Tratamiento del cáncer de tiroides infantil (PDQ®)–Versión para profesionales de salud

Incidencia

La incidencia anual de cáncer de tiroides es de 2 casos por millón de personas en niños menores de 15 años, lo que representa casi 1,5 % de todos los cánceres en este grupo de edad.[1] La incidencia de cáncer de tiroides es más alta en las personas de 15 a 19 años (17,6 casos por millón de personas) y representa casi 8 % de los cánceres que se presentan en este grupo de mayor edad.[1,2] Los carcinomas de tiroides se presentan con más frecuencia en las niñas que en los niños.[3]

En una revisión retrospectiva de la base de datos Surveillance, Epidemiology, and End Results (SEER) desde 1973 hasta 2011, se identificaron 2504 casos de carcinoma de tiroides papilar en pacientes de 20 años o menos.[2] La incidencia de carcinoma de tiroides papilar aumentó durante este intervalo en casi 2 % por año. La tendencia hacia tumores más grandes indica que el examen diagnóstico minucioso no es la única explicación de los resultados observados.[4]

En una actualización de la base de datos SEER para el periodo de 2007 a 2012, se identificaron a 1723 pacientes pediátricos con cáncer de tiroides.[5] La incidencia promedio ajustada por edad para el cáncer de tiroides infantil fue de 0,59 casos por 100 000 pacientes. Cuando se comparó la incidencia en las niñas con la incidencia en los niños, el cociente para el cáncer de tiroides infantil fue de 4,4:1. El subtipo papilar fue el más común (n = 1014; 58,8 %), seguido del subtipo de variante folicular (n = 397; 23 %), el subtipo folicular (n = 173; 10,1 %) y el subtipo medular (n = 139; 8,1 %). A medida que los pacientes alcanzaron la edad de 15 a 19 años, aumentó la incidencia de los subtipos de las variantes papilar y folicular. En un análisis de los datos del cáncer de tiroides medular, se observó que la incidencia fue la más alta en el grupo de 0 a 4 años y disminuyó en edades mayores (consultar la Figura 1).[5]

Ampliar El diagrama muestra la incidencia del carcinoma  de tiroides infantil teniendo en cuenta el subtipo más frecuente por  100 000 como porcentaje de la cohorte total.
Figura 1. Incidencia del carcinoma de tiroides infantil teniendo en cuenta el subtipo más frecuente por 100 000 como porcentaje de la cohorte total. Reproducción autorizada de International Journal of Pediatric Otorhinolaryngology, Volume 89, Sarah Dermody, Andrew Walls, Earl H. Harley Jr., Pediatric thyroid cancer: An update from the SEER database 2007–2012, páginas 121–126, Derechos de autor (2016), con autorización de Elsevier. Percent of Total Cohort: porcentaje de la cohorte total; papillary: papilar; papillary follicular: papilar folicular; follicular: folicular; medullary: medular.

Bibliografía
  1. Horner MJ, Ries LA, Krapcho M, et al.: SEER Cancer Statistics Review, 1975-2006. Bethesda, Md: National Cancer Institute, 2009. Also available online. Last accessed August 28, 2018.
  2. Golpanian S, Perez EA, Tashiro J, et al.: Pediatric papillary thyroid carcinoma: outcomes and survival predictors in 2504 surgical patients. Pediatr Surg Int 32 (3): 201-8, 2016. [PUBMED Abstract]
  3. Shapiro NL, Bhattacharyya N: Population-based outcomes for pediatric thyroid carcinoma. Laryngoscope 115 (2): 337-40, 2005. [PUBMED Abstract]
  4. Vergamini LB, Frazier AL, Abrantes FL, et al.: Increase in the incidence of differentiated thyroid carcinoma in children, adolescents, and young adults: a population-based study. J Pediatr 164 (6): 1481-5, 2014. [PUBMED Abstract]
  5. Dermody S, Walls A, Harley EH Jr: Pediatric thyroid cancer: An update from the SEER database 2007-2012. Int J Pediatr Otorhinolaryngol 89: 121-6, 2016. [PUBMED Abstract]

Factores de riesgo

Hay una frecuencia excesiva de adenoma y carcinoma de tiroides en los pacientes que previamente recibieron radiación dirigida al cuello.[1,2] En la década posterior al accidente nuclear en Chernobyl, la incidencia de cáncer de tiroides aumentó 10 veces en comparación con las décadas anteriores y posteriores.[3] En este grupo de pacientes expuestos a dosis baja de radiación, los tumores por lo común exhiben una ganancia de la banda cromosómica 7q11.[4]

Cuando se presenta en pacientes con síndromes de neoplasia endocrina múltiple, es posible que el cáncer de tiroides se relacione con la formación de otros tipos de tumores malignos. (Para obtener más información, consultar la sección sobre Síndromes de neoplasia endocrina múltiple (NEM) y complejo de Carney en el sumario del PDQ sobre Tratamiento de los cánceres poco comunes en la niñez).

Bibliografía
  1. Cotterill SJ, Pearce MS, Parker L: Thyroid cancer in children and young adults in the North of England. Is increasing incidence related to the Chernobyl accident? Eur J Cancer 37 (8): 1020-6, 2001. [PUBMED Abstract]
  2. Kaplan MM, Garnick MB, Gelber R, et al.: Risk factors for thyroid abnormalities after neck irradiation for childhood cancer. Am J Med 74 (2): 272-80, 1983. [PUBMED Abstract]
  3. Demidchik YE, Saenko VA, Yamashita S: Childhood thyroid cancer in Belarus, Russia, and Ukraine after Chernobyl and at present. Arq Bras Endocrinol Metabol 51 (5): 748-62, 2007. [PUBMED Abstract]
  4. Hess J, Thomas G, Braselmann H, et al.: Gain of chromosome band 7q11 in papillary thyroid carcinomas of young patients is associated with exposure to low-dose irradiation. Proc Natl Acad Sci U S A 108 (23): 9595-600, 2011. [PUBMED Abstract]

Características histológicas

Los tumores de tiroides se clasifican como adenomas o carcinomas.[1-3] Los adenomas son nódulos encapsulados benignos bien circunscritos que pueden agrandar toda la glándula o parte de esta, se extienden a ambos lados del cuello y llegan a ser bastante grandes; algunos tumores segregan hormonas. Es posible que la transformación a un carcinoma maligno comience en algunas células que proliferan y se diseminan a los ganglios linfáticos del cuello o los pulmones. Casi 20 % de los nódulos tiroideos en los niños son malignos.[1,4]

En la categoría general de diagnóstico de carcinoma de tiroides, se incluyen diversos tipos histológicos; el carcinoma papilar y el carcinoma folicular a menudo se citan como carcinomas de tiroides diferenciados:[5]

