Clinical Trials Using Atezolizumab

Clinical trials are research studies that involve people. The clinical trials on this list are studying Atezolizumab. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 125
1 2 3 4 5 Next >

  • Combination Chemotherapy with or without Atezolizumab in Treating Patients with Stage III Colon Cancer and Deficient DNA Mismatch Repair

    This phase III trial studies combination chemotherapy and atezolizumab to see how well it works compared with combination chemotherapy alone in treating patients with stage III colon cancer and deficient deoxyribonucleic acid (DNA) mismatch repair. Drugs used in combination chemotherapy, such as oxaliplatin, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving combination chemotherapy with atezolizumab may work better than combination chemotherapy alone in treating patients with colon cancer.
    Location: 869 locations

  • Testing the Drug Atezolizumab or Placebo with Usual Therapy in First-Line HER2-Positive Metastatic Breast Cancer

    This randomized phase III trial studies how well paclitaxel, trastuzumab, and pertuzumab with or without atezolizumab works in treating patients with breast cancer that has spread to other parts of the body (metastatic). Drugs used in chemotherapy, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Trastuzumab is a form of “targeted therapy” because it works by attaching itself to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors. When trastuzumab attaches to HER2 receptors, the signals that tell the cells to grow are blocked and the cancer cell may be marked for destruction by the body’s immune system. Monoclonal antibodies, such as pertuzumab, may interfere with the ability of cancer cells to grow and spread. Immunotherapy with monoclonal antibodies, such as atezolizumab, may induce changes in body’s immune system and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether giving paclitaxel, trastuzumab, and pertuzumab with or without atezolizumab may kill more tumor cells.
    Location: 473 locations

  • Chemoradiation with or without Atezolizumab in Treating Patients with Limited Stage Small Cell Lung Cancer

    This phase II / III trial studies how well chemotherapy and radiation therapy (chemoradiation) with or without atezolizumab works in treating patients with limited stage small cell lung cancer. Drugs used in chemotherapy, such as etoposide, cisplatin, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving chemoradiation with or without atezolizumab may work better in treating patients with limited stage small cell lung cancer.
    Location: 332 locations

  • Chemoradiotherapy with or without Atezolizumab in Treating Patients with Localized Muscle Invasive Bladder Cancer

    This phase III trial studies how well chemotherapy and radiation therapy work with or without atezolizumab in treating patients with localized muscle invasive bladder cancer. Radiation therapy uses high energy rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as gemcitabine, cisplatin, fluorouracil and mitomycin-C, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy with radiation therapy may kill more tumor cells. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving atezolizumab with radiation therapy and chemotherapy may work better in treating patients with localized muscle invasive bladder cancer compared to radiation therapy and chemotherapy without atezolizumab.
    Location: 170 locations

  • Olaparib with or without Atezolizumab in Treating Patients with Locally Advanced Unresectable or Metastatic Non-HER2-Positive Breast Cancer

    This randomized phase II trial studies how well olaparib with or without atezolizumab work in treating patients with non-HER2-positive breast cancer that has spread from its original site of growth to nearby tissues or lymph nodes and is not amenable to surgical resection (locally advanced unresectable) or has spread to other places in the body (metastatic). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body’s immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. It is not known whether giving olaparib with or without atezolizumab will work better in patients with non-HER2-positive breast cancer.
    Location: 49 locations

  • Testing Atezolizumab in People with Advanced Alveolar Soft Part Sarcoma

    This phase II trial studies how well atezolizumab works in treating patients with alveolar soft part sarcoma that has not been treated, has spread from where it started to other places in the body (advanced) and cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
    Location: 40 locations

  • Testing Maintenance Therapy for Small Cell Lung Cancer in Patients with SLFN11 Positive Biomarker

    This phase II trial studies whether atezolizumab in combination with talazoparib works better than atezolizumab alone as maintenance therapy for patients with SLFN11-positive extensive-stage small cell lung cancer. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. PARPs are proteins that help repair damage to DNA, the genetic material that serves as the body’s instruction book. Changes (mutations) in DNA can cause tumor cells to grow quickly and out of control, but PARP inhibitors like talazoparib may keep PARP from working, so tumor cells can’t repair themselves, and they stop growing. Giving atezolizumab in combination with talazoparib may help lower the chance of extensive-stage small cell lung cancer growing and spreading compared to atezolizumab alone.
    Location: 34 locations

  • Testing the Addition of the Drug Atezolizumab to the Usual Radiation Treatment for Patients with Early Non-small Cell Lung Cancer

