Clinical Trials Using Filgrastim

Clinical trials are research studies that involve people. The clinical trials on this list are studying Filgrastim. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 52
1 2 3 Next >

  • Imatinib Mesylate and Combination Chemotherapy in Treating Patients with Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    This randomized phase III trial studies how well imatinib mesylate and combination chemotherapy work in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia. Imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving imatinib mesylate and combination chemotherapy may work better in treating patients with Philadelphia chromosome positive acute lymphoblastic leukemia.
    Location: 149 locations

  • Accelerated or Standard BEP Chemotherapy in Treating Patients with Intermediate or Poor-Risk Metastatic Germ Cell Tumors

    This randomized phase III trial studies how well an accelerated schedule of bleomycin sulfate, etoposide phosphate, and cisplatin (BEP) chemotherapy works compared to the standard schedule of BEP chemotherapy in treating patients with intermediate or poor-risk germ cell tumors that have spread to other places in the body (metastatic). Drugs used in chemotherapy, such as bleomycin sulfate, etoposide phosphate, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BEP chemotherapy on a faster, or “accelerated” schedule may work better with fewer side effects in treating patients with intermediate or poor-risk metastatic germ cell tumors compared to the standard schedule.
    Location: 118 locations

  • Standard-Dose Combination Chemotherapy or High-Dose Combination Chemotherapy and Stem Cell Transplant in Treating Patients with Relapsed or Refractory Germ Cell Tumors

    This randomized phase III trial studies how well standard-dose combination chemotherapy works compared to high-dose combination chemotherapy and stem cell transplant in treating patients with germ cell tumors that have returned after a period of improvement or did not respond to treatment. Drugs used in chemotherapy, such as paclitaxel, ifosfamide, cisplatin, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as filgrastim or pegfilgrastim, and certain chemotherapy drugs, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. It is not yet known whether high-dose combination chemotherapy and stem cell transplant are more effective than standard-dose combination chemotherapy in treating patients with refractory or relapsed germ cell tumors.
    Location: 57 locations

  • Immunotherapy (Nivolumab or Brentuximab Vedotin) Plus Combination Chemotherapy in Treating Patients with Newly Diagnosed Stage III-IV Classic Hodgkin Lymphoma

    This randomized phase III trial compares immunotherapy drugs (nivolumab or brentuximab vedotin) when given with combination chemotherapy in treating patients with newly diagnosed stage III or IV classic Hodgkin lymphoma. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Brentuximab vedotin is a monoclonal antibody, brentuximab, linked to a toxic agent called vedotin. Brentuximab attaches to cancer cells in a targeted way and delivers vedotin to kill them. Drugs used in chemotherapy, such as doxorubicin, vinblastine, and dacarbazine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The addition of nivolumab or brentuximab vedotin to combination chemotherapy may shrink the cancer or extend the time without disease symptoms coming back.
    Location: 40 locations

  • Ibrutinib, Rituximab, Etoposide, Prednisone, Vincristine Sulfate, Cyclophosphamide, and Doxorubicin Hydrochloride in Treating Patients with HIV-Positive Stage II-IV Diffuse Large B-Cell Lymphomas

    This phase I trial studies the side effect and best dose of ibrutinib in combination with rituximab, etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride in treating patients with human immunodeficiency virus (HIV)-positive stage II-IV diffuse large B-cell lymphomas. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ibrutinib and etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride may work better in treating patients with HIV-positive diffuse large B-cell lymphomas.
    Location: 15 locations

  • Azacitidine or Decitabine in Epigenetic Priming in Patients with Newly Diagnosed Acute Myeloid Leukemia

    This randomized phase II trial studies how well azacitidine or decitabine work in epigenetic priming in patients with newly diagnosed acute myeloid leukemia. Azacitidine and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
    Location: 12 locations

  • Epigenetic Reprogramming in Relapse / Refractory AML

    This is a pilot study using decitabine and vorinostat before and during chemotherapy with fludarabine, cytarabine and G-CSF (FLAG).
    Location: 11 locations

  • Alisertib Alone or in Combination with Chemotherapy and Radiation Therapy in Treating Younger Patients with Recurrent, Progressive, or Newly Diagnosed Central Nervous System Atypical Teratoid Rhabdoid Tumors or Extra-Central Nervous System Malignant Rhabdoid Tumors

    This phase II trial studies how well alisertib alone or in combination with chemotherapy and radiation therapy works in treating younger patients with central nervous system (CNS) atypical teratoid rhabdoid tumors that are newly diagnosed; have returned; or are growing, spreading, or getting worse or extra-CNS malignant rhabdoid tumors that have returned or are growing, spreading, or getting worse. Alisertib may stop the growth of cancer cells by blocking a protein called aurora kinase A that is needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses x-rays to kill tumor cells. Giving alisertib alone or with chemotherapy and radiation therapy may be effective in treating patients with rhabdoid tumors.
    Location: 10 locations