  • Carcinoma papilar (60–75 %): a menudo, el carcinoma papilar tiene un origen multicéntrico y una tasa muy alta de metástasis a los ganglios linfáticos (70–90 %).[6] Las metástasis a los pulmones se presentan en casi 25 % de los casos. Por lo general, el carcinoma papilar tiene una evolución benigna y una tasa de supervivencia a 10 años de más de 95 %.[7,8] En general, los desenlaces a largo plazo en niños y adolescentes con cáncer de tiroides papilar son excelentes: 2 % de mortalidad por causa específica a los 40 años.[8]
  • Carcinoma folicular (10–20 %): el carcinoma folicular a menudo está encapsulado y tiene una incidencia más alta de metástasis óseas y pulmonares.[6] Puede ser esporádico o familiar.[9] Por lo general, el carcinoma folicular tiene una evolución benigna y una tasa de supervivencia a 10 años mayor a 95 %.[7]
  • Carcinoma medular (5–10 %): el carcinoma medular es una forma de carcinoma de tiroides que se origina en las células C parafoliculares secretoras de calcitonina. A menudo, es familiar.[9]
  • Carcinoma anaplásico (<1 %).
Bibliografía
  1. Dinauer C, Francis GL: Thyroid cancer in children. Endocrinol Metab Clin North Am 36 (3): 779-806, vii, 2007. [PUBMED Abstract]
  2. Vasko V, Bauer AJ, Tuttle RM, et al.: Papillary and follicular thyroid cancers in children. Endocr Dev 10: 140-72, 2007. [PUBMED Abstract]
  3. Halac I, Zimmerman D: Thyroid nodules and cancers in children. Endocrinol Metab Clin North Am 34 (3): 725-44, x, 2005. [PUBMED Abstract]
  4. Francis GL, Waguespack SG, Bauer AJ, et al.: Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 25 (7): 716-59, 2015. [PUBMED Abstract]
  5. Kaplan MM, Garnick MB, Gelber R, et al.: Risk factors for thyroid abnormalities after neck irradiation for childhood cancer. Am J Med 74 (2): 272-80, 1983. [PUBMED Abstract]
  6. Feinmesser R, Lubin E, Segal K, et al.: Carcinoma of the thyroid in children--a review. J Pediatr Endocrinol Metab 10 (6): 561-8, 1997 Nov-Dec. [PUBMED Abstract]
  7. Hung W, Sarlis NJ: Current controversies in the management of pediatric patients with well-differentiated nonmedullary thyroid cancer: a review. Thyroid 12 (8): 683-702, 2002. [PUBMED Abstract]
  8. Hay ID, Gonzalez-Losada T, Reinalda MS, et al.: Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J Surg 34 (6): 1192-202, 2010. [PUBMED Abstract]
  9. Skinner MA: Management of hereditary thyroid cancer in children. Surg Oncol 12 (2): 101-4, 2003. [PUBMED Abstract]

Características moleculares y tumorales

En estudios se observaron diferencias sutiles en el perfil genético de los carcinomas de tiroides diferenciados en niños y en el perfil de los tumores de adultos (consultar el Cuadro 1). En un estudio, se notificó una prevalencia más alta de reordenamientos RET/PTC en el carcinoma de tiroides papilar infantil (45–65 % en niños vs. 3–34 % en adultos).[1] Las mutaciones BRAF V600E se observan en más de 50 % de los adultos con carcinoma de tiroides papilar;[2] aunque es probable que se presenten con una frecuencia similar en pacientes pediátricos, en los estudios se descubrió una variación amplia en la frecuencia de esta mutación.[1-4] En niños, no se ha definido bien la correlación entre la anomalía genómica y el estadio o pronóstico. Aunque en dos estudios no se logró observar una correlación,[3,4] en un estudio en el que se incluyeron 55 casos de carcinoma de tiroides infantil, se demostró una correlación significativa entre la presencia de una mutación BRAF V600E y el aumento del riesgo de recidiva.[5] El carcinoma de tiroides diferenciado se ha relacionado con mutaciones de línea germinal en DICER1 y se considera parte del síndrome DICER1.[6] Se identificó el gen de fusión AGK-BRAF en 3 de 30 pacientes menores de 18 años con carcinoma de tiroides papilar esporádico.[7]

Cuadro 1. Características del carcinoma de tiroides en niños y adolescentes en comparación con adultosa
Característica Niños y adolescentes (%) Adultos (%)
aYamashita et al.,[8] Nikita et al.,[4] y Alzahrani et al.[5]
Reordenamientos génicos:    
RET/PTC 21–87 0–35
NTRK 1 5–11 5–13
AKAP9-BRAF 11 1
PAX8-PPARG Desconocido 0–50
 
Mutaciones puntuales:    
BRAF 0–63 0–43
Familia RAS 0–16 25–69
GNAS 0 11
TP53 0–23 0–20
TERT016
 
Otros:    
Multicéntrico 30–50 40–56
Compromiso de ganglio linfático 30–90 5–55
Diseminación extratiroidea 24–51 16–46
Invasión vascular <31 14–37
Metástasis a distancia 10–20 5–10
Bibliografía
  1. Ballester LY, Sarabia SF, Sayeed H, et al.: Integrating Molecular Testing in the Diagnosis and Management of Children with Thyroid Lesions. Pediatr Dev Pathol 19 (2): 94-100, 2016 Mar-Apr. [PUBMED Abstract]
  2. Rivkees SA, Mazzaferri EL, Verburg FA, et al.: The treatment of differentiated thyroid cancer in children: emphasis on surgical approach and radioactive iodine therapy. Endocr Rev 32 (6): 798-826, 2011. [PUBMED Abstract]
  3. Henke LE, Perkins SM, Pfeifer JD, et al.: BRAF V600E mutational status in pediatric thyroid cancer. Pediatr Blood Cancer 61 (7): 1168-72, 2014. [PUBMED Abstract]
  4. Nikita ME, Jiang W, Cheng SM, et al.: Mutational Analysis in Pediatric Thyroid Cancer and Correlations with Age, Ethnicity, and Clinical Presentation. Thyroid 26 (2): 227-34, 2016. [PUBMED Abstract]
  5. Alzahrani AS, Qasem E, Murugan AK, et al.: Uncommon TERT Promoter Mutations in Pediatric Thyroid Cancer. Thyroid 26 (2): 235-41, 2016. [PUBMED Abstract]
  6. Slade I, Bacchelli C, Davies H, et al.: DICER1 syndrome: clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome. J Med Genet 48 (4): 273-8, 2011. [PUBMED Abstract]
  7. Cordioli MI, Moraes L, Carvalheira G, et al.: AGK-BRAF gene fusion is a recurrent event in sporadic pediatric thyroid carcinoma. Cancer Med 5 (7): 1535-41, 2016. [PUBMED Abstract]
  8. Yamashita S, Saenko V: Mechanisms of Disease: molecular genetics of childhood thyroid cancers. Nat Clin Pract Endocrinol Metab 3 (5): 422-9, 2007. [PUBMED Abstract]

Cuadro clínico inicial y desenlace

Los pacientes de cáncer de tiroides por lo general presentan una masa tiroidea con adenopatía cervical indolora o sin ella.[1-3] A partir de los antecedentes médicos y familiares, así como el conjunto de sus manifestaciones, el cáncer de tiroides tal vez forme parte de un síndrome de predisposición tumoral como la neoplasia endocrina múltiple o el síndrome DICER1.[4]

La edad más joven se relaciona con una presentación clínica más maligna del carcinoma de tiroides diferenciado. Los niños tienen una proporción más alta de compromiso ganglionar (40–90 % en niños vs. 20–50 % en adultos) y metástasis pulmonares (20–30 % en niños vs. 2 % en adultos) que los adultos.[5,6] Los tumores de mayor tamaño (>1 cm), la diseminación extratiroidea y la enfermedad multifocal se relacionan con aumento del riesgo de metástasis ganglionares.[7] De manera análoga, los niños prepúberes presentan un cuadro clínico inicial más maligno que los adolescentes en etapa puberal; además, los niños tienen un grado más alto de diseminación extratiroidea, compromiso de ganglios linfáticos y metástasis pulmonares. Sin embargo, el desenlace es similar entre los grupos de prepúberes y adolescentes.[8]

En el caso del cáncer de tiroides bien diferenciado, se encontró que el sexo masculino, un tamaño grande del tumor y las metástasis a distancia tienen importancia pronóstica de mortalidad temprana; sin embargo, incluso los pacientes del grupo de riesgo más alto con metástasis a distancia tuvieron una supervivencia excelente de 90 %.[9] En un análisis de un registro francés, se observaron desenlaces similares en niños y adultos jóvenes que presentaron carcinoma de tiroides papilar después de recibir radioterapia en comparación con niños y adultos jóvenes con carcinoma de tiroides papilar espontáneo; los pacientes que recibieron antes irradiación tiroidea para una enfermedad benigna padecieron más tumores invasores y compromiso ganglionar.[10]

