Treatment Clinical Trials for Mesothelioma

Clinical trials are research studies that involve people. The clinical trials on this list are for mesothelioma treatment. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 44
1 2 Next >

  • Nivolumab and Ipilimumab in Treating Patients with Rare Tumors

    This clinical trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07 / 27 / 2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03 / 20 / 2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05 / 10 / 2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10 / 17 / 2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03 / 20 / 2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible 9. Intrahepatic cholangiocarcinoma (closed to accrual 03 / 20 / 2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03 / 20 / 2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03 / 30 / 2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual 04 / 15 / 2019) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual 04 / 15 / 2019) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non-seminomatous tumor C) Teratoma with malignant transformation (closed to accrual 3 / 15 / 2019) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07 / 27 / 2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12 / 19 / 2017) 24. Pheochromocytoma, malignant 25. Paraganglioma (closed to accrual 11 / 29 / 2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09 / 19 / 2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11 / 29 / 2018) 31. Adrenal cortical tumors (closed to accrual 06 / 27 / 2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12 / 22 / 2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03 / 15 / 2019) 34. Adenoid cystic carcinoma (closed to accrual 02 / 06 / 2018) 35. Vulvar cancer 36. MetaPLASTIC carcinoma (of the breast) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09 / 26 / 2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors / extramammary Paget’s disease 40. Peritoneal mesothelioma 41. Basal cell carcinoma 42. Clear cell cervical cancer 43. Esthenioneuroblastoma 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell cervical endometrial cancer 46. Clear cell ovarian cancer 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)
    Location: 854 locations

  • Atezolizumab, Pemetrexed Disodium, Cisplatin, and Surgery with or without Radiation Therapy in Treating Patients with Stage I-III Pleural Malignant Mesothelioma

    This phase I pilot trial studies how well atezolizumab, pemetrexed disodium, cisplatin, and surgery with or without radiation therapy works in treating patients with stage I-III pleural malignant mesothelioma. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Pemetrexed disodium may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving atezolizumab, pemetrexed disodium, and cisplatin before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving atezolizumab after surgery may kill any remaining tumor cells.
    Location: 172 locations

  • A Study of XmAb®20717 in Subjects With Selected Advanced Solid Tumors

    This is a Phase 1, multiple dose, ascending dose escalation study to define a MTD / RD and regimen of XmAb20717, to describe safety and tolerability, to assess PK and immunogenicity, and to preliminarily assess anti-tumor activity of XmAb20717 in subjects with selected advanced solid tumors.
    Location: 14 locations

  • Pembrolizumab with or without Anetumab Ravtansine in Treating Patients with Mesothelin-Positive Pleural Mesothelioma

    This randomized phase I / II trial studies the side effects and how well pembrolizumab with or without anetumab ravtansine work in treating patients with mesothelin-positive pleural mesothelioma. Monoclonal antibodies, such as anetumab ravtansine and pembrolizumab, may interfere with the ability of tumor cells to grow and spread.
    Location: 13 locations

  • Surgery, Chemotherapy, and Intensity Modulated Radiation Therapy in Treating Patients with Stage I-III Pleural Mesothelioma

    This phase II trial studies the side effects of surgery, chemotherapy, and intensity modulated radiation therapy in treating patients with stage I-III pleural mesothelioma. Drugs used in chemotherapy, such as pemetrexed disodium, cisplatin, and carboplatin, work in different ways to stop the growth of cancer, either by killing the cancer cells, by stopping them from dividing, or by stopping them from spreading. Intensity modulated radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy before radiation therapy may help kill more tumor cells after surgery.
    Location: 11 locations

  • Methoxyamine, Cisplatin, and Pemetrexed Disodium in Treating Patients with Advanced Solid Tumors or Mesothelioma That Cannot Be Removed by Surgery or Mesothelioma That Is Refractory to Pemetrexed Disodium and Cisplatin or Carboplatin

    This phase I / II trial studies the side effects and the best dose of methoxyamine when given together with cisplatin and pemetrexed disodium and to see how well it works in treating patients with solid tumors or mesothelioma that have spread to other places in the body and usually cannot be cured or controlled with standard treatment (advanced), or mesothelioma that does not respond to pemetrexed disodium and cisplatin or carboplatin (refractory). Methoxyamine may shrink the tumor and may also help cisplatin and pemetrexed disodium work better by making tumor cells more sensitive to the drugs. Drugs used in chemotherapy, such as cisplatin and pemetrexed disodium, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving methoxyamine together with cisplatin and pemetrexed disodium may be a better treatment for solid tumors or mesothelioma than methoxyamine and pemetrexed disodium.
    Location: 11 locations

  • Ph 2 / 3 Study in Subjects With MPM w / Low ASS 1 Expression to Assess ADI-PEG 20 With Pemetrexed and Cisplatin

    This is a study of ADI-PEG 20 (pegylated arginine deiminase), an arginine degrading enzyme versus placebo in patients with malignant pleural mesothelioma with low argininosuccinate synthetase 1 expression. Malignant pleural mesothelioma have been found to require arginine, an amino acid. Thus the hypothesis is that by restricting arginine with ADI-PEG 20, the malignant pleural mesothelioma cells will starve and die.
    Location: 9 locations

