Treatment Clinical Trials for Neuroblastoma

Clinical trials are research studies that involve people. The clinical trials on this list are for neuroblastoma treatment. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 67
1 2 3 Next >

  • Response and Biology-Based Risk Factor-Guided Therapy in Treating Younger Patients with Non-high Risk Neuroblastoma

    This phase III trial studies how well response and biology-based risk factor-guided therapy works in treating younger patients with non-high risk neuroblastoma. Sometimes a tumor may not need treatment until it progresses. In this case, observation may be sufficient. Measuring biomarkers in tumor cells may help plan when effective treatment is necessary and what the best treatment is. Response and biology-based risk factor-guided therapy may be effective in treating patients with non-high risk neuroblastoma and may help to avoid some of the risks and side effects related to standard treatment.
    Location: 182 locations

  • Iobenguane I-131 or Crizotinib and Standard Therapy in Treating Younger Patients with Newly-Diagnosed High-Risk Neuroblastoma or Ganglioneuroblastoma

    This phase III trial studies iobenguane I-131 or crizotinib and standard therapy in treating younger patients with newly-diagnosed high-risk neuroblastoma or ganglioneuroblastoma. Radioactive drugs, such as iobenguane I-131, may carry radiation directly to tumor cells and not harm normal cells. Crizotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving iobenguane I-131 or crizotinib and standard therapy may work better compared to crizotinib and standard therapy alone in treating younger patients with neuroblastoma or ganglioneuroblastoma.
    Location: 127 locations

  • Tazemetostat in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with EZH2, SMARCB1, or SMARCA4 Gene Mutations (A Pediatric MATCH Treatment Trial)

    This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with solid tumors, non-hodgkin lymphoma, or histiocytic disorders that have spread to other places in the body and have come back or do not respond to treatment and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
    Location: 110 locations

  • Erdafitinib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with FGFR Mutations (A Pediatric MATCH Treatment Trial)

    This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have spread to other places in the body and have come back or do not respond to treatment with FGFR mutations. Erdafitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
    Location: 107 locations

  • Irinotecan Hydrochloride, Temozolomide, and Dinutuximab with or without Eflornithine in Treating Patients with Relapsed or Refractory Neuroblastoma

    This phase II trial studies how well irinotecan hydrochloride (irinotecan), temozolomide, and dinutuximab work with or without eflornithine in treating patients with neuroblastoma that has come back or that isn't responding to treatment. Drugs used in chemotherapy, such as irinotecan hydrochloride and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as dinutuximab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Eflornithine blocks the production of chemicals called polyamines that are important in the growth of cancer cells. Giving eflornithine with irinotecan hydrochloride, temozolomide, and dinutuximab, may work better in treating patients with relapsed or refractory neuroblastoma.
    Location: 94 locations

  • Palbociclib in Treating Patients with Relapsed or Refractory Rb Positive Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with Activating Alterations in Cell Cycle Genes (A Pediatric MATCH Treatment Trial)

    This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
    Location: 99 locations

  • PI3K / mTOR Inhibitor LY3023414 in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with TSC or PI3K / MTOR Mutations (A Pediatric MATCH Treatment Trial)

    This phase II Pediatric MATCH trial studies how well PI3K / mTOR inhibitor LY3023414 works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K / MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). PI3K / mTOR inhibitor LY3023414 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
    Location: 108 locations

  • Larotrectinib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with NTRK Fusions (A Pediatric MATCH Treatment Trial)

    This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that have spread to other places in the body and have come back or do not respond to treatment. Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
    Location: 109 locations

  • Vemurafenib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with BRAF V600 Mutations (A Pediatric MATCH Treatment Trial)

    This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body and have come back or do not respond to treatment. Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
    Location: 107 locations

  • Olaparib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with Defects in DNA Damage Repair Genes (A Pediatric MATCH Treatment Trial)

    This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
    Location: 105 locations

  • Standard Chemotherapy in Treating Young Patients with Medulloblastoma or Other Central Nervous System Primitive Neuro-ectodermal Tumors

    This phase IV trial studies how well standard chemotherapy works in treating young patients with medulloblastoma or other central nervous system primitive neuro-ectodermal tumors. Drugs used in standard chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: 36 locations

  • A Study of Pembrolizumab (MK-3475) in Pediatric Participants With an Advanced Solid Tumor or Lymphoma (MK-3475-051 / KEYNOTE-051)