Bibliografía
  1. Thompson GB, Hay ID: Current strategies for surgical management and adjuvant treatment of childhood papillary thyroid carcinoma. World J Surg 28 (12): 1187-98, 2004. [PUBMED Abstract]
  2. Rachmiel M, Charron M, Gupta A, et al.: Evidence-based review of treatment and follow up of pediatric patients with differentiated thyroid carcinoma. J Pediatr Endocrinol Metab 19 (12): 1377-93, 2006. [PUBMED Abstract]
  3. Wada N, Sugino K, Mimura T, et al.: Treatment strategy of papillary thyroid carcinoma in children and adolescents: clinical significance of the initial nodal manifestation. Ann Surg Oncol 16 (12): 3442-9, 2009. [PUBMED Abstract]
  4. Schultz KA, Yang J, Doros L, et al.: DICER1-pleuropulmonary blastoma familial tumor predisposition syndrome: a unique constellation of neoplastic conditions. Pathol Case Rev 19 (2): 90-100, 2014. [PUBMED Abstract]
  5. Rivkees SA, Mazzaferri EL, Verburg FA, et al.: The treatment of differentiated thyroid cancer in children: emphasis on surgical approach and radioactive iodine therapy. Endocr Rev 32 (6): 798-826, 2011. [PUBMED Abstract]
  6. Al-Qurayshi Z, Hauch A, Srivastav S, et al.: A National Perspective of the Risk, Presentation, and Outcomes of Pediatric Thyroid Cancer. JAMA Otolaryngol Head Neck Surg 142 (5): 472-8, 2016. [PUBMED Abstract]
  7. Kim J, Sun Z, Adam MA, et al.: Predictors of nodal metastasis in pediatric differentiated thyroid cancer. J Pediatr Surg 52 (1): 120-123, 2017. [PUBMED Abstract]
  8. Lazar L, Lebenthal Y, Steinmetz A, et al.: Differentiated thyroid carcinoma in pediatric patients: comparison of presentation and course between pre-pubertal children and adolescents. J Pediatr 154 (5): 708-14, 2009. [PUBMED Abstract]
  9. Shayota BJ, Pawar SC, Chamberlain RS: MeSS: A novel prognostic scale specific for pediatric well-differentiated thyroid cancer: a population-based, SEER outcomes study. Surgery 154 (3): 429-35, 2013. [PUBMED Abstract]
  10. Sassolas G, Hafdi-Nejjari Z, Casagranda L, et al.: Thyroid cancers in children, adolescents, and young adults with and without a history of childhood exposure to therapeutic radiation for other cancers. Thyroid 23 (7): 805-10, 2013. [PUBMED Abstract]

Evaluación diagnóstica

La evaluación inicial de un niño o adolescente con un nódulo tiroideo incluye los siguientes procedimientos:

  • Ecografía de tiroides.
  • Concentración sérica de la hormona estimulante de la tiroides (TSH).
  • Concentración de la tiroglobulina sérica.

Las pruebas del funcionamiento de la tiroides suelen dar resultados normales, pero la tiroglobulina quizás esté elevada.

La aspiración con aguja fina como abordaje diagnóstico inicial es sensible y útil. Sin embargo, en casos dudosos se debe considerar realizar una biopsia o resección abiertas.[1-4] Es posible que la biopsia o resección abiertas también se prefieran para los niños de corta edad (consultar el Cuadro 2).

Cuadro 2. Carcinomas de tiroides infantiles
Características histológicas Anomalía cromosómica relacionada Cuadro clínico inicial Diagnóstico Tratamiento
FCE = factor de crecimiento epidérmico; NEM2 = neoplasia endocrina múltiple de tipo 2; TSH = hormona estimulante de la tiroides; 131I = yodo I 131.
Carcinoma de tiroides diferenciado El gen RET/PTC es más común en niños. Las mutaciones BRAF V600E se presentan con similar frecuencia en adultos y niños. Relación con síndromes tumorales hereditarios infrecuentes: Poliposis vinculada con APC, síndrome DICER1, complejo de Carney, síndrome de tumor hamartomatoso PTEN, síndrome de Werner. Masa tiroidea. Los niños prepúberes presentan más a menudo metástasis ganglionares y pulmonares. Ecografía, TSH, tiroglobulina. Biopsia con aguja fina o biopsia abierta. Tiroidectomía total o subtotal; 131I; hormona tiroidea. Para la enfermedad metastásica o recidivante, es posible que los inhibidores de tirosina cinasa o de los receptores del FCE sean beneficiosos.
Carcinoma de tiroides medular NEM2 Muy maligno. 50 % con metástasis en el momento de la presentación inicial. En la NEM2 familiar, prueba de RET. Intervención quirúrgica radical. Se indica la tiroidectomía profiláctica para los casos familiares.
Bibliografía
  1. Willgerodt H, Keller E, Bennek J, et al.: Diagnostic value of fine-needle aspiration biopsy of thyroid nodules in children and adolescents. J Pediatr Endocrinol Metab 19 (4): 507-15, 2006. [PUBMED Abstract]
  2. Stevens C, Lee JK, Sadatsafavi M, et al.: Pediatric thyroid fine-needle aspiration cytology: a meta-analysis. J Pediatr Surg 44 (11): 2184-91, 2009. [PUBMED Abstract]
  3. Bargren AE, Meyer-Rochow GY, Sywak MS, et al.: Diagnostic utility of fine-needle aspiration cytology in pediatric differentiated thyroid cancer. World J Surg 34 (6): 1254-60, 2010. [PUBMED Abstract]
  4. Redlich A, Boxberger N, Kurt Werner S, et al.: Sensitivity of fine-needle biopsy in detecting pediatric differentiated thyroid carcinoma. Pediatr Blood Cancer 59 (2): 233-7, 2012. [PUBMED Abstract]

Tratamiento del carcinoma de tiroides papilar y folicular

Las opciones de tratamiento del carcinoma de tiroides papilar y folicular (diferenciado) son las siguientes:

  1. Cirugía.
  2. Ablación con yodo radiactivo.

Se revisó en detalle el tratamiento del cáncer de tiroides diferenciado en niños.[1,2] En 2015, la American Thyroid Association (ATA) Task Force on Pediatric Thyroid Cancer publicó directrices para el tratamiento de los nódulos tiroideos y el cáncer de tiroides diferenciado en niños y adolescentes. Estas directrices (que se resumen a continuación) se basan en datos probatorios científicos y opiniones de paneles de expertos con una evaluación cuidadosa del grado de comprobación científica.[2]

  1. Evaluación preoperatoria.[2]
    1. Un ecografista con experiencia deberá obtener una ecografía detallada de todas las regiones del cuello usando una sonda de alta resolución y la técnica de Doppler. Se deberá realizar un examen ecográfico completo antes de la cirugía.
    2. Se debe considerar la adición de imágenes transversales (tomografía computarizada [TC] con contraste o imágenes por resonancia magnética) cuando se sospeche invasión del tracto aerodigestivo. Es importante destacar que, si se utilizan medios de contraste yodados, será necesario demorar la evaluación y el tratamiento con yodo radiactivo durante 2 a 3 meses hasta que disminuya la carga total de yodo en el cuerpo.
    3. Es posible considerar obtener imágenes del tórax (radiografía o TC) para pacientes con enfermedad considerable en los ganglios linfáticos cervicales.
    4. Se obtiene una centellografía nuclear de la tiroides solo si el paciente presenta al inicio inhibición de la hormona estimulante de la tiroides (TSH).
    5. No se recomienda el uso rutinario de una gammagrafía ósea ni de una tomografía por emisión de positrones (TEP) con flúor F18-fludesoxiglucosa.
  2. Cirugía.[2]

    Lo ideal es que la cirugía de tiroides en los niños la lleve a cabo un cirujano que tenga experiencia en la realización de procedimientos endocrinos en niños y en un hospital que cuente con toda la gama de especializaciones pediátricas.