    This trial studies how well atezolizumab added to the usual radiation therapy works in treating patients with stage I-IIA non-small cell lung cancer. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Radiation therapy, such as stereotactic body radiation therapy, uses special equipment to position a patient and deliver radiation to tumors with high precision. This method can kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. Giving atezolizumab and radiation therapy may work better than radiation therapy alone in treating patients with early non-small cell lung cancer.
    Location: 29 locations

  • Study of Cabozantinib in Combination With Atezolizumab to Subjects With Locally Advanced or Metastatic Solid Tumors

    This is a multicenter Phase 1b, open-label study to assess safety, tolerability, preliminary efficacy, and pharmacokinetics (PK) of cabozantinib taken in combination with atezolizumab in subjects with multiple tumor types, including advanced urothelial carcinoma (UC) (including bladder, renal pelvis, ureter, urethra), renal cell carcinoma (RCC), castration-resistant prostate cancer (CRPC), non-small-cell lung cancer (NSCLC), triple negative breast cancer (TNBC), ovarian cancer (OC), endometrial cancer (EC), hepatocellular cancer (HCC), gastric cancer / gastroesophageal junction cancer / lower esophageal cancer (GC / GEJC / LEC), colorectal cancer (CRC), head and neck (H&N) cancer, and differentiated thyroid cancer (DTC). The study consists of two stages: in the Dose Escalation Stage, an appropriate recommended cabozantinib dose for the combination with standard dosing regimen of atezolizumab will be established; in the Expansion Stage, tumor-specific cohorts will be enrolled in order to further evaluate the safety and efficacy of the combination treatment in these tumor indications. Three exploratory single-agent cabozantinib (SAC) cohorts may also be enrolled with UC, NSCLC, or CRPC subjects. One exploratory single-agent atezolizumab (SAA) cohort may also be enrolled with CRPC subjects. Subjects enrolled in the SAC cohorts and SAA cohort may receive combination treatment with both cabozantinib and atezolizumab after they experience radiographic progressive disease per the Investigator per RECIST 1.1. Due to the nature of this study design, some tumor cohorts may complete enrollment earlier than others.
    Location: 28 locations

  • My Pathway: A Study Evaluating Herceptin / Perjeta, Tarceva, Zelboraf / Cotellic, Erivedge, Alecensa, and Tecentriq Treatment Targeted Against Certain Molecular Alterations in Participants With Advanced Solid Tumors

    This multicenter, non-randomized, open-label study will evaluate the efficacy and safety of six treatment regimens in participants with advanced solid tumors for whom therapies that will convey clinical benefit are not available and / or are not suitable options per the treating physician's judgment.
    Location: 19 locations

  • Phase 1 / 1b Study to Evaluate the Safety and Tolerability of Ciforadenant Alone and in Combination With Atezolizumab in Advanced Cancers

    This is a phase 1 / 1b open-label, multicenter, dose-selection study of ciforadenant, an oral small molecule targeting the adenosine-A2A receptor on T-lymphocytes and other cells of the immune system. This trial will study the safety, tolerability, and anti-tumor activity of ciforadenant as a single agent and in combination with atezolizumab, a PD-L1 inhibitor against various solid tumors. Ciforadenant blocks adenosine from binding to the A2A receptor. Adenosine suppresses the anti-tumor activity of T cells and other immune cells.
    Location: 19 locations

  • Study of Cabozantinib in Combination With Atezolizumab Versus Sorafenib in Subjects With Advanced HCC Who Have Not Received Previous Systemic Anticancer Therapy

    This Phase 3 study evaluates the safety and efficacy of cabozantinib in combination with atezolizumab versus the standard of care sorafenib in adults with advanced hepatocellular carcinoma (HCC) who have not received previous systemic anticancer therapy. A single-agent cabozantinib arm will be enrolled in which subjects receive single agent cabozantinib in order to determine its contribution to the overall safety and efficacy of the combination with atezolizumab.
    Location: 14 locations

  • A Study of Multiple Immunotherapy-Based Treatment Combinations in Participants With Metastatic Pancreatic Ductal Adenocarcinoma (Morpheus-Pancreatic Cancer)

    A Phase Ib / II, open-label, multicenter, randomized study designed to assess the safety, tolerability, pharmacokinetics and preliminary anti-tumor activity of immunotherapy-based treatment combinations in participants with metastatic Pancreatic Ductal Adenocarcinoma (PDAC). Two cohorts will be enrolled in parallel in this study: Cohort 1 will consist of patients who have received no prior systemic therapy for metastatic PDAC, and Cohort 2 will consist of patients who have received one line of prior systemic therapy for PDAC. In each cohort, eligible patients will be assigned to one of several treatment arms.
    Location: 12 locations

