Clinical Trials Using Daunorubicin Hydrochloride

  • Resize font
  • Print
  • Email
  • Facebook
  • Twitter
  • Google+
  • Pinterest

Clinical trials are research studies that involve people. The clinical trials on this list are studying Daunorubicin Hydrochloride. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 27
1 2 Next >

  • Combination Chemotherapy with or without Blinatumomab in Treating Patients with Newly Diagnosed BCR-ABL-Negative B Lineage Acute Lymphoblastic Leukemia

    This randomized phase III trial studies combination chemotherapy with blinatumomab to see how well it works compared to induction chemotherapy alone in treating patients with newly diagnosed breakpoint cluster region (BCR)-c-abl oncogene 1, non-receptor tyrosine kinase (ABL)-negative B lineage acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as blinatumomab, may block cancer growth in different ways by targeting certain cells. It is not yet known whether combination chemotherapy is more effective with or without blinatumomab in treating newly diagnosed acute lymphoblastic leukemia.
    Location: 422 locations

  • Combination Chemotherapy with or without Bortezomib in Treating Younger Patients with Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Stage II-IV T-Cell Lymphoblastic Lymphoma

    This randomized phase III trial compares how well combination chemotherapy works when given with or without bortezomib in treating patients with newly diagnosed T-cell acute lymphoblastic leukemia or stage II-IV T-cell lymphoblastic lymphoma. Bortezomib may help reduce the number of leukemia or lymphoma cells by blocking some of the enzymes needed for cell growth. It may also help chemotherapy work better by making cancer cells more sensitive to the drugs. It is not yet known if giving standard chemotherapy with or without bortezomib is more effective in treating T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.
    Location: 188 locations

  • Response-Based Chemotherapy in Treating Newly Diagnosed Acute Myeloid Leukemia or Myelodysplastic Syndrome in Younger Patients with Down Syndrome

    This phase III trial studies response-based chemotherapy in treating newly diagnosed acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Response-based chemotherapy separates patients into different risk groups and treats them according to how they respond to the first course of treatment (Induction I). Response-based treatment may be effective in treating acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome while reducing the side effects.
    Location: 142 locations

  • Azacitidine and Combination Chemotherapy in Treating Infants with Acute Lymphoblastic Leukemia and KMT2A Gene Rearrangement

    This pilot phase II trial studies the side effects of azacitidine and combination chemotherapy in infants with acute lymphoblastic leukemia and KMT2A gene rearrangement. Drugs used in chemotherapy, such as methotrexate, prednisolone, daunorubicin hydrochloride, cytarabine, dexamethasone, vincristine sulfate, pegaspargase, hydrocortisone sodium succinate, azacitidine, cyclophosphamide, mercaptopurine, leucovorin calcium, and thioguanine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug may kill more cancer cells.
    Location: 119 locations

  • Imatinib Mesylate and Combination Chemotherapy in Treating Patients with Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    This randomized phase III trial studies how well imatinib mesylate and combination chemotherapy work in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia. Imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving imatinib mesylate and combination chemotherapy may work better in treating patients with Philadelphia chromosome positive acute lymphoblastic leukemia.
    Location: 55 locations

  • Safety Study of AG-120 or AG-221 in Combination With Induction and Consolidation Therapy in Patients With Newly Diagnosed Acute Myeloid Leukemia With an IDH1 and / or IDH2 Mutation

    The purpose of this Phase I, multicenter, clinical trial is to evaluate the safety of AG-120 and AG-221 when given in combination with standard AML induction and consolidation therapy. The study plans to evaluate 1 dose level of AG-120 in subjects with an IDH1 mutation and 1 dose level of AG-221 in subjects with an IDH2 mutation. AG-120 or AG-221 will be administered with 2 types of AML induction therapies (cytarabine with either daunorubicin or idarubicin) and 2 types of AML consolidation therapies (mitoxantrone with etoposide [ME] or cytarabine). After consolidation therapy, subjects may continue on to maintenance therapy and receive daily treatment of AG-120 or AG-221 for up to 2 years from Day 1 of the first induction cycle, or until relapse, development of an unacceptable toxicity, or hematopoietic stem cell transplant (HSCT).
    Location: 13 locations

  • Entospletinib Monotherapy and in Combination With Chemotherapy in Adults With Acute Myeloid Leukemia (AML)

    This study will evaluate the efficacy, safety, and tolerability of entospletinib (GS-9973) when administered as monotherapy or in combination with chemotherapy in adults with acute myeloid leukemia (AML).
    Location: 10 locations

  • Quizartinib With Standard of Care Chemotherapy and as Maintenance Therapy in Patients With Newly Diagnosed FLT3-ITD (+) Acute Myeloid Leukemia (AML)