    1. Tiroidectomía:

      La tiroidectomía total es la opción de tratamiento recomendada para los pacientes con carcinoma papilar o folicular. La recomendación del panel de expertos de la ATA se basa en datos que indican un aumento de incidencia de enfermedad bilateral (30 %) y multifocal (65 %). En pacientes con un tumor unilateral pequeño confinado en la glándula, se podría contemplar una tiroidectomía subtotal para limitar el daño permanente en esas estructuras; se deja una porción muy pequeña de tejido tiroideo (<1–2 %) en el punto de entrada del nervio laríngeo recurrente o de las glándulas paratiroideas superiores. La tiroidectomía total también permite mejorar el uso del yodo radiactivo para las pruebas de imágenes y el tratamiento.

    2. Disección central del cuello:
      • Se debe realizar una disección central terapéutica de los ganglios linfáticos cuando hay indicios clínicos de metástasis centrales o laterales en el cuello.[3]
      • Se debe considerar una disección profiláctica central del cuello para pacientes sin indicios clínicos de invasión extratiroidea macroscópica o metástasis locorregional de acuerdo con la focalidad del tumor y el tamaño del tumor primario. Sin embargo, debido al aumento de mortalidad relacionada con la disección central de ganglios linfáticos, es importante individualizar con cuidado cada caso según los el grado de la disección.[4]
    3. Disección lateral del cuello:
      • Se recomienda la confirmación citológica de enfermedad metastásica en los ganglios linfáticos laterales del cuello antes de la cirugía.
      • No se recomienda la disección profiláctica rutinaria lateral de los ganglios linfáticos del cuello.
  3. Clasificación y asignación del riesgo.[2]

    Pese a los datos probatorios limitados para el entorno pediátrico, la ATA Task Force recomienda el uso del sistema de clasificación tumor-ganglio-metástasis (TNM) para asignar a los pacientes a 1 de 3 grupos de riesgo. (Para obtener más información sobre el sistema TNM, consultar la sección sobre Información sobre los estadios del cáncer de tiroides en el sumario del PDQ Tratamiento del cáncer de tiroides en adultos). Esta estrategia de clasificación permite definir el riesgo de enfermedad cervical persistente y ayuda a determinar cuáles pacientes se deben someter a estadificación posoperatoria para establecer la presencia de metástasis a distancia.

    1. Riesgo pediátrico bajo según la ATA: enfermedad confinada a la tiroides con enfermedad N0 o NX, o pacientes con N1a diagnosticada de manera fortuita (metástasis microscópica en un número pequeño de ganglios centrales del cuello). Si bien estos pacientes tienen el riesgo más bajo de metástasis a distancia, aún tienen riesgo de enfermedad cervical residual; en particular, si la cirugía inicial no incluyó una disección central del cuello.
    2. Riesgo pediátrico intermedio según la ATA: enfermedad extensa N1a o enfermedad N1b mínima. Si bien estos pacientes tienen un riesgo bajo de metástasis a distancia, tienen un aumento del riesgo de una resección incompleta de ganglios linfáticos y de enfermedad cervical persistente.
    3. Riesgo pediátrico alto según la ATA: enfermedad regional extensa (N1b) o enfermedad localmente invasora (T4), con metástasis a distancia o sin esta. Los pacientes de este grupo tienen el riesgo más alto de resección incompleta, enfermedad persistente y metástasis a distancia.
  4. Estadificación posoperatoria y vigilancia a largo plazo.[2]

    La estadificación inicial se deberá realizar dentro de las 12 semanas posteriores a la cirugía con el propósito de evaluar si hay indicios de enfermedad locorregional persistente e identificar a los pacientes con más probabilidades de beneficiarse de la terapia adicional con yodo I 131 (131I). Los niveles de riesgo pediátrico establecidos por la ATA (definidos antes) ayudan a determinar el alcance de las pruebas posoperatorias.

    1. Riesgo pediátrico bajo según la ATA:
      • La estadificación posoperatoria inicial incluye una evaluación de la tiroglobulina con inhibición de la TSH. No se necesita una gammagrafía diagnóstica con yodo I 123 (123I).
      • Se debe procurar obtener concentraciones de 0,5 a 1,0 mUI/l con la inhibición de la TSH.
      • Para los pacientes sin indicios de enfermedad, la vigilancia debe incluir una ecografía a los 6 meses de la cirugía y, luego, cada año durante 5 años; las concentraciones de tiroglobulina (durante la terapia de reemplazo hormonal) se miden cada 3 a 6 meses durante 2 años y, luego, cada año.
    2. Riesgo pediátrico intermedio según la ATA:
      • La estadificación posoperatoria inicial incluye evaluación de la tiroglobulina con estimulación de la TSH y una gammagrafía diagnóstica de todo el cuerpo con 123I para estratificación y determinación con 131I posteriores.
      • Se debe procurar obtener concentraciones de 0,1 a 0,5 mUI/l con la inhibición de la TSH.
      • Para los pacientes sin indicios de enfermedad, la vigilancia debe incluir una ecografía a los 6 meses de la cirugía y, luego, cada 6 a 12 meses durante 5 años (después, con menor frecuencia); las concentraciones de tiroglobulina (durante la terapia de reemplazo hormonal) se miden cada 3 a 6 meses durante 3 años y, luego, cada año.
      • Se debe considerar la evaluación de la tiroglobulina con estimulación de la TSH y la gammagrafía diagnóstica con 123I al cabo de 1 o 2 años en los pacientes tratados con 131I.
    3. Riesgo pediátrico alto según la ATA:
      • La estadificación posoperatoria inicial incluye evaluación de la tiroglobulina con estimulación de la TSH y una gammagrafía diagnóstica de todo el cuerpo con 123I para estratificación y determinación con 131I posteriores.
      • Se debe procurar obtener concentraciones de 0,1 mUI/l con la inhibición de la TSH.
      • Para los pacientes sin indicios de enfermedad, la vigilancia debe incluir una ecografía a los 6 meses de la cirugía y, luego, cada 6 a 12 meses durante 5 años (después, con menor frecuencia); las concentraciones de tiroglobulina (durante la terapia de remplazo hormonal) se miden cada 3 a 6 meses durante 3 años y, luego, cada año.
      • Se debe considerar la evaluación de la tiroglobulina con estimulación de la TSH y, posiblemente, una gammagrafía diagnóstica con 123I al cabo de 1 o 2 años en los pacientes tratados con 131I.

    Para los pacientes con anticuerpos contra la tiroglobulina, se debe sopesar demorar la estadificación posoperatoria para dar tiempo a la depuración de anticuerpos, excepto para pacientes con enfermedad T4 o M1.

  5. Ablación con yodo radiactivo.[2]

    La meta del tratamiento con 131I es disminuir el riesgo de recidiva y la mortalidad mediante la eliminación de la enfermedad ávida de yodo.

