukemia: a North American perspective. Pediatr Blood Cancer 60 (9): 1528-33, 2013.  [PUBMED Abstract]

  4. Temming P, Qureshi A, Hardt J, et al.: Prevalence and predictors of anthracycline cardiotoxicity in children treated for acute myeloid leukaemia: retrospective cohort study in a single centre in the United Kingdom. Pediatr Blood Cancer 56 (4): 625-30, 2011.  [PUBMED Abstract]

  5. O'Brien MM, Taub JW, Chang MN, et al.: Cardiomyopathy in children with Down syndrome treated for acute myeloid leukemia: a report from the Children's Oncology Group Study POG 9421. J Clin Oncol 26 (3): 414-20, 2008.  [PUBMED Abstract]

  6. Skou AS, Glosli H, Jahnukainen K, et al.: Renal, gastrointestinal, and hepatic late effects in survivors of childhood acute myeloid leukemia treated with chemotherapy only--a NOPHO-AML study. Pediatr Blood Cancer 61 (9): 1638-43, 2014.  [PUBMED Abstract]

  7. Molgaard-Hansen L, Glosli H, Jahnukainen K, et al.: Quality of health in survivors of childhood acute myeloid leukemia treated with chemotherapy only: a NOPHO-AML study. Pediatr Blood Cancer 57 (7): 1222-9, 2011.  [PUBMED Abstract]

  8. Schultz KA, Chen L, Chen Z, et al.: Health conditions and quality of life in survivors of childhood acute myeloid leukemia comparing post remission chemotherapy to BMT: a report from the children's oncology group. Pediatr Blood Cancer 61 (4): 729-36, 2014.  [PUBMED Abstract]

  9. Leung W, Hudson MM, Strickland DK, et al.: Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol 18 (18): 3273-9, 2000.  [PUBMED Abstract]

  10. Perkins JL, Kunin-Batson AS, Youngren NM, et al.: Long-term follow-up of children who underwent hematopoeitic cell transplant (HCT) for AML or ALL at less than 3 years of age. Pediatr Blood Cancer 49 (7): 958-63, 2007.  [PUBMED Abstract]

  11. Baker KS, Ness KK, Weisdorf D, et al.: Late effects in survivors of acute leukemia treated with hematopoietic cell transplantation: a report from the Bone Marrow Transplant Survivor Study. Leukemia 24 (12): 2039-47, 2010.  [PUBMED Abstract]

  12. Jóhannsdóttir IM, Hjermstad MJ, Moum T, et al.: Increased prevalence of chronic fatigue among survivors of childhood cancers: a population-based study. Pediatr Blood Cancer 58 (3): 415-20, 2012.  [PUBMED Abstract]