Clinical Trials Using Daunorubicin Hydrochloride

Clinical trials are research studies that involve people. The clinical trials on this list are studying Daunorubicin Hydrochloride. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-16 of 16
  • Inotuzumab Ozogamicin and Frontline Chemotherapy in Treating Young Adults with Newly Diagnosed B Acute Lymphoblastic Leukemia

    This partially randomized phase III trial studies the side effects of inotuzumab ozogamicin and how well it works when given with frontline chemotherapy in treating patients with newly diagnosed B acute lymphoblastic leukemia. Monoclonal antibodies, such as inotuzumab ozogamicin, may block cancer growth in different ways by targeting certain cells. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving inotuzumab ozogamicin with chemotherapy may work better in treating young adults with B acute lymphoblastic leukemia.
    Location: 294 locations

  • Imatinib Mesylate and Combination Chemotherapy in Treating Patients with Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    This randomized phase III trial studies how well imatinib mesylate and combination chemotherapy work in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia. Imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving imatinib mesylate and combination chemotherapy may work better in treating patients with Philadelphia chromosome positive acute lymphoblastic leukemia.
    Location: 166 locations

  • Inotuzumab Ozogamicin and Post-Induction Chemotherapy in Treating Patients with High-Risk B-ALL, Mixed Phenotype Acute Leukemia, and B-LLy

    This phase III trial studies whether inotuzumab ozogamicin added to post-induction chemotherapy for patients with High-Risk B-cell Acute Lymphoblastic Leukemia (B-ALL) improves outcomes. This trial also studies the outcomes of patients with mixed phenotype acute leukemia (MPAL), and B-lymphoblastic lymphoma (B-LLy) when treated with ALL therapy without inotuzumab ozogamicin. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a type of chemotherapy called calicheamicin. Inotuzumab attaches to cancer cells in a targeted way and delivers calicheamicin to kill them. Other drugs used in the chemotherapy regimen, such as cyclophosphamide, cytarabine, dexamethasone, doxorubicin, daunorubicin, methotrexate, leucovorin, mercaptopurine, prednisone, thioguanine, vincristine, and pegaspargase work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial will also study the outcomes of patients with mixed phenotype acute leukemia (MPAL) and disseminated B lymphoblastic lymphoma (B-LLy) when treated with high-risk ALL chemotherapy. The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The first part of the study includes the first two phases of therapy: Induction and Consolidation. This part will collect information on the leukemia, as well as the effects of the initial treatment, in order to classify patients into post-consolidation treatment groups. On the second part of this study, patients will receive the remainder of the chemotherapy cycles (interim maintenance I, delayed intensification, interim maintenance II, maintenance), with some patients randomized to receive inotuzumab. Other aims of this study include investigating whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for an additional year compared to girls, as well as to evaluate the best ways to help patients adhere to oral chemotherapy regimens. Finally, this study will be the first to track the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B LLy) or Mixed Phenotype Acute Leukemia (MPAL) when treated with B-ALL chemotherapy.
    Location: 182 locations

  • Response-Based Chemotherapy in Treating Newly Diagnosed Acute Myeloid Leukemia or Myelodysplastic Syndrome in Younger Patients with Down Syndrome

    This phase III trial studies response-based chemotherapy in treating newly diagnosed acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Response-based chemotherapy separates patients into different risk groups and treats them according to how they respond to the first course of treatment (Induction I). Response-based treatment may be effective in treating acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome while reducing the side effects.
    Location: 163 locations

  • Study of Biomarker-Based Treatment of Acute Myeloid Leukemia

    This screening and multi-sub-study Phase 1b / 2 trial will establish a method for genomic screening followed by assigning and accruing simultaneously to a multi-study "Master Protocol (BAML-16-001-M1)." The specific subtype of acute myeloid leukemia will determine which sub-study, within this protocol, a participant will be assigned to evaluate investigational therapies or combinations with the ultimate goal of advancing new targeted therapies for approval. The study also includes a marker negative sub-study which will include all screened patients not eligible for any of the biomarker-driven sub-studies.
    Location: 17 locations

  • Azacitidine or Decitabine in Epigenetic Priming in Patients with Newly Diagnosed Acute Myeloid Leukemia

    This randomized phase II trial studies how well azacitidine or decitabine work in epigenetic priming in patients with newly diagnosed acute myeloid leukemia. Azacitidine and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine or decitabine before usual chemotherapy may change the genetics of the leukemia cell by priming it to be more sensitive to the chemotherapy that will follow in treating patients with acute myeloid leukemia.
    Location: 12 locations

  • Combination Chemotherapy in Treating Patients with Acute Lymphoblastic Leukemia or Lymphoma

    This randomized phase II / III trial studies the side effects of combination chemotherapy and how well it works in treating patients with acute lymphoblastic leukemia or lymphoma. Drugs used in combination chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: 5 locations

  • Pinometostat with Standard Chemotherapy in Treating Patients with Newly Diagnosed Acute Myeloid Leukemia and MLL Gene Rearrangement

    This phase Ib / II trial studies the side effects and best dose of pinometostat and how well it works with standard chemotherapy in treating patients with newly diagnosed acute myeloid leukemia and a type of genetic mutation called MLL gene rearrangement. Pinometostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in standard chemotherapy, such as daunorubicin hydrochloride and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pinometostat with standard chemotherapy may work better at treating acute myeloid leukemia.
    Location: 3 locations