  • Safety Study of MGD009 in B7-H3-expressing Tumors

    The purpose of this study is to evaluate the safety of MGD009 when given to patients with B7-H3-expressing tumors. The study will also evaluate what is the highest dose of MGD009 that can be given safely. Assessments will be done to see how the drug acts in the body (pharmacokinetics (PK), pharmacodynamics (PD) and to evaluate potential anti-tumor activity of MGD009.
    Location: 12 locations

  • A Dose-Escalation Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of IPI-549

    This dose-escalation study will evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of IPI-549 monotherapy and IPI-549 in combination with nivolumab in subjects with advanced solid tumors.
    Location: 9 locations

  • Avelumab and Stereotactic Body Radiation Therapy in Treating Patients with Malignant Mesothelioma

    This phase I / II trial studies how well avelumab and stereotactic body radiation therapy work in treating patients with malignant mesothelioma. Monoclonal antibodies, such as avelumab, may interfere with the ability of tumor cells to grow and spread. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method can kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. Giving avelumab and stereotactic body radiation therapy may work better in treating patients with malignant mesothelioma.
    Location: 7 locations

  • Pevonedistat with or without Pemetrexed Disodium and Cisplatin in Treating Patients with Malignant Mesothelioma

    This phase I / II trial studies the side effects and best dose of pevonedistat with or without pemetrexed disodium and cisplatin, and to see how well they work in treating patients with malignant mesothelioma. Pevonedistat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as pemetrexed disodium and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pevonedistat, pemetrexed disodium, and cisplatin may work better in treating patients with malignant mesothelioma.
    Location: 7 locations

  • Dose Escalation and Expansion Study of GSK3359609 in Subjects With Selected Advanced Solid Tumors (INDUCE-1)

    GSK3359609 is an anti-Inducible T cell Co-Stimulator (ICOS) receptor agonist antibody intended for the treatment of cancers of different histology. This is a first-time-in-human (FTIH), open-label, multicenter study designed to investigate the safety, pharmacology, and preliminary antitumor activity in subjects with advanced or recurrent solid tumors with the aim to establish recommended dose(s) of GSK3359609 for further exploration as monotherapy and in combination with pembrolizumab or chemotherapy regimens. The study is comprised of two primary parts, each composed of two phases: Part 1: GSK3359609 monotherapy with Part 1A as dose escalation phase and Part 1B as cohort expansion phase; Part 2: GSK3359609 combination therapy with Part 2A pembrolizumab or GSK3174998 combination dose escalation phase and Part 2B expansion phase with pembrolizumab. Part 2A GSK3359609 combinations with chemotherapy will only consist of safety run-in cohorts. Each part and phase of the study includes a screening period, a treatment period, and a follow-up period. The primary objective of the study is to determine the safety, tolerability, maximum tolerated dose or the maximum administered dose of GSK3359609 alone or in combination.
    Location: 6 locations

  • Minimally-Invasive Cytoreduction and Hyperthermic Intraperitoneal Chemotherapy in Treating Patients with Low-Volume Peritoneal Carcinomatosis

    This phase I trial studies a minimally-invasive cytoreduction and hyperthermic intraperitoneal chemotherapy in treating patients with a small amount (low-volume) of peritoneal carcinomatosis, which is a term used to describe the widespread of cancerous tumors in the peritoneal cavity. Minimally-invasive cytoreduction is a less invasive type of surgery for peritoneal carcinomatosis and may have fewer side effects and improve recovery. Drugs used in chemotherapy, such as mitomycin C, cisplatin, and doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Heating a chemotherapy solution and infusing it directly into the abdomen may kill more tumor cells. Giving minimally-invasive cytoreduction with hyperthermic intraperitoneal chemotherapy may work better in treating peritoneal carcinomatosis.
    Location: 5 locations

  • Phase 1 Study of INBRX-109 in Subjects With Locally Advanced or Metastatic Solid Tumors Including Sarcomas

    This is a first-in-human, open-label, non-randomized, two-part phase 1 trial of INBRX-109, which is a recombinant humanized multivalent antibody targeting the human death receptor 5 (DR5).
    Location: 4 locations

  • Tazemetostat Rollover Study (TRuST): An Open-Label Rollover Study

    This study will provide continuing availability to tazemetostat as a single agent to subjects who have completed their participation in an antecedent tazemetostat study (either with monotherapy or combination therapy). In addition, long-term safety and overall survival will be collected.
    Location: 5 locations

  • A Phase 1 / 2 Study to Investigate the Safety, Biologic and Anti-tumor Activity of ONCOS-102 in Combination With Durvalumab in Subjects With Advanced Peritoneal Malignancies

    This is a two-part Phase 1 / 2 dose escalation and dose expansion study of the GMCSF-encoding adenovirus, ONCOS-102, in combination with anti-programmed death ligand-1 (PDL1) antibody, durvalumab, in adult subjects with peritoneal disease who have failed prior standard chemotherapy and have histologically confirmed platinum-resistant or refractory epithelial ovarian cancer or colorectal cancer.
    Location: 3 locations