  • Scleroderma Treatment with Autologous Transplant (STAT) Study

    This phase II trial studies how well giving cyclophosphamide and anti-thymocyte globulin together followed by peripheral blood stem cell transplant (PBSCT) and mycophenolate mofetil works in treating patients with systemic scleroderma (SSc). Stem cells are collected from the patient's blood and stored prior to treatment. To store the stem cells patients are given colony-stimulating factors, such as filgrastim (G-CSF) or chemotherapy (cyclophosphamide) to help stem cells move from the bone marrow to the blood so they can be collected and stored. After storage, patients are then given high-dose chemotherapy, cyclophosphamide, and immunosuppression with anti-thymocyte globulin to suppress the immune system to prepare for the transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy and immunosuppression. After the stem cells have “engrafted” and have matured enough to support the immune system at approximately 2-3 months, patients are given a medication called mycophenolate mofetil (MMF) or Myfortic. This medication is given to prevent worsening or reactivation of SSc and is referred to as maintenance therapy.
    Location: 12 locations

  • Risk Classification Schemes in Identifying Better Treatment Options for Children and Adolescents with Acute Lymphoblastic Leukemia

    This randomized phase III trial studies risk classification schemes in identifying better treatment options for children and adolescents with acute lymphoblastic leukemia. Risk factor classification may help identify how strong treatment should be for patients with acute lymphoblastic leukemia.
    Location: 7 locations

  • Optimizing Haploidentical Aplastic Anemia Transplantation (BMT CTN 1502)

    This study is a prospective, multicenter phase II study with patients receiving haploidentical transplantation for Severe Aplastic Anemia (SAA). The primary objective is to assess overall survival (OS) at 1 year post-hematopoietic stem cell transplantation (HSCT).
    Location: 8 locations

  • A Study to Investigate Atezolizumab and Chemotherapy Compared With Placebo and Chemotherapy in the Neoadjuvant Setting in Participants With Early Stage Triple Negative Breast Cancer

    This is a global Phase III, double-blind, randomized, placebo-controlled study designed to evaluate the efficacy and safety of neoadjuvant treatment with atezolizumab (anti-programmed death-ligand 1 [anti-PD-L1] antibody) and nab-paclitaxel followed by doxorubicin and cyclophosphamide (nab-pac-AC), or placebo and nab-pac−AC in participants eligible for surgery with initial clinically assessed triple-negative breast cancer (TNBC).
    Location: 3 locations

  • Carfilzomib, Rituximab, and Combination Chemotherapy in Treating Patients with Diffuse Large B-Cell Lymphoma

    This phase I / II trial studies the side effects and best dose of carfilzomib when given together with rituximab and combination chemotherapy and to see how well they work in treating patients with diffuse large B-cell lymphoma. Carfilzomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as rituximab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, and prednisone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not known if carfilzomib in combination with rituximab and combination chemotherapy is better or worse than combination chemotherapy alone in treating patients with diffuse large B-cell lymphoma.
    Location: 4 locations

  • Risk-Adapted Therapy in Treating Young Patients with Mature B-Cell Lymphoma or Leukemia

    Many children and young adults with mature B-cell lymphoma can be cured with current standard treatments, but these standard treatments do not stop every child’s cancer from coming back. Furthermore, many children have significant side effects from treatment, both at the time of treatment and for many years after treatment is completed (late effects). That is why there is still much to be learned about this disease and its treatment. This study is being done to help researchers learn more about the biology and genetics of this disease in children in the United States (U.S.) and at several international sites and to study the effects (good and bad) of this treatment in St. Jude participants in order to help researchers guide treatment for children and young adults with this disease in the future.
    Location: 2 locations

  • Combination Chemotherapy in Treating Patients with Classical Hodgkin Lymphoma

    This is a phase II study using risk and response-adapted therapy for low, intermediate and high risk classical Hodgkin lymphoma. Chemotherapy regimens will be based on risk group assignment. Low-risk and intermediate- risk patients will be treated with bendamustine, etoposide, Adriamycin (doxorubicin), bleomycin, Oncovin (vincristine), vinblastine, and prednisone (BEABOVP) chemotherapy. High-risk patients will receive Adcetris (brentuximab vedotin), etoposide, prednisone and Adriamycin (doxorubicin) (AEPA) and cyclophosphamide, Adcetris (brentuximab vedotin), prednisone and Dacarbazine (DTIC) (CAPDac) chemotherapy. Residual node radiotherapy will be given at the end of all chemotherapy only to involved nodes that do not have an adequate response (AR) after 2 cycles of therapy for all risk groups.
    Location: 2 locations