    1. La ATA Task Force recomienda el uso de 131I para tratar la enfermedad locorregional ávida de yodo que es persistente o la enfermedad ganglionar que no se puede resecar, así como las metástasis distantes que se sabe o presume que están ávidas de yodo. Para los pacientes con enfermedad persistente después de la administración de 131I, se debe individualizar la decisión de continuar el tratamiento con 131I de acuerdo con los datos clínicos y la respuesta previa.
    2. Para facilitar la absorción de 131I por la enfermedad residual ávida de yodo, la concentración de la TSH debe ser superior a 30 mUI/l. Esta concentración se alcanza después de interrumpir la levotiroxina durante 14 días como mínimo. Para pacientes que no logran una respuesta adecuada de la TSH o no toleran un hipotiroidismo grave, se puede usar TSH humana recombinante.
    3. La administración terapéutica de 131I a menudo se basa en una dosificación empírica o una dosimetría de todo el cuerpo. La ATA Task Force no logró recomendar un abordaje específico porque no hay datos de comparación del tratamiento empírico con el tratamiento guiado por dosimetría. Sin embargo, debido a las diferencias de tamaño corporal y la depuración del yodo en los niños en comparación con los adultos, se recomienda que todas las actividades que involucren el uso de 131I sean calculadas por personas expertas en la dosificación para niños.
    4. Para todos los niños, se recomienda una gammagrafía de todo el cuerpo 4 a 7 días después del tratamiento con 131I. La adición de una TC por emisión de fotón único con una TC convencional integrada (TCEFU-TC) puede ayudar a distinguir la ubicación anatómica de la absorción focal.

      Los efectos tardíos del tratamiento con 131I, que son poco frecuentes, incluyen disfunción de las glándulas salivales, inhibición de la médula ósea, fibrosis pulmonar y segundas neoplasias malignas.[5]

Bibliografía
  1. Waguespack SG, Francis G: Initial management and follow-up of differentiated thyroid cancer in children. J Natl Compr Canc Netw 8 (11): 1289-300, 2010. [PUBMED Abstract]
  2. Francis GL, Waguespack SG, Bauer AJ, et al.: Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 25 (7): 716-59, 2015. [PUBMED Abstract]
  3. Kim J, Sun Z, Adam MA, et al.: Predictors of nodal metastasis in pediatric differentiated thyroid cancer. J Pediatr Surg 52 (1): 120-123, 2017. [PUBMED Abstract]
  4. Machens A, Elwerr M, Thanh PN, et al.: Impact of central node dissection on postoperative morbidity in pediatric patients with suspected or proven thyroid cancer. Surgery 160 (2): 484-92, 2016. [PUBMED Abstract]
  5. Albano D, Bertagna F, Panarotto MB, et al.: Early and late adverse effects of radioiodine for pediatric differentiated thyroid cancer. Pediatr Blood Cancer 64 (11): , 2017. [PUBMED Abstract]

Tratamiento del carcinoma de tiroides papilar y folicular recidivantes

En general, los pacientes con cáncer de tiroides diferenciado tienen una supervivencia excelente y relativamente pocos efectos secundarios.[1-3] Sin embargo, la recidiva es frecuente (35–45 %) y se observa más a menudo en niños menores de 10 años y aquellos con ganglios linfáticos cervicales palpables en el momento del diagnóstico.[4,5] Es posible prever que incluso en los pacientes con un tumor diseminado a los pulmones no disminuirá la esperanza de vida después de un tratamiento adecuado.[6] Cabe notar que, entre 35 y 45 % de los cánceres de tiroides en los niños y adolescentes expresan el transportador unidireccional de sodio-yodo (una glicoproteína cotransportadora unida a la membrana) que es esencial para la captación de yodo y la síntesis de la hormona tiroidea. Los pacientes con tumores que expresan el transportador unidireccional de sodio-yodo tienen un riesgo más bajo de recidiva.[7]

Por lo habitual, el cáncer de tiroides papilar responde al tratamiento de ablación con yodo radiactivo.[8]

Se observó que los inhibidores de la tirosina cinasa (ITC), como el sorafenib, inducen respuestas en hasta 15 % de los pacientes adultos con enfermedad metastásica.[9] También se documentó una respuesta al sorafenib en un caso pediátrico.[10]

Los ITC aprobados para el tratamiento de adultos son los siguientes:

  • Sorafenib. El sorafenib es un inhibidor del receptor del factor de crecimiento endotelial vascular (RFCEV), el receptor del factor de crecimiento derivado de plaquetas (FCDP) y de la cinasa RAS. En un ensayo aleatorizado de fase III, el sorafenib mejoró la supervivencia sin progresión (SSP) en comparación con un placebo en pacientes adultos con cáncer de tiroides diferenciado resistente al yodo radiactivo y localmente avanzado o metastásico.[11] En un informe de caso, el sorafenib produjo una respuesta radiográfica en un paciente de 8 años con carcinoma de tiroides papilar metastásico.[12] La Administración de Alimentos y Medicamentos de los Estados Unidos (FDA) aprobó el sorafenib en noviembre de 2013 para el tratamiento de adultos con carcinoma de tiroides diferenciado metastásico en estadio tardío.
  • Lenvatinib. El lenvatinib es un inhibidor del RFCEV, el receptor del factor de crecimiento de fibroblastos, el FCDP, así como de RET y KIT. En un estudio aleatorizado de fase III de adultos con cáncer de tiroides diferenciado resistente al tratamiento con yodo I 131 (131I), el lenvatinib se relacionó con una mejora significativa de la SSP y la tasa de respuesta en comparación con un placebo.[13] La FDA aprobó el lenvatinib en febrero de 2015 para el tratamiento de adultos con carcinoma de tiroides diferenciado progresivo resistente al yodo radiactivo.

Dada la alta incidencia de mutaciones en BRAF en pacientes con carcinoma de tiroides papilar, se está investigando el uso de los inhibidores selectivos de RAF/MEK.[9,14,15]

(Para obtener más información, consultar el sumario del PDQ Tratamiento del cáncer de tiroides en adultos).

Opciones de tratamiento en evaluación clínica del carcinoma de tiroides papilar y folicular recidivante

La información en inglés sobre los ensayos clínicos patrocinados por el Instituto Nacional del Cáncer (NCI) se encuentra en el portal de Internet del NCI. Para obtener información en inglés sobre ensayos clínicos patrocinados por otras organizaciones, consultar el portal de Internet ClinicalTrials.gov.

A continuación, se presenta un ejemplo de ensayo clínico nacional o institucional en curso:

  • APEC1621 (NCT03155620) (Pediatric MATCH: Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders): En el NCI-Children's Oncology Group Pediatric Pediatric Molecular Analysis for Therapeutic Choice (MATCH), que se conoce como Pediatric MATCH, se emparejarán fármacos de terapia dirigida con cambios moleculares específicos identificados mediante ensayo de secuenciación dirigida de última generación para más de 3000 mutaciones en más de 160 genes presentes en tumores sólidos resistentes al tratamiento o recidivantes. Los niños y adolescentes de 1 a 21 años son aptos para participar en este ensayo.

    El tejido tumoral de la enfermedad progresiva o recidivante debe estar disponible para la caracterización molecular. Se ofrecerá tratamiento del Pediatric MATCH a los pacientes con tumores de variantes moleculares comprendidas en los grupos de tratamiento del ensayo. Para obtener más información en inglés, consultar el enlace APEC1621 (NCT03155620) en el portal de Internet ClinicalTrials.gov.