  • Combination Chemotherapy in Treating Adult Patients with Newly Diagnosed Acute Lymphoblastic Leukemia

    This phase II trial studies how well combination chemotherapy works in treating adult patients with newly diagnosed acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more cancer cells.
    Location: 3 locations

  • Gemtuzumab Ozogamicin and Midostaurin in Combination with Standard Chemotherapy in Treating Patients with CD33 Positive, FLT3-Mutated Newly Diagnosed Acute Myeloid Leukemia

    This phase I trial studies the side effects and best dose of gemtuzumab ozogamicin when given together with midostaurin, and to see how well they work with standard chemotherapy in treating patients with newly diagnosed acute myeloid leukemia that has an FLT3 genetic mutation and is positive for a protein called CD33. Gemtuzumab ozogamicin is a monoclonal antibody called gemtuzumab linked to a toxic agent called ozogamicin. Gemtuzumab attaches to CD33 positive cancer cells in a targeted way and delivers ozogamicin to kill them. Midostaurin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving gemtuzumab ozogamicin and midostaurin together with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to the usual approach.
    Location: 2 locations

  • Ruxolitinib in Combination with Standard Chemotherapy in Treating Adolescents and Young Adults with Ph-Like Acute Lymphoblastic Leukemia

    This phase I trial studies the best dose and side effects of ruxolitinib in combination with standard chemotherapy in treating adolescents and young adults with Philadelphia (Ph)-like acute lymphoblastic leukemia. Ruxolitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ruxolitinib and chemotherapy may work better in treating patients with h-like acute lymphoblastic leukemia.
    Location: University of Chicago Comprehensive Cancer Center, Chicago, Illinois

  • Cytarabine and Daunorubicin Hydrochloride with or without Selinexor in Treating Older Patients with Acute Myeloid Leukemia

    This randomized phase II trial studies how well cytarabine and daunorubicin hydrochloride with or without selinexor work in treating older patients with acute myeloid leukemia. Drugs used in chemotherapy, such as cytarabine and daunorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Selinexor may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving cytarabine and daunorubicin hydrochloride with selinexor may kill more cancer cells in older patients with acute myeloid leukemia.
    Location: Wake Forest University Health Sciences, Winston-Salem, North Carolina

  • Ixazomib Citrate, Daunorubicin Hydrochloride, and Cytarabine in Treating Older Patients with Acute Myeloid Leukemia

    This phase I trial studies the side effects and best dose of ixazomib citrate when given together with daunorubicin hydrochloride and cytarabine in treating older patients with acute myeloid leukemia. Ixazomib citrate blocks enzymes called proteasomes, which may help keep cancer cells from growing. Drugs used in chemotherapy, such as daunorubicin hydrochloride and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ixazomib citrate together with daunorubicin hydrochloride and cytarabine may be a better treatment for acute myeloid leukemia.
    Location: Massachusetts General Hospital Cancer Center, Boston, Massachusetts

  • Different Therapies in Treating Infants With Newly Diagnosed Acute Leukemia

    RATIONALE: Giving chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, methotrexate, leucovorin, and antithymocyte globulin before and after transplant may stop this from happening. It is not yet known which treatment regimen is most effective in treating acute leukemia. PURPOSE: This randomized clinical trial is studying how well different therapies work in treating infants with newly diagnosed acute leukemia.
    Location: See Clinical Trials.gov

  • Modified Chemotherapy Regimen and Gemtuzumab Ozogamicin for the Treatment of Newly Diagnosed Acute Myeloid Leukemia in Pediatric Patients

    This phase I trial studies how well a modified chemotherapy regimen with gemtuzumab ozogamicin works for the treatment of newly diagnosed acute myeloid leukemia in pediatric patients. The current standard of care to treat most pediatric patients with acute myeloid leukemia is 5 cycles of chemotherapy. Adjusting treatment with a 4-cycle treatment regimen may provide the same treatment results and decrease the amount of side effects experienced during treatment. Gemtuzumab ozogamicin is a monoclonal antibody, gemtuzumab, linked to a toxic agent called calicheamicin. Gemtuzumab attaches to CD33 positive cancer cells in a targeted way and delivers calicheamicin to kill them. Giving gemtuzumab ozogamicin with the 4-cycle treatment regimen may also reduce the chances of acute myeloid leukemia coming back after initial treatment.
    Location: Children's Healthcare of Atlanta - Egleston, Atlanta, Georgia

  • Intensive Combination Chemotherapy in Treating Patients with Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    This partially randomized phase II trial studies how well intensive combination chemotherapy works in treating patients with acute lymphoblastic leukemia or lymphoblastic lymphoma. Drugs used in chemotherapy, such as daunorubicin hydrochloride, cyclophosphamide, vincristine sulfate, prednisone, leucovorin calcium, cytarabine, etoposide, and liposomal cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as rituximab, may induce changes in body’s immune system and may interfere with the ability of cancer cells to grow and spread. Biological therapies, such as mercaptopurine, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Dietary supplements, such as levocarnitine, may reduce the incidence of liver damage. Pegaspargase, methotrexate, dasatinib and imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving combination chemotherapy with, rituximab, mercaptopurine, levocarnitine, pegaspargase, methotrexate, dasatinib and imatinib mesylate may be an effective treatment for acute lymphoblastic leukemia or lymphoblastic lymphoma.
    Location: 3 locations