  • Cyclophosphamide or Thalidomide after Stem Cell Transplant in Treating Younger Patients with Solid Tumors

    This early phase I pilot clinical trial studies cyclophosphamide or thalidomide following high dose chemotherapy and stem cell transplant in treating younger patients with solid tumors. Drugs such as cyclophosphamide and thalidomide suppress the growth of new blood vessels to tumors. Blocking blood flow to tumors after receiving high dose chemotherapy and a stem cell transplant may prevent the tumors from coming back or continuing to grow.
    Location: 2 locations

  • Virotherapy and Natural History Study of KHSV-Associated Multricentric Castleman s Disease With Correlates of Disease Activity

    This study will gain information about a rare disorder called KSHV-associated multicentric Castleman s disease (MCD). KSHV, a virus, causes several kinds of cancer, including some forms of MCD. KSHV stands for the Kaposi s sarcoma herpes virus, also called human herpes virus-8, or HHV-8. Researchers want to understand the biology of KSHV-MCD to identify how this disease causes illness and to find ways to treat it. There is no standard therapy effective for all cases of KSHV-MCD. The disease is often fatal, and about half the people who have it die within 2 years of diagnosis. Patients ages 12 and older may be eligible for this study. Participation entails more drawing of blood and having repeated tumor biopsies than if patients received treatment in a non-research setting. Researchers would like to learn more about the relationship of KSHV and Castleman s disease symptoms, and they want to obtain at least three biopsies in this study. There are some side effects of experimental therapy that patients may take for KSHV-MCD. Zidovudine, or Retrovir , is used at a high dose. It is given orally or through a vein, four times daily, for 7 days or longer. Zidovudine can cause nausea, vomiting, decreased bone marrow function, and decreased blood counts. Combined with valganciclovir, or Valcyte , it is likely to be more toxic to bone marrow. Valganciclovir can cause problems with bone marrow function, leading to low blood counts, sterility, and defects in a fetus. Combined with zidovudine, valganciclovir may cause more toxicity to the bone marrow. It is given twice daily for 7 days or longer. Bortezomib, or Velcade , is given for a few seconds by a rapid push through a needle into the vein. It is given twice weekly for four doses and then stopped for 1 week. Bortezomib can sometimes cause low blood pressure; it also can cause gastrointestinal problems and a low blood platelet count. Rituximab and liposomal doxorubicin are drugs given by a catheter into a vein. Interferon-alpha is given by injection into the skin. Those drugs are not experimental, but their use in Castleman s disease is experimental. Some patients may be treated with a combination of chemotherapy followed by interferon-alpha. Interferon-alpha is infected into the skin by a needle. The natural form of interferon is produced by the body and helps to control viral infections. KSHV decreases the effect of the body s interferon, and the researchers want to see if giving higher doses of interferon will help to control KSHV infection. A positron emission tomography (PET) scan, for research purposes only, may be done up to three times a year. A radioactive sugar molecule called fluorodeoxyglucose, or FDG, is used. It is believed that activated lymphocytes that may be found in patients disease might use more FDG because these cells burn more glucose fuel. Children younger than 18 years will not have PET scan done. This study may or may not have a direct benefit for participants. However, detailed assessments made throughout the study may provide information to help the doctors treat KSHV-MCD better.
    Location: 2 locations

  • Low-Intensity Chemotherapy and Blinatumomab in treating Patients with Philadelphia Chromosome Negative Relapsed or Refractory Acute Lymphoblastic Leukemia

    This phase II trial studies how well low-intensity chemotherapy and blinatumomab work in treating patients with Philadelphia chromosome negative acute lymphoblastic leukemia that has come back or does not respond to treatment. Drugs used in chemotherapy, such as dexamethasone, filgrastim, pegfilgrastim, cyclophosphamide, methotrexate, cytarabine and vincristine sulfate, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as blinatumomab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving low-intensity chemotherapy and blinatumomab may work better at treating acute lymphoblastic leukemia.
    Location: M D Anderson Cancer Center, Houston, Texas

  • TCR Genetically Engineered PBMC and PBSC after Melphalan Conditioning Regimen in Treating Participants with Relapsed and Refractory Multiple Myeloma