Bibliografía
  1. Vassilopoulou-Sellin R, Goepfert H, Raney B, et al.: Differentiated thyroid cancer in children and adolescents: clinical outcome and mortality after long-term follow-up. Head Neck 20 (6): 549-55, 1998. [PUBMED Abstract]
  2. Wiersinga WM: Thyroid cancer in children and adolescents--consequences in later life. J Pediatr Endocrinol Metab 14 (Suppl 5): 1289-96; discussion 1297-8, 2001. [PUBMED Abstract]
  3. Jarzab B, Handkiewicz-Junak D, Wloch J: Juvenile differentiated thyroid carcinoma and the role of radioiodine in its treatment: a qualitative review. Endocr Relat Cancer 12 (4): 773-803, 2005. [PUBMED Abstract]
  4. Alessandri AJ, Goddard KJ, Blair GK, et al.: Age is the major determinant of recurrence in pediatric differentiated thyroid carcinoma. Med Pediatr Oncol 35 (1): 41-6, 2000. [PUBMED Abstract]
  5. Borson-Chazot F, Causeret S, Lifante JC, et al.: Predictive factors for recurrence from a series of 74 children and adolescents with differentiated thyroid cancer. World J Surg 28 (11): 1088-92, 2004. [PUBMED Abstract]
  6. Biko J, Reiners C, Kreissl MC, et al.: Favourable course of disease after incomplete remission on (131)I therapy in children with pulmonary metastases of papillary thyroid carcinoma: 10 years follow-up. Eur J Nucl Med Mol Imaging 38 (4): 651-5, 2011. [PUBMED Abstract]
  7. Patel A, Jhiang S, Dogra S, et al.: Differentiated thyroid carcinoma that express sodium-iodide symporter have a lower risk of recurrence for children and adolescents. Pediatr Res 52 (5): 737-44, 2002. [PUBMED Abstract]
  8. Powers PA, Dinauer CA, Tuttle RM, et al.: Treatment of recurrent papillary thyroid carcinoma in children and adolescents. J Pediatr Endocrinol Metab 16 (7): 1033-40, 2003. [PUBMED Abstract]
  9. Kloos RT, Ringel MD, Knopp MV, et al.: Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol 27 (10): 1675-84, 2009. [PUBMED Abstract]
  10. Waguespack SG, Sherman SI, Williams MD, et al.: The successful use of sorafenib to treat pediatric papillary thyroid carcinoma. Thyroid 19 (4): 407-12, 2009. [PUBMED Abstract]
  11. Brose MS, Nutting CM, Jarzab B, et al.: Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384 (9940): 319-28, 2014. [PUBMED Abstract]
  12. Iyer P, Mayer JL, Ewig JM: Response to sorafenib in a pediatric patient with papillary thyroid carcinoma with diffuse nodular pulmonary disease requiring mechanical ventilation. Thyroid 24 (1): 169-74, 2014. [PUBMED Abstract]
  13. Schlumberger M, Tahara M, Wirth LJ, et al.: Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 372 (7): 621-30, 2015. [PUBMED Abstract]
  14. Falchook GS, Long GV, Kurzrock R, et al.: Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379 (9829): 1893-901, 2012. [PUBMED Abstract]
  15. Hayes DN, Lucas AS, Tanvetyanon T, et al.: Phase II efficacy and pharmacogenomic study of Selumetinib (AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid carcinoma with or without follicular elements. Clin Cancer Res 18 (7): 2056-65, 2012. [PUBMED Abstract]

Tratamiento del carcinoma de tiroides medular

Los carcinomas de tiroides medular por lo general se relacionan con el síndrome de neoplasia endocrina múltiple 2 (NEM2). (Para obtener más información, consultar la sección sobre Síndromes de neoplasia endocrina múltiple (NEM) y complejo de Carney en sumario del PDQ Tratamiento de los cánceres poco comunes en la niñez). Tienen una evolución clínica más maligna; 50 % de los casos presentan metástasis hematógenas en el momento del diagnóstico.[1] Los pacientes de carcinoma de tiroides medular tienen un pronóstico reservado, a menos que sus tumores sean muy pequeños (microcarcinoma definido como diámetro de <1,0 cm), lo que indica un pronóstico bueno.[2] El Instituto Nacional del Cáncer realiza un estudio sobre la evolución natural del cáncer de tiroides medular en niños y adultos jóvenes (NCT01660984). Para los pacientes con mutaciones en RET de novo y sin antecedentes familiares, las manifestaciones que no son endocrinas, como la ganglioneuromatosis intestinal, o los estigmas esqueléticos u oculares, quizá faciliten el diagnóstico temprano y conduzcan a desenlaces más favorables.[3]

Las opciones de tratamiento del carcinoma de tiroides medular son las siguientes:

  1. Cirugía: el tratamiento de los niños con carcinoma de tiroides medular es sobre todo quirúrgico. En una revisión de 430 pacientes de 0 a 21 años con cáncer de tiroides medular, se notificó que la edad más avanzada (16 a 21 años) en el momento del diagnóstico, un tumor de más de 2 cm de diámetro, los márgenes afectados por cáncer después de una tiroidectomía total y las metástasis ganglionares se relacionaron con un pronóstico menos favorable.[4] Los investigadores concluyeron que la disección central profiláctica de los ganglios linfáticos no se debería realizar en pacientes de cáncer de tiroides medular hereditario si sus niveles séricos basales de calcitonina son inferiores a 40 pg/ml.[5]

    La mayoría de los casos de carcinoma de tiroides medular se presentan en el contexto de los síndromes NEM2A y NEM2B. En esos casos familiares, se indican pruebas y asesoramiento genético tempranos, y se recomienda cirugía profiláctica para los niños con una mutación de la línea germinal en RET. Las fuertes correlaciones entre genotipo y fenotipo facilitaron la formulación de directrices de intervención, incluso sobre los exámenes de detección y la edad en que se debería realizar la tiroidectomía profiláctica.[1]

  2. Terapia con inhibidor de tirosina cinasa (ITC): se evaluaron y aprobaron varios ITC para pacientes con cáncer de tiroides medular en estadio avanzado.
    • Vandetanib. La FDA aprobó el vandetanib (un inhibidor de la cinasa de RET, del receptor del factor de crecimiento endotelial vascular [RFCEV] y de la señalización del receptor del factor de crecimiento epidérmico) para el tratamiento del cáncer de tiroides medular sintomático o progresivo en pacientes adultos con enfermedad irresecable, localmente avanzada o metastásica. Su aprobación se fundamentó en un ensayo de fase III aleatorizado y controlado con placebo, en el que se observó una mejoría notable de la supervivencia sin progresión en los pacientes asignados al azar para recibir vandetanib (cociente de riesgos instantáneos, 0,35); en el ensayo también se observó una ventaja de la tasa de respuesta objetiva para los pacientes que recibieron vandetanib (44 vs. 1 % para el grupo de placebo).[6,7]

      En un ensayo de fase I/II, se trataron con vandetanib a los niños con carcinoma de tiroides medular metastásico localmente avanzado o con carcinoma de tiroides medular metastásico. De 16 pacientes, solo 1 no respondió al tratamiento y 7 presentaron una respuesta parcial con una tasa de respuesta objetiva de 44 %. La enfermedad recidivó en 3 de esos pacientes, pero 11 de 16 pacientes tratados con vandetanib seguían recibiendo la terapia en el momento del informe. La duración de la terapia en la cohorte completa osciló entre 2 y 52 meses, con una mediana de 27 meses.[8]

    • Cabozantinib. El cabozantinib (un inhibidor de las cinasas RET y MET y del RFCEV) también mostró actividad contra el cáncer de tiroides medular irresecable (10 a 35 pacientes adultos [29 %] presentaron una respuesta parcial).[9] La FDA aprobó el cabozantinib en noviembre de 2012 para el tratamiento de adultos con cáncer de tiroides medular metastásico.

(Para obtener más información, consultar la sección sobre Síndromes de neoplasia endocrina múltiple [NEM] y complejo de Carney en el sumario del PDQ Tratamiento de los cánceres poco comunes en la niñez y la sección en inglés sobre Treatment for those with MTC en el sumario del PDQ Genetics of Endocrine and Neuroendocrine Neoplasias).

Opciones de tratamiento en evaluación clínica para el carcinoma de tiroides medular

La información en inglés sobre los ensayos clínicos patrocinados por el Instituto Nacional del Cáncer (NCI) se encuentra en el portal de Internet del NCI. Para obtener información en inglés sobre ensayos clínicos patrocinados por otras organizaciones, consultar el portal de Internet ClinicalTrials.gov.