  • A Study of Rebastinib (DCC-2036) in Combination With Carboplatin in Patients With Advanced or Metastatic Solid Tumors

    This is an open-label Phase 1b / 2 multicenter study of rebastinib (DCC-2036) in combination with carboplatin designed to evaluate the safety, tolerability, and pharmacokinetics (PK) in patients with advanced or metastatic solid tumors.
    Location: 4 locations

  • Phase II Nivolumab and Ramucirumab for Patients With Previously-Treated Mesothelioma

    This study will evaluate the combination of Nivolumab and Ramucirumab in patients with previously-treated mesothelioma.
    Location: 2 locations

  • CBP501, Cisplatin and Nivolumab in Advanced Refractory Tumors

    This is a multicenter, open-label, phase 1b study of CBP501 / cisplatin / nivolumab combination administered once every 21 days to patients with advanced solid tumors.
    Location: 2 locations

  • Chemotherapy With or Without Porfimer Sodium-Based Photodynamic Therapy During Surgery in Treating Patients With Malignant Pleural Mesothelioma

    This randomized phase II trial studies how well chemotherapy with or without porfimer sodium-based photodynamic therapy during surgery works in treating patients with malignant pleural mesothelioma. Drugs used in chemotherapy, such as pemetrexed disodium, work in different ways to stop the growth of cancer, either by killing the cancer cells, by stopping them from dividing, or by stopping them from spreading. Photodynamic therapy uses a drug, such as porfimer sodium, that becomes active when it is exposed to a certain kind of light. When the drug is active, tumor cells are killed. It is not yet known whether chemotherapy is more effective with or without porfimer sodium-based photodynamic therapy during surgery in treating patients with malignant pleural mesothelioma.
    Location: 2 locations

  • A Study of LY3434172, a PD-1 and PD-L1 Bispecific Antibody, in Advanced Cancer

    The main purpose of this study is to evaluate the safety and tolerability of the study drug LY3434172, a PD-1 / PD-L1 bispecific antibody, in participants with advanced solid tumors.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Phase 1 / 2 Trial of TC-210 T Cells in Patients With Advanced Mesothelin-Expressing Cancer

    TC-210 T cells are a novel cell therapy that consists of autologous genetically engineered T cells expressing a single-domain antibody that recognizes human Mesothelin, fused to the CD3-epsilon subunit which, upon expression, is incorporated into the endogenous T cell receptor (TCR) complex. This Phase 1 / 2 study aims to establish the recommended Phase 2 dose (RP2D) and subsequently determine an overall response rate in patients with advanced mesothelin-expressing cancers.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Intraperitoneal MCY-M11 (Mesothelin-targeting CAR) for Treatment of Advanced Ovarian Cancer and Peritoneal Mesothelioma

    This is a phase 1 dose escalation study to characterize the feasibility, safety and tolerability of MCY-M11 when administered as an intraperitoneal (IP) infusion for 3 weekly doses for women with platinum resistant high grade serous adenocarcinoma of the ovary, primary peritoneum, or fallopian tube, and subjects with peritoneal mesothelioma with recurrence after prior chemotherapy.
    Location: Siteman Cancer Center at Washington University, Saint Louis, Missouri

  • A Safety and Tolerability Study of INCAGN02385 in Select Advanced Malignancies

    The purpose of this study is to determine the safety, tolerability, and preliminary efficacy of INCAGN02385 in participants with advanced malignancies.
    Location: Vanderbilt University / Ingram Cancer Center, Nashville, Tennessee

  • Olaparib in People With Malignant Mesothelioma

    Background: The drug olaparib may stop cancer cells from fixing damage to their DNA. It has been approved to treat certain cancers in people that were born with a mutation in the BRCA gene. It has not been approved for treating mesothelioma. But some people with mesothelioma have mutations in a gene, BAP1 related to BRCA. Researchers want to see if olaparib can work in patients with mutations in this gene. They also want to see if works on mutations in other genes or patients without any mutations. They want to see if olaparib causes mesothelioma tumors to shrink. Objective: To study the effect of olaparib on mesothelioma. Eligibility: People ages 18 and older with malignant mesothelioma that has already been treated Design: Participants will be screened with Sample of tumor tissue or fluid Medical history Physical exam Blood, heart, and urine tests Scans and x-rays Participants will give blood and tissue samples. These will be genetically tested. The study will be done in 21-day cycles. Participants will take tables of the study drug 2 times each day. They will get information on what food and drugs to avoid during the study. They will get information about birth control. They will keep a diary of doses and symptoms. Participants will have blood and urine tests and scans every few weeks. Participants will be told any important genetic testing results. Participants will stay in the study until their disease gets worse or the participant or their doctor chooses to stop it. About 30 days after stopping the study drug, participants will have a follow-up visit. They will have a medical history, physical exam, blood tests, and scans. Some participants will continue to have scans every 6 weeks. ...
    Location: National Institutes of Health Clinical Center, Bethesda, Maryland


1 2 Next >