  • Atezolizumab, Gemcitabine Hydrochloride, and Cisplatin in Treating Patients with Metastatic and Muscle Invasive Bladder Cancer

    This pilot phase II trial studies the side effects of atezolizumab when given together with gemcitabine hydrochloride and cisplatin and how well it works in treating patients with bladder cancer that has spread to other parts of the body (metastatic) and the muscle (muscle invasive). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as gemcitabine hydrochloride and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving atezolizumab, gemcitabine hydrochloride, and cisplatin may work better in treating bladder cancer.
    Location: 11 locations

  • A Study of Neoadjuvant Atezolizumab Plus Chemotherapy Versus Placebo Plus Chemotherapy in Patients With Resectable Stage II, IIIA, or Select IIIB Non-Small Cell Lung Cancer (IMpower030)

    This is a randomized, double-blinded study designed to evaluate the efficacy, safety, pharmacokinetics, and immunogenicity of neoadjuvant treatment with atezolizumab (MPDL3280A) or placebo in combination with platinum-based chemotherapy in patients with resectable Stage II, IIIA, or select IIIB non−small cell lung cancer (NSCLC) followed by open-label adjuvant atezolizumab or best supportive care and monitoring.
    Location: 12 locations

  • QUILT-3.055: A Study of ALT-803 in Combination With PD-1 / PD-L1 Checkpoint Inhibitor in Patients With Advanced Cancer

    This is a Phase IIb, single-arm, multicohort, open-label multicenter study of ALT-803 in combination with an FDA-approved PD-1 / PD-L1 checkpoint inhibitor in patients with advanced cancers who have progressed following an initial response to treatment with PD-1 / PD-L1 checkpoint inhibitor therapy. All patients will receive the combination treatment of PD-1 / PD-L1 checkpoint inhibitor plus ALT-803 for up to 16 cycles. Each cycle is six weeks in duration. All patients will receive ALT-803 once every 3 weeks. Patients will also receive the same checkpoint inhibitor that they received during their previous therapy. Radiologic evaluation will occur at the end of each treatment cycle. Treatment will continue for up to 2 years, or until the patient experiences confirmed progressive disease or unacceptable toxicity, withdraws consent, or if the Investigator feels it is no longer in the patient's best interest to continue treatment. Patients will be followed for disease progression, post-therapies, and survival through 24 months past administration of the first dose of study drug.
    Location: 10 locations

  • A Safety and Pharmacokinetic Study of BTCT4465A (Mosunetuzumab) as a Single Agent and Combined With Atezolizumab in Non-Hodgkin's Lymphoma (NHL) and Chronic Lymphocytic Leukemia (CLL)

    This is a Phase 1 / 1b dose-escalation study of BTCT4465A (Mosunetuzumab) administered as a single agent and in combination with atezolizumab in participants with relapsed or refractory B-cell NHL and CLL. The study will consist of a dose-escalation stage and an expansion stage where participants will be enrolled into indication-specific cohorts.
    Location: 10 locations

  • Atezolizumab, Gemcitabine Hydrochloride, and Cisplatin as First-Line Therapy in Treating Patients with Locally Advanced or Metastatic Urothelial Cancer

    This randomized phase II trial studies how well atezolizumab works when given together with gemcitabine hydrochloride and cisplatin as first-line therapy in treating patients with urothelial cancer that has spread to nearby tissue or lymph nodes (locally advanced), or other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as gemcitabine hydrochloride and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving atezolizumab with chemotherapy may kill more tumor cells.
    Location: 9 locations

  • Study of Abiraterone, Atezolizumab, Lupron, and Radiation Therapy for the Treatment of Men with Newly Diagnosed Metastatic Hormone-sensitive Prostate Cancer, SAABR Study

    This phase II trial studies how well abiraterone acetate, atezolizumab, lupron, and stereotactic body radiotherapy works for the treatment of men with hormone-sensitive prostate cancer that has spread to different parts of the body (metastatic). Abiraterone acetate works by decreasing the production of the male sex hormone (testosterone) that causes prostate cancer to grow. The steroid drug prednisone is given with abiraterone acetate to reduce or prevent some of its side effects. Lupron (leuprolide) is a hormone treatment that reduces levels of testosterone, which slows the growth of prostate cancer. Atezolizumab is a type of drug called a PD-L1 blocker; it blocks a protein located on the surface of some tumor cells and immune cells that can act as a “brake” on the immune system. Blocking this protein releases the brakes, allowing the immune system to function more efficiently to identify and attack cancer cells. Stereotactic body radiotherapy delivers very precisely targeted high-dose radiation in less time than standard radiation therapy, which reduces potential damage to healthy tissues near the targeted treatment area. Adding atezolizumab and stereotactic body radiotherapy to treatment with abiraterone acetate, prednisone, and lupron may boost the immune system's ability to identify and destroy cancer cells, which may prevent the cancer from getting worse.
    Location: 7 locations