    This is a two-part study of pembrolizumab (MK-3475) in pediatric participants who have any of the following types of cancer: - advanced melanoma (6 months to <18 years of age), - advanced, relapsed or refractory programmed death-ligand 1 (PD-L1)-positive malignant solid tumor or other lymphoma (6 months to <18 years of age), - relapsed or refractory classical Hodgkin lymphoma (rrcHL) (3 years to <18 years of age), or - advanced relapsed or refractory microsatellite-instability-high (MSI-H) solid tumors (6 months to <18 years of age). Part 1 will find the maximum tolerated dose (MTD) / maximum administered dose (MAD), confirm the dose, and find the recommended Phase 2 dose (RP2D) for pembrolizumab therapy. Part 2 will further evaluate the safety and efficacy at the pediatric RP2D. The primary hypothesis of this study is that intravenous (IV) administration of pembrolizumab to children with either advanced melanoma; a PD-L1 positive advanced, relapsed or refractory solid tumor or other lymphoma; advanced, relapsed or refractory MSI-H solid tumor; or rrcHL, will result in an Objective Response Rate (ORR) greater than 10% for at least one of these types of cancer. With Amendment 8, enrollment of participants with solid tumors and of participants aged 6 months to <12 years with melanoma were closed. Enrollment of participants aged ≥12 years to ≤18 years with melanoma continues. Enrollment of participants with MSI-H solid tumors also continues.
    Location: 19 locations

  • Study Of Entrectinib (Rxdx-101) in Children and Adolescents With No Curative First-Line Treatment Option, Recurrent or Refractory Solid Tumors And Primary Cns Tumors, With or Without Trk, Ros1, or Alk Fusions

    This is a 5-part, open-label, Phase 1 / 2 multicenter, dose escalation study in pediatric patients with relapsed refractory solid tumors; 2) primary CNS tumors; 3) neuroblastoma; 4) non-neuroblastoma, extracranial solid tumors with NTRK1 / 2 / 3, ROS1 or ALK gene rearrangements; and 5) patients who are otherwise eligible but unable to swallow capsules. The study is designed to explore the safety, maximum tolerated dose (MTD) or recommended Phase 2 dose (RP2D), pharmacokinetics, and antitumor activity of entrectinib.
    Location: 18 locations

  • Adavosertib and Irinotecan Hydrochloride in Treating Younger Patients with Relapsed or Refractory Solid Tumors

    This phase I / II trial studies the side effects and best dose of adavosertib and irinotecan hydrochloride in treating younger patients with solid tumors that have come back (relapsed) or that have not responded to standard therapy (refractory). Adavosertib and irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
    Location: 22 locations

  • 131I-MIBG Alone VS. 131I-MIBG With Vincristine and Irinotecan VS131I-MIBG With Vorinistat

    This study will compare three treatment regimens containing metaiodobenzylguanidine (MIBG) and compare their effects on tumor response and associated side effects, to determine if one therapy is better than the other for people diagnosed with relapsed or persistent neuroblastoma.
    Location: 11 locations

  • MIBG With Dinutuximab

    131I-Metaiodobenzylguanidine (131I-MIBG) is one of the most effective therapies utilized for neuroblastoma patients with refractory or relapsed disease. In this pediatric phase 1 trial, 131I-MIBG will be given in combination with dinutuximab, a chimeric 14.18 monoclonal antibody. This study will utilize a traditional Phase I dose escalation 3+3 design to determine a recommended phase 2 pediatric dose. An expansion cohort of an additional 6 patients may then be enrolled.
    Location: 9 locations

  • Dinutuximab, Sargramostim, and Combination Chemotherapy in Treating Patients with Newly Diagnosed High-Risk Neuroblastoma Undergoing Stem Cell Transplant

    This phase II trial studies the side effects and how well dinutuximab and sargramostim work with combination chemotherapy in patients with high-risk neuroblastoma undergoing stem cell transplant. Immunotherapy with monoclonal antibodies, such as dinutuximab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Sargramostim helps the body produce normal infection-fighting white blood cells. Giving chemotherapy before a stem cell transplant, with drugs such as cisplatin, etoposide, vincristine, doxorubicin, cyclophosphamide, thiotepa, melphalan, etoposide, carboplatin, topotecan, and isotretinoin, helps kill any cancer cells that are in the body and helps make room in a patient's bone marrow for new blood-forming cells (stem cells). Giving dinutuximab and sargramostim with combination chemotherapy may work better than combination chemotherapy alone in treating patients with high-risk neuroblastoma undergoing stem cell transplant.
    Location: 7 locations

  • Study Of Palbociclib Combined With Chemotherapy In Pediatric Patients With Recurrent / Refractory Solid Tumors

    This study will evaluate palbociclib in combination with chemotherapy (temozolomide and irinotecan) in children, adolescents and young adults with recurrent or refractory solid tumors. The main purpose of this study is to evaluate the safety of palbociclib in combination with chemotherapy in order to estimate the maximum tolerated dose. Pharmacokinetics and efficacy of palbociclib in combination with chemotherapy will be evaluated.
    Location: 15 locations

  • Safety, Tolerability, Efficacy and Pharmacokinetics of Copanlisib in Pediatric Patients