A continuación, se presenta un ejemplo de ensayo clínico nacional o institucional en curso:

  • APEC1621 (NCT03155620) (Pediatric MATCH: Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders): En el NCI-Children's Oncology Group Pediatric Pediatric Molecular Analysis for Therapeutic Choice (MATCH), que se conoce como Pediatric MATCH, se emparejarán fármacos de terapia dirigida con cambios moleculares específicos identificados mediante ensayo de secuenciación dirigida de última generación para más de 3000 mutaciones en más de 160 genes presentes en tumores sólidos resistentes al tratamiento o recidivantes. Los niños y adolescentes de 1 a 21 años son aptos para participar en este ensayo.

    El tejido tumoral de la enfermedad progresiva o recidivante debe estar disponible para la caracterización molecular. Se ofrecerá tratamiento del Pediatric MATCH a los pacientes con tumores de variantes moleculares comprendidas en los grupos de tratamiento del ensayo. Para obtener más información en inglés, consultar el enlace APEC1621 (NCT03155620) en el portal de Internet ClinicalTrials.gov.

Bibliografía
  1. Waguespack SG, Rich TA, Perrier ND, et al.: Management of medullary thyroid carcinoma and MEN2 syndromes in childhood. Nat Rev Endocrinol 7 (10): 596-607, 2011. [PUBMED Abstract]
  2. Krueger JE, Maitra A, Albores-Saavedra J: Inherited medullary microcarcinoma of the thyroid: a study of 11 cases. Am J Surg Pathol 24 (6): 853-8, 2000. [PUBMED Abstract]
  3. Brauckhoff M, Machens A, Lorenz K, et al.: Surgical curability of medullary thyroid cancer in multiple endocrine neoplasia 2B: a changing perspective. Ann Surg 259 (4): 800-6, 2014. [PUBMED Abstract]
  4. Raval MV, Sturgeon C, Bentrem DJ, et al.: Influence of lymph node metastases on survival in pediatric medullary thyroid cancer. J Pediatr Surg 45 (10): 1947-54, 2010. [PUBMED Abstract]
  5. Machens A, Elwerr M, Thanh PN, et al.: Impact of central node dissection on postoperative morbidity in pediatric patients with suspected or proven thyroid cancer. Surgery 160 (2): 484-92, 2016. [PUBMED Abstract]
  6. Wells SA Jr, Robinson BG, Gagel RF, et al.: Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 30 (2): 134-41, 2012. [PUBMED Abstract]
  7. Thornton K, Kim G, Maher VE, et al.: Vandetanib for the treatment of symptomatic or progressive medullary thyroid cancer in patients with unresectable locally advanced or metastatic disease: U.S. Food and Drug Administration drug approval summary. Clin Cancer Res 18 (14): 3722-30, 2012. [PUBMED Abstract]
  8. Fox E, Widemann BC, Chuk MK, et al.: Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin Cancer Res 19 (15): 4239-48, 2013. [PUBMED Abstract]
  9. Kurzrock R, Sherman SI, Ball DW, et al.: Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol 29 (19): 2660-6, 2011. [PUBMED Abstract]

Consideraciones especiales para el tratamiento de niños con cáncer

El cáncer es poco frecuente en niños y adolescentes, aunque desde 1975 se ha observado un aumento gradual de la incidencia general de cáncer infantil.[1] Para los niños y adolescentes con cáncer, se debe considerar la derivación a centros médicos que cuenten con un equipo multidisciplinario de especialistas en oncología con experiencia en el tratamiento de los cánceres que se presentan en la niñez y la adolescencia. Este abordaje de equipo multidisciplinario incorpora la pericia de los siguientes profesionales de la atención de la salud y otros para asegurar que los niños reciban el tratamiento, los cuidados de apoyo y la rehabilitación que les permitan alcanzar una supervivencia y calidad de vida óptimas:

  • Médicos de atención primaria.
  • Cirujanos pediatras.
  • Radioncólogos.
  • Oncólogos o hematólogos pediatras.
  • Especialistas en rehabilitación.
  • Enfermeros especializados en pediatría.
  • Trabajadores sociales.
  • Especialistas en vida infantil.
  • Psicólogos.

(Para obtener información específica sobre los cuidados médicos de apoyo para niños y adolescentes con cáncer, consultar los sumarios del PDQ sobre Cuidados médicos de apoyo).

La American Academy of Pediatrics estableció pautas para los centros de oncología pediátrica y su función en el tratamiento de los pacientes de cáncer infantil.[2] En estos centros de oncología pediátrica, se dispone de ensayos clínicos para la mayoría de los tipos de cáncer que se presentan en niños y adolescentes, y se ofrece la oportunidad de participar a la mayoría de los pacientes y familiares. En general, los ensayos clínicos para los niños y adolescentes con diagnóstico de cáncer se diseñan a fin de comparar un tratamiento que parece mejor con el tratamiento actual aceptado como estándar. La mayoría de los avances en la identificación de tratamientos curativos para los cánceres infantiles se lograron mediante ensayos clínicos. Para obtener información sobre los ensayos clínicos en curso, consultar el portal de Internet del NCI.

Se han logrado mejoras notables en la supervivencia de niños y adolescentes con cáncer. Entre 1975 y 2010, la mortalidad por cáncer infantil disminuyó en más de 50 %.[3] Los niños y adolescentes sobrevivientes de cáncer necesitan un seguimiento minucioso, ya que los efectos secundarios del tratamiento del cáncer pueden persistir o presentarse meses o años después de este. (Para obtener información específica sobre la incidencia, el tipo y la vigilancia de los efectos tardíos en los niños y adolescentes sobrevivientes de cáncer, consultar el sumario del PDQ Efectos tardíos del tratamiento anticanceroso en la niñez).

El cáncer infantil es una enfermedad poco común con menos de 15 000 casos anuales diagnosticados antes de los 20 años de edad en los Estados Unidos.[4] En la Rare Disease Act of 2002 de los Estados Unidos, se define una “enfermedad rara” o poco común como la que afecta a poblaciones de menos de 200 000 personas; de este modo y, por definición, todos los cánceres infantiles se considerarán enfermedades raras. Tal como se indica a continuación, la designación de un tumor infantil raro o poco común no es uniforme entre los grupos internacionales:

  • En el proyecto cooperativo Tumori Rari in Pediatric Age (TREP), se define un tumor infantil poco común como el que tiene una incidencia de menos de dos casos por millón de personas por año y que no se incluye en otros ensayos clínicos.[5]
  • El Children's Oncology Group optó por definir los cánceres infantiles poco comunes según la lista del subgrupo XI de la International Classification of Childhood Cancer, en la que se incluyen el cáncer de tiroides, el melanoma y los cánceres de piel no melanomas, además de múltiples tipos de carcinomas (por ejemplo, el carcinoma de la corteza suprarrenal, el carcinoma de nasofaringe y la mayoría de los carcinomas de tipo adulto, como el cáncer de mama, el cáncer colorrectal, etc.).[6] Estos cánceres representan casi 4 % de aquellos diagnosticados en niños de 0 a 14 años, en comparación con casi 20 % de los cánceres diagnosticados en adolescentes de 15 a 19 años.[7] La mayoría de los cánceres del subgrupo XI son melanomas o cáncer de tiroides, mientras que los otros tipos de cáncer del subgrupo XI solo representan 1,3 % de los cánceres en niños de 0 a 14 años y 5,3 % de los cánceres en adolescentes de 15 a 19 años.

Estudiar estos cánceres poco comunes es un reto por la incidencia baja de pacientes con cualquier diagnóstico individual, el predominio de estos cánceres poco comunes en adolescentes y la carencia de ensayos clínicos con adolescentes que tienen estos cánceres.

Es posible obtener información sobre estos tumores en fuentes confiables para adultos con cáncer; por ejemplo, el sumario del PDQ Tratamiento del cáncer de tiroides en adultos.