  • A Vaccine (Personalized Cancer Vaccine RO7198457), Atezolizumab, and Combination Chemotherapy for the Treatment of Resectable Stage I-III Pancreatic Cancer

    This phase I trial studies how well a personalized cancer vaccine RO7198457 works in combination with atezolizumab and fluorouracil, irinotecan hydrochloride, leucovorin calcium and oxaliplatin in treating patients with stage I-III pancreatic cancer that has been removed by surgery (resected). The personalized cancer vaccine RO7198457 is a vaccine that is customized according to changes (mutations) in a patient's tumor cells so that it can be recognized by the immune system and target the tumor. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as fluorouracil, irinotecan hydrochloride, leucovorin calcium and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving personalized cancer vaccine RO7198457, atezolizumab, fluorouracil, irinotecan hydrochloride, leucovorin calcium and oxaliplatin may work better compared to chemotherapy alone in treating patients with pancreatic cancer.
    Location: 7 locations

  • A Study of ASP2215 (Gilteritinib) Combined With Atezolizumab in Patients With Relapsed or Treatment Refractory FMS-like Tyrosine Kinase (FLT3) Mutated Acute Myeloid Leukemia (AML)

    The purpose of this study is to determine the safety and tolerability of gilteritinib given in combination with atezolizumab in participants with relapsed or treatment refractory FMS-like tyrosine kinase 3 (FLT3) mutated AML and to determine the composite complete remission (CRc) rate for participants who either discontinued the study or completed 2 cycles of gilteritinib given in combination with atezolizumab. This study will also evaluate pharmacokinetics (PK), response to treatment, remission and survival. Adverse events (AEs), clinical laboratory results, vital signs, electrocardiograms (ECGs), and Eastern Cooperative Oncology Group (ECOG) performance status scores will also be assessed.
    Location: 11 locations

  • A Clinical Study of Cobimetinib Administered in Combination With Niraparib, With or Without Atezolizumab to Patients With Advanced Platinum-sensitive Ovarian Cancer

    The study will include a safety run-in phase (Stage 1) and a randomization phase (Stage 2). The purpose of Stage 1 is to evaluate the safety of cobimetinib when administered in combination with niraparib (Cohort 1) and cobimetinib with niraparib plus atezolizumab (Cohort 2). Stage 1 will enable patient enrollment in the randomized phase of the study (Stage 2) with both regimens at the recommended dose levels from Stage 1. Stage 2 is a randomized, dose-expansion phase, evaluating clinical outcomes in patients with advanced platinum-sensitive ovarian cancer. All patients will continue to receive study treatment until disease progression (according to "Response Evaluation Criteria in Solid Tumors" (RECIST), Version 1.1, unacceptable toxicity, death, or patient or investigator decision to withdraw, whichever occurs first.
    Location: 7 locations

  • Atezolizumab and Cobimetinib in Treating Patients with Metastatic, Recurrent, or Refractory Non-small Cell Lung Cancer

    This phase II trial studies how well atezolizumab and cobimetinib work in treating patients with non-small cell lung cancer that has spread to other places in the body (metastatic), has come back (recurrent), or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cobimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving atezolizumab and cobimetinib may work better in treating patients with non-small cell lung cancer.
    Location: 8 locations

  • A Study Evaluating the Efficacy and Safety of Multiple Immunotherapy-Based Treatment Combinations in Patients With Metastatic Colorectal Cancer (Morpheus-CRC)

    A phase Ib / II, open-label, multicenter, randomized study designed to assess the safety, tolerability, pharmacokinetics and preliminary anti-tumor activity of immunotherapy-based treatment combinations in patients with metastatic colorectal cancer (mCRC) that became refractory to first- and second-line standard therapies. Eligible patients will be assigned to one of several treatment arms.
    Location: 8 locations

  • Atezolizumab and CYT107 in Treating Participants with Locally Advanced, Inoperable, or Metastatic Urothelial Carcinoma

    This phase II trial studies how well atezolizumab when given with glycosylated recombinant human interleukin-7 (CYT107) works in treating patients with urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced), cannot be removed by surgery (inoperable), or has spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. CYT107 is a biological product naturally made by the body that may stimulate the immune system to destroy tumor cells. Giving atezolizumab and CYT107 may work better in treating patients with locally advanced, inoperable, or metastatic urothelial carcinoma compared to atezolizumab alone.
    Location: 7 locations


1 2 3 4 5 Next >