    This study is designed to investigate whether the use of copanlisib is safe, feasible and beneficial to pediatric patients with solid solid tumors or lymphoma that are recurrent or refractory to standard therapy.
    Location: 11 locations

  • Immunotherapy of Relapsed Refractory Neuroblastoma With Expanded NK Cells

    This NANT trial will determine the maximum tolerated dose (MTD) of autologous expanded natural killer (NK) cells when combined with standard dosing of ch14.18 and will assess the feasibility of adding lenalidomide at the recommended Phase II dose of the expanded NK cells with ch14.18, for treatment of children with refractory or recurrent neuroblastoma.
    Location: 9 locations

  • Study to Investigate Safety, Pharmacokinetic (PK), Pharmacodynamic (PD) and Clinical Activity of Trametinib in Subjects With Cancer or Plexiform Neurofibromas and Trametinib in Combination With Dabrafenib in Subjects With Cancers Harboring V600 Mutations

    This is a 4-part (Part A, Part B, Part C and Part D), Phase I / IIa, multi-center, open label, study in pediatric subjects with refractory or recurrent tumors. Part A is a repeat dose, dose escalation monotherapy study that will identify the recommended phase II dose (RP2D) on the continuous dosing schedule using a 3 + 3 dose- escalation procedure. Part B will evaluate the preliminary activity of trametinib monotherapy in 4 disease-specific cohorts of subjects. Each cohort will enroll at least 10 response-evaluable subjects (evaluable for response is defined as a subject with a pre-dose and at least 1 post-dose disease assessment or clinical assessment of progression of disease). Part C is will be a 3+3 study design to determine the safety, tolerability and preliminary activity of the RP2D of trametinib in combination with a limited dose escalation of dabrafenib. Part C will enroll up to 24 subjects. Part D will evaluate the preliminary activity of trametinib in combination with dabrafenib in 2 disease-specific cohorts of subjects diagnosed with LGG and LCH. LGG cohort will enroll approximately 20 response-evaluable subjects and the LCH cohort will enroll approximately 10 response-evaluable subjects. The overall goal of this trial is to efficiently establish safe, pharmacologically relevant dose of trametinib monotherapy and trametinib in combination with dabrafenib in infants, children and adolescents and determine preliminary activity of trametinib monotherapy and trametinib in combination with dabrafenib in selected recurrent, refractory or unresectable childhood tumors.
    Location: 8 locations

  • A Study of the Safety and Pharmacokinetics of Venetoclax in Pediatric and Young Adult Patients With Relapsed or Refractory Malignancies

    An open-label, global, multi-center study to evaluate the safety and pharmacokinetics of venetoclax monotherapy, to determine the dose limiting toxicity (DLT) and the recommended Phase 2 dose (RPTD), and to assess the preliminary efficacy of venetoclax in pediatric and young adult participants with relapsed or refractory malignancies.
    Location: 8 locations

  • NANT 2015-02: A Phase 1 Study of Lorlatinib (PF-06463922)

    Lorlatinib is a novel inhibitor across ALK variants, including those resistant to crizotinib. In this first pediatric phase 1 trial of lorlatinib, the drug will be utilized as a single agent and in combination with chemotherapy in patients with relapsed / refractory neuroblastoma. The dose escalation phase of this study (Cohort A1) uses a traditional Phase I 3+3 design. Once a recommended phase 2 pediatric dose is identified, an expansion cohort of 6 patients (Cohort B1), within which ALKi naïve patients will be prioritized, will be initiated. Parallel cohorts will be initiated in adults or patients with large BSA (Cohort A2) and in combination with chemotherapy upon establishing RP2D (Cohort B2).
    Location: 7 locations

  • Endoscopic Surgery Followed by Cisplatin and Proton Beam Radiation Therapy in Treating Patients with Nasal Tumors That Cannot Be Removed by Surgery

    This phase II trial studies how well endoscopic surgery followed by cisplatin and proton beam radiation therapy works in treating patients with nasal tumors that cannot be removed by surgery. Endoscopic surgery is a type of operation that uses small tubes containing a camera and small tools so that a large incision does not need to be made. Proton beam radiation therapy uses radioactive material placed directly into or near a tumor to kill tumor cells. Drugs used in chemotherapy, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Endoscopic surgery followed by cisplatin and proton beam radiation therapy may work better in treating patients with nasal tumors.
    Location: 5 locations

  • Fimepinostat in Treating Younger Patients with Relapsed or Refractory Solid Tumors, Central Nervous System Tumors, or Lymphoma

    This phase I trial studies the side effects of fimepinostat in treating younger patients with solid tumors, central nervous system tumors, or lymphoma that has come back or does not respond to treatment. Fimepinostat may stop the growth of cancer or tumor cells by blocking some of the enzymes needed for cell growth.
    Location: 5 locations


1 2 3 Next >