    This phase I trial studies the side effects of NY-ESO-1 TCR engineered peripheral blood mononuclear cells (PBMC) and peripheral blood stem cells (PBSC) after melphalan conditioning regimen in treating participants with multiple myeloma that has come back or does not respond to treatment. The melphalan conditioning chemotherapy makes room in the patient’s bone marrow for new blood cells (PBMC) and blood-forming cells (stem cells) to grow. Giving NY-ESO-1 TCR PBMC and stem cells after the conditioning chemotherapy is intended to replace the immune system with new immune cells that have been redirected to attack and kill the cancer cells and thereby improve immune system function against cancer. Giving NY-ESO-1 TCR PBMC and PBSC after melphalan may work better at treating multiple myeloma.
    Location: UCLA / Jonsson Comprehensive Cancer Center, Los Angeles, California

  • Cyclophosphamide, Fludarabine Phosphate, and Total Body Radiation, before Donor Stem Cell Transplant in Treating Participants with Blood Disorders and Blood Cancers

    This phase III trial studies how well cyclophosphamide, fludarabine phosphate, and total body radiation before donor stem cell transplant work in treating participants with blood disorders and blood cancers. Giving chemotherapy such as cyclophosphamide and fludarabine phosphate and total body radiation before a stem cell transplant helps stop the growth of cells in the bone marrow. When the healthy cells from a donor are infused into the participant, they may help the patient's bone marrow make stem cells, red blood cells, and platelets. The donated cells may also replace the patient's immune cells and help destroy any remaining cancer cells.
    Location: Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire

  • Total Marrow and Lymphoid Irradiation before Donor Transplant and Cyclophosphamide in Treating patients with Acute Myeloid Leukemia

    This pilot phase I trial studies the side effects of total bone marrow and lymphoid irradiation and how well it works with cyclophosphamide in treating patients with acute myeloid leukemia. Total marrow and lymphoid irradiation targets cancer in bone marrow and blood, instead of applying radiation to the whole body. Giving total bone marrow and lymphoid irradiation before a donor transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving total bone marrow and lymphoid irradiation before donor transplant and cyclophosphamide after transplant may work better at treating acute myeloid leukemia.
    Location: City of Hope Comprehensive Cancer Center, Duarte, California

  • Combination Chemotherapy, Total Body Irradiation, and Donor Blood Stem Cell Transplant in Treating Participants with Primary or Secondary Myelofibrosis

    This early phase I trial studies the side effects of combination chemotherapy, total body irradiation, and donor blood stem cell transplant in treating participants with primary or secondary myelofibrosis. Drugs used in chemotherapy, such as melphalan, fludarabine phosphate, cyclophosphamide, tacrolimus, mycophenolate mofetil, and filgrastim work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving combination chemotherapy and total body irradiation before a donor blood stem cell transplant helps to stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Sorafenib, Busulfan and Fludarabine in Treating Patients with Recurrent or Refractory Acute Myeloid Leukemia Undergoing Donor Stem Cell Transplant

    This phase I / II trial studies the best dose of sorafenib when given together with busulfan and fludarabine in treating patients with acute myeloid leukemia that has come back or does not respond to treatment and who are undergoing donor stem cell transplant. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as busulfan and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving sorafenib with busulfan and fludarabine may work better in treating patients with recurrent or refractory acute myeloid leukemia.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Genetically Engineered PBMC and PBSC Expressing NY-ESO-1 TCR after a Myeloablative Conditioning Regimen to Treat Patients with Advanced Cancer

    This phase I clinical trial evaluates the safety and feasibility of administering NY-ESO-1 TCR engineered peripheral blood mononuclear cells (PBMC) and peripheral blood stem cells (PBSC) after a myeloablative conditioning regimen to treat patients with cancer that has spread to other parts of the body. The conditioning chemotherapy makes room in the patient’s bone marrow for new blood cells (PBMC) and blood-forming cells (stem cells) to grow. Giving NY-ESO-1 TCR PBMC and stem cells after the conditioning chemotherapy is intended to replace the immune system with new immune cells that have been redirected to attack and kill the cancer cells and thereby improve immune system function against cancer.
    Location: UCLA / Jonsson Comprehensive Cancer Center, Los Angeles, California

  • Venetoclax with Combination Chemotherapy in Treating Patients with Newly Diagnosed or Relapsed or Refractory Acute Myeloid Leukemia

    This phase Ib / II trial studies the best dose and side effects of venetoclax and how well it works when given with combination chemotherapy in treating patients with newly diagnosed acute myeloid leukemia or acute myeloid leukemia that has come back or does not respond to treatment. Venetoclax may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as fludarabine phosphate, cytarabine, filgrastim and idarubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax together with combination chemotherapy may work better in treating patients with acute myeloid leukemia.
    Location: M D Anderson Cancer Center, Houston, Texas


1 2 3 Next >