    This is a phase 3, randomized, double-blind, placebo-control global study. The purpose of this study is to compare the effect of quizartinib versus placebo (administered with standard induction and consolidation chemotherapy, then administered as maintenance therapy for up to 12 cycles) on event-free survival in subjects with FLT3-internal tandem duplication (ITD) positive AML.
    Location: 7 locations

  • A Safety and Tolerability Study of Crenolanib in Combination With Chemotherapy in Newly Diagnosed Acute Myeloid Leukemia Patients With FLT3 Mutations

    This pilot study is designed to evaluate the safety and tolerability of oral crenolanib besylate given sequentially during standard induction and consolidation chemotherapy in patients with newly diagnosed AML with FLT3 activating mutations.
    Location: 6 locations

  • Study of Biomarker-Based Treatment of Acute Myeloid Leukemia

    This screening and multi-sub-study Phase 1b / 2 trial will establish a method for genomic screening followed by assigning and accruing simultaneously to a multi-study "Master Protocol (BMAL-16-001-M1)." The specific subtype of acute myeloid leukemia will determine which sub-study, within this protocol, a participant will be assigned to evaluate investigational therapies or combinations with the ultimate goal of advancing new targeted therapies for approval. The study also includes a marker negative sub-study which will include all screened patients not eligible for any of the biomarker-driven sub-studies.
    Location: 5 locations

  • Combination Chemotherapy in Treating Adult Patients with Newly Diagnosed Acute Lymphoblastic Leukemia

    This phase II trial studies how well combination chemotherapy works in treating adult patients with newly diagnosed acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more cancer cells.
    Location: 4 locations

  • A Study Of PF-06747143, As Single Agent Or In Combination With Standard Chemotherapy In Adult Patients With Acute Myeloid Leukemia

    Two part, dose escalation and dose expansion study. Open label, multi center, non randomized, multiple dose, safety, pharmacokinetic and pharmacodynamic study of single agent PF-06747143 in sequential dose levels of adult patients with refractory or relapsed AML in order to establish maximum tolerated dose (MTD), recommended Phase 2 dose (RP2D) or maximally permitted dose (MPD) following by a 3 arm dose expansion with PF-06747143 in combination with standard of care chemotherapy in adult patients with AML.
    Location: 3 locations

  • Intensive Combination Chemotherapy and Liposomal Cytarabine in Treating Patients with Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    This partially randomized phase II trial studies how well intensive combination chemotherapy and liposomal cytarabine (a form of the anticancer drug cytarabine that is contained inside very tiny, fat-like particles) work in treating patients with acute lymphoblastic leukemia or lymphoblastic lymphoma. Drugs used in chemotherapy, such as daunorubicin hydrochloride, cyclophosphamide, vincristine sulfate, prednisone, leucovorin calcium, cytarabine, etoposide, and liposomal cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Biological therapies, such as mercaptopurine, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Pegaspargase, methotrexate, dasatinib and imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving combination chemotherapy with, rituximab, mercaptopurine, pegaspargase, methotrexate, dasatinib and imatinib mesylate may be an effective treatment for acute lymphoblastic leukemia or lymphoblastic lymphoma.
    Location: 4 locations

  • Pomalidomide after Combination Chemotherapy in Treating Patients with Newly Diagnosed Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome

    This phase I trial studies the side effects and best dose of pomalidomide after combination chemotherapy in treating patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Drugs used in chemotherapy, such as cytarabine, daunorubicin hydrochloride, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Pomalidomide may kill cancer cells by stopping blood flow to the cancer and by stimulating white blood cells to kill cancer cells. Giving more than one drug (combination chemotherapy) and pomalidomide may kill more cancer cells.
    Location: 3 locations

  • Azacitidine or Decitabine in Epigenetic Priming in Patients with Newly Diagnosed Acute Myeloid Leukemia

    This randomized phase II trial studies how well azacitidine or decitabine work in epigenetic priming in patients with newly diagnosed acute myeloid leukemia. Azacitidine and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
    Location: 2 locations

  • Daunorubicin Hydrochloride, Cytarabine, and Nilotinib in Treating Patients with Newly Diagnosed Acute Myeloid Leukemia

    This phase II trial studies how well daunorubicin hydrochloride, cytarabine, and nilotinib work in treating patients newly diagnosed with acute myeloid leukemia. Drugs used in chemotherapy, such as daunorubicin hydrochloride and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Nilotinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving daunorubicin hydrochloride with cytarabine and nilotinib may kill more cancer cells.
    Location: 2 locations

  • Different Therapies in Treating Infants With Newly Diagnosed Acute Leukemia

    RATIONALE: Giving chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, methotrexate, leucovorin, and antithymocyte globulin before and after transplant may stop this from happening. It is not yet known which treatment regimen is most effective in treating acute leukemia. PURPOSE: This randomized clinical trial is studying how well different therapies work in treating infants with newly diagnosed acute leukemia.
    Location: 2 locations

  • Combination Chemotherapy in Treating Patients with Acute Lymphoblastic Leukemia or Lymphoma