Bibliografía
  1. Smith MA, Seibel NL, Altekruse SF, et al.: Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 28 (15): 2625-34, 2010. [PUBMED Abstract]
  2. Corrigan JJ, Feig SA; American Academy of Pediatrics: Guidelines for pediatric cancer centers. Pediatrics 113 (6): 1833-5, 2004. [PUBMED Abstract]
  3. Smith MA, Altekruse SF, Adamson PC, et al.: Declining childhood and adolescent cancer mortality. Cancer 120 (16): 2497-506, 2014. [PUBMED Abstract]
  4. Ward E, DeSantis C, Robbins A, et al.: Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 64 (2): 83-103, 2014 Mar-Apr. [PUBMED Abstract]
  5. Ferrari A, Bisogno G, De Salvo GL, et al.: The challenge of very rare tumours in childhood: the Italian TREP project. Eur J Cancer 43 (4): 654-9, 2007. [PUBMED Abstract]
  6. Pappo AS, Krailo M, Chen Z, et al.: Infrequent tumor initiative of the Children's Oncology Group: initial lessons learned and their impact on future plans. J Clin Oncol 28 (33): 5011-6, 2010. [PUBMED Abstract]
  7. Howlader N, Noone AM, Krapcho M, et al., eds.: SEER Cancer Statistics Review, 1975-2012. Bethesda, Md: National Cancer Institute, 2015. Also available online. Last accessed August 13, 2018.

Modificaciones a este sumario (08/09/2018)

Los sumarios del PDQ con información sobre el cáncer se revisan con regularidad y se actualizan a medida que se obtiene nueva información. Esta sección describe los cambios más recientes introducidos en este sumario a partir de la fecha arriba indicada.

Se incorporaron cambios editoriales en este sumario.

Este sumario está redactado y mantenido por el Consejo editorial del PDQ sobre el tratamiento pediátrico, que es editorialmente independiente del NCI. El sumario refleja una revisión independiente de la bibliografía y no representa una declaración de políticas del NCI o de los NIH. Para mayor información sobre las políticas de los sumarios y la función de los consejos editoriales del PDQ que mantienen los sumarios del PDQ, consultar en Información sobre este sumario del PDQ y la página sobre Banco de datos de información de cáncer - PDQ®.

Información sobre este sumario del PDQ

Propósito de este sumario

Este sumario del PDQ con información sobre el cáncer para profesionales de la salud proporciona información integral revisada por expertos y con fundamento en datos probatorios sobre el tratamiento del cáncer de tiroides infantil. El propósito es servir como fuente de información y ayuda para los médicos que atienden a pacientes de cáncer. No ofrece pautas ni recomendaciones formales para tomar decisiones relacionadas con la atención sanitaria.

Revisores y actualizaciones

El Consejo editorial del PDQ sobre el tratamiento pediátrico, cuya función editorial es independiente del Instituto Nacional del Cáncer (NCI), revisa con regularidad este sumario y, en caso necesario, lo actualiza. Este sumario refleja una revisión bibliográfica independiente y no constituye una declaración de la política del Instituto Nacional del Cáncer ni de los Institutos Nacionales de la Salud (NIH).

Cada mes, los miembros de este Consejo examinan artículos publicados recientemente para determinar si se deben:

  • tratar en una reunión,
  • citar textualmente, o
  • sustituir o actualizar, si ya se citaron con anterioridad.

Los cambios en los sumarios se deciden mediante consenso, una vez que los integrantes del Consejo evalúan la solidez de los datos probatorios en los artículos publicados y determinan la forma en que se incorporarán al sumario.

Los revisores principales del sumario sobre Tratamiento del cáncer de tiroides infantil son:

  • Denise Adams, MD (Children's Hospital Boston)
  • Karen J. Marcus, MD (Dana-Farber Cancer Institute/Boston Children's Hospital)
  • Paul A. Meyers, MD (Memorial Sloan-Kettering Cancer Center)
  • Thomas A. Olson, MD (Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta - Egleston Campus)
  • Alberto S. Pappo, MD (St. Jude Children's Research Hospital)
  • R Beverly Raney, MD (Consultant)
  • Arthur Kim Ritchey, MD (Children's Hospital of Pittsburgh of UPMC)
  • Carlos Rodriguez-Galindo, MD (St. Jude Children's Research Hospital)
  • Stephen J. Shochat, MD (St. Jude Children's Research Hospital)

Cualquier comentario o pregunta sobre el contenido de este sumario se debe enviar mediante el formulario de comunicación en Cancer.gov/espanol del NCI. No comunicarse con los miembros del Consejo para enviar preguntas o comentarios sobre los sumarios. Los miembros del Consejo no responderán a preguntas del público.

Grados de comprobación científica

En algunas referencias bibliográficas de este sumario se indica el grado de comprobación científica. El propósito de estas designaciones es ayudar al lector a evaluar la solidez de los datos probatorios que sustentan el uso de ciertas intervenciones o enfoques. El Consejo editorial del PDQ sobre el tratamiento pediátrico emplea un sistema de jerarquización formal para establecer las designaciones del grado de comprobación científica.

Permisos para el uso de este sumario

PDQ (Physician Data Query) es una marca registrada. Se autoriza el libre uso del texto de los documentos del PDQ. Sin embargo, no se podrá identificar como un sumario de información sobre cáncer del PDQ del NCI, salvo que se reproduzca en su totalidad y se actualice con regularidad. Por otra parte, se permitirá que un autor escriba una oración como “En el sumario del PDQ del NCI de información sobre la prevención del cáncer de mama se describen, en breve, los siguientes riesgos: [incluir fragmento del sumario]”.

Se sugiere citar la referencia bibliográfica de este sumario del PDQ de la siguiente forma:

PDQ® sobre el tratamiento pediátrico. PDQ Tratamiento del cáncer de tiroides infantil. Bethesda, MD: National Cancer Institute. Actualización: <MM/DD/YYYY>. Disponible en: https://www.cancer.gov/espanol/tipos/tiroides/pro/tratamiento-tiroides-infantil-pdq. Fecha de acceso: <MM/DD/YYYY>.

Las imágenes en este sumario se reproducen con el permiso del autor, el artista o la editorial para uso exclusivo en los sumarios del PDQ. La utilización de las imágenes fuera del PDQ requiere la autorización del propietario, que el Instituto Nacional del Cáncer no puede otorgar. Para obtener más información sobre el uso de las ilustraciones de este sumario o de otras imágenes relacionadas con el cáncer, consultar Visuals Online, una colección de más de 2000 imágenes científicas.

Cláusula sobre el descargo de responsabilidad

Según la solidez de los datos probatorios, las opciones de tratamiento se clasifican como “estándar” o “en evaluación clínica”. Estas clasificaciones no deben fundamentar ninguna decisión sobre reintegros de seguros. Para obtener más información sobre cobertura de seguros, consultar la página Manejo de la atención del cáncer disponible en Cancer.gov/espanol.

Para obtener más información

En Cancer.gov/espanol, se ofrece más información sobre cómo comunicarse o recibir ayuda en ¿En qué podemos ayudarle?. También se puede enviar un mensaje de correo electrónico mediante este formulario.

  • Actualización: 9 de agosto de 2018

Si desea copiar algo de este texto, vea Derechos de autor y uso de imágenes y contenido sobre instrucciones de derechos de autor y permisos. En caso de reproducción digital permitida, por favor, dé crédito al Instituto Nacional del Cáncer como su creador, y enlace al producto original del NCI usando el título original del producto; por ejemplo, “Tratamiento del cáncer de tiroides infantil (PDQ®)–Versión para profesionales de salud publicada originalmente por el Instituto Nacional del Cáncer”.

Agradecemos sus comentarios sobre este artículo. Todos los comentarios deberán satisfacer nuestra política de comentarios.