    This randomized phase II / III trial studies the side effects of combination chemotherapy and how well it works in treating patients with acute lymphoblastic leukemia or lymphoma. Drugs used in combination chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: St. Jude Children's Research Hospital, Memphis, Tennessee

  • Cytarabine and Daunorubicin Hydrochloride in Treating Patients with Newly Diagnosed Acute Myeloid Leukemia

    This pilot phase II trial studies the side effects of cytarabine and daunorubicin hydrochloride and to see how well they work in treating patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as cytarabine and daunorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading, and may be safer for the heart.
    Location: Comprehensive Cancer Center of Wake Forest University, Winston-Salem, North Carolina

  • Low-Dose Daunorubicin Hydrochloride in Treating Patients with Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

    This pilot clinical trial studies how well low-dose daunorubicin hydrochloride works in treating patients with acute myeloid leukemia or acute lymphoblastic leukemia that has come back or has not responded to treatment. Drugs used in chemotherapy, such as daunorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: University of Kansas Cancer Center, Kansas City, Kansas

  • Selinexor with Induction, Consolidation, and Maintenance Therapy in Treating Older Patients with Acute Myeloid Leukemia

    This pilot phase II trial studies how well selinexor works when given together with induction, consolidation, and maintenance therapy in treating older patients with acute myeloid leukemia. Selinexor may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and daunorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Selinexor with induction, consolidation, and maintenance therapy may kill more cancer cells in older patients with acute myeloid leukemia.
    Location: Comprehensive Cancer Center of Wake Forest University, Winston-Salem, North Carolina

  • Ixazomib Citrate, Daunorubicin Hydrochloride, and Cytarabine in Treating Older Patients with Acute Myeloid Leukemia

    This phase I trial studies the side effects and best dose of ixazomib citrate when given together with daunorubicin hydrochloride and cytarabine in treating older patients with acute myeloid leukemia. Ixazomib citrate blocks enzymes called proteasomes, which may help keep cancer cells from growing. Drugs used in chemotherapy, such as daunorubicin hydrochloride and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ixazomib citrate together with daunorubicin hydrochloride and cytarabine may be a better treatment for acute myeloid leukemia.
    Location: Massachusetts General Hospital, Charlestown, Massachusetts

  • Omacetaxine Mepesuccinate after Cytarabine and Daunorubicin Hydrochloride, Idarubicin, or Mitoxantrone Hydrochloride in Treating Older Patients with Acute Myeloid Leukemia in First Remission

    This pilot clinical trial studies omacetaxine mepesuccinate after cytarabine and daunorubicin hydrochloride, idarubicin, or mitoxantrone hydrochloride in treating older patients with acute myeloid leukemia in first remission (a decrease in or disappearance of signs and symptoms of cancer). Drugs used in chemotherapy, such as omacetaxine mepesuccinate, cytarabine, daunorubicin hydrochloride, idarubicin, and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving omacetaxine mepesuccinate after cytarabine and daunorubicin hydrochloride, idarubicin, or mitoxantrone hydrochloride may kill more cancer cells.
    Location: Emory University Hospital / Winship Cancer Institute, Atlanta, Georgia

  • Inotuzumab Ozogamicin and Frontline Chemotherapy in Treating Young Adults with Newly Diagnosed B Acute Lymphoblastic Leukemia

    This partially randomized phase III trial studies the side effects of inotuzumab ozogamicin and how well it works when given with frontline chemotherapy in treating patients with newly diagnosed B acute lymphoblastic leukemia. Monoclonal antibodies, such as inotuzumab ozogamicin, may block cancer growth in different ways by targeting certain cells. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving inotuzumab ozogamicin with chemotherapy may work better in treating young adults with B acute lymphoblastic leukemia.
    Location: 3 locations

  • 6,8-Bis(benzylthio)octanoic Acid, Cytarabine, and Daunorubicin Hydrochloride in Treating Older Patients with Newly Diagnosed Acute Myeloid Leukemia

    This phase I / II trial studies the side effects and the best dose of 6,8-bis(benzylthio)octanoic acid (CPI-613) when given together with cytarabine and daunorubicin hydrochloride and to see how well it works in treating older patients with newly diagnosed acute myeloid leukemia. CPI-613 may kill tumor cells by turning off mitochondria (small structures in the cancer cells that are found in the cytoplasm [fluid that surrounds the cell nucleus]). Mitochondria are used by cancer cells to produce energy and are the building blocks needed to make more tumor cells. By shutting off mitochondria, CPI-613 may deprive the cancer cells of energy and other supplies that they need to survive and grow. Drugs used in chemotherapy, such as cytarabine and daunorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CPI-613 together with cytarabine and daunorubicin hydrochloride may kill more cancer cells.
    Location: Comprehensive Cancer Center of Wake Forest University, Winston-Salem, North Carolina


1 2 Next >