Clinical Trials Using Methotrexate

Clinical trials are research studies that involve people. The clinical trials on this list are studying Methotrexate. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 88
1 2 3 4 Next >

  • Combination Chemotherapy with or without Blinatumomab in Treating Patients with Newly Diagnosed BCR-ABL-Negative B Lineage Acute Lymphoblastic Leukemia

    This randomized phase III trial studies combination chemotherapy with blinatumomab to see how well it works compared to induction chemotherapy alone in treating patients with newly diagnosed breakpoint cluster region (BCR)-c-abl oncogene 1, non-receptor tyrosine kinase (ABL)-negative B lineage acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as blinatumomab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread It is not yet known whether combination chemotherapy is more effective with or without blinatumomab in treating newly diagnosed acute lymphoblastic leukemia.
    Location: 447 locations

  • Inotuzumab Ozogamicin and Frontline Chemotherapy in Treating Young Adults with Newly Diagnosed B Acute Lymphoblastic Leukemia

    This partially randomized phase III trial studies the side effects of inotuzumab ozogamicin and how well it works when given with frontline chemotherapy in treating patients with newly diagnosed B acute lymphoblastic leukemia. Monoclonal antibodies, such as inotuzumab ozogamicin, may block cancer growth in different ways by targeting certain cells. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving inotuzumab ozogamicin with chemotherapy may work better in treating young adults with B acute lymphoblastic leukemia.
    Location: 234 locations

  • Blinatumomab in Treating Younger Patients with Relapsed B-cell Acute Lymphoblastic Leukemia

    This randomized phase III trial studies how well blinatumomab works compared with standard combination chemotherapy in treating patients with B-cell acute lymphoblastic leukemia that has returned after a period of improvement (relapsed). Immunotherapy with blinatumomab, may induce changes in body’s immune system and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether standard combination chemotherapy is more effective than blinatumomab in treating relapsed B-cell acute lymphoblastic leukemia.
    Location: 164 locations

  • Imatinib Mesylate and Combination Chemotherapy in Treating Patients with Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    This randomized phase III trial studies how well imatinib mesylate and combination chemotherapy work in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia. Imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving imatinib mesylate and combination chemotherapy may work better in treating patients with Philadelphia chromosome positive acute lymphoblastic leukemia.
    Location: 146 locations

  • Azacitidine and Combination Chemotherapy in Treating Infants with Acute Lymphoblastic Leukemia and KMT2A Gene Rearrangement

    This pilot phase II trial studies the side effects of azacitidine and combination chemotherapy in infants with acute lymphoblastic leukemia and KMT2A gene rearrangement. Drugs used in chemotherapy, such as methotrexate, prednisolone, daunorubicin hydrochloride, cytarabine, dexamethasone, vincristine sulfate, pegaspargase, hydrocortisone sodium succinate, azacitidine, cyclophosphamide, mercaptopurine, leucovorin calcium, and thioguanine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug may kill more cancer cells.
    Location: 157 locations

  • Blinatumomab and Combination Chemotherapy or Dasatinib, Prednisone, and Blinatumomab in Treating Older Patients with Acute Lymphoblastic Leukemia

    This phase II trial studies the side effects and how well blinatumomab and combination chemotherapy or dasatinib, prednisone, and blinatumomab work in treating older patients with acute lymphoblastic leukemia. Immunotherapy with blinatumomab, may induce changes in body’s immune system and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as prednisone, vincristine sulfate, methotrexate, and mercaptopurine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving blinatumomab with combination chemotherapy or dasatinib and prednisone may kill more cancer cells.
    Location: 154 locations

  • Blinatumomab in Combination with Chemotherapy in Treating Patients with or without Down Syndrome and Newly Diagnosed, Standard Risk B-Lymphoblastic Leukemia or Localized B-Lymphoblastic Lymphoma

    This phase III trial studies how well blinatumomab works in combination with chemotherapy in treating patients with or without Down syndrome and newly diagnosed, standard risk B-lymphoblastic leukemia or B-lymphoblastic lymphoma. Monoclonal antibodies, such as blinatumomab, may induce changes in body’s immune system and may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as vincristine, dexamethasone, prednisone, prednisolone, pegaspargase, methotrexate, cytarabine, mercaptopurine, doxorubicin, cyclophosphamide, and thioguanine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Leucovorin decreases the toxic effects of methotrexate. Giving monoclonal antibody therapy with chemotherapy may kill more cancer cells. Giving blinatumomab and combination chemotherapy may work better then combination chemotherapy alone in treating patients with B-ALL. This trial also assigns patients into different chemotherapy treatment regimens based on risk (the chance of cancer returning after treatment). Treating patients with chemotherapy based on risk may help doctors decide which patients can best benefit from which chemotherapy treatment regimens.
    Location: 58 locations

  • Standard Chemotherapy in Treating Young Patients with Medulloblastoma or Other Central Nervous System Primitive Neuro-ectodermal Tumors

    This phase IV trial studies how well standard chemotherapy works in treating young patients with medulloblastoma or other central nervous system primitive neuro-ectodermal tumors. Drugs used in standard chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: 28 locations

  • A Phase 2 Study of Ruxolitinib With Chemotherapy in Children With Acute Lymphoblastic Leukemia

    This is a nonrandomized study of ruxolitinib in combination with a standard multi-agent chemotherapy regimen for the treatment of B-cell acute lymphoblastic leukemia. Part 1 of the study will optimize the dose of study drug (ruxolitinib) in combination with the chemotherapy regimen. Part 2 will evaluate the efficacy of combination chemotherapy and ruxolitinib at the recommended dose determined in Part 1.
    Location: 32 locations

  • Bortezomib, Vorinostat, and Combination Chemotherapy in Treating Infants with Newly Diagnosed Acute Lymphoblastic Leukemia

    This phase I / II trial studies the side effects and best dose of vorinostat and to see how well it works when given together with bortezomib and combination chemotherapy in treating infants (patients less than 1 year old) with newly diagnosed acute lymphoblastic leukemia. Bortezomib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as methotrexate, hydrocortisone, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) with bortezomib and vorinostat may be a better treatment for acute lymphoblastic leukemia.
    Location: 11 locations

  • A Study of Ruxolitinib vs Best Available Therapy (BAT) in Patients With Steroid-refractory Chronic Graft vs. Host Disease (GvHD) After Bone Marrow Transplantation (REACH3)

    The purpose of this study is to assess the efficacy of ruxolitinib against best available therapy in participants with steroid-refractory chronic graft-versus-host disease (SR cGvHD).
    Location: 15 locations

  • A Trial of Temsirolimus With Etoposide and Cyclophosphamide in Children With Relapsed Acute Lymphoblastic Leukemia and Non-Hodgkins Lymphoma

    This is a phase I study of temsirolimus (Torisel) combined with dexamethasone, cyclophosphamide and etoposide in patients with relapsed acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL) or peripheral T-cell lymphoma (PTL).
    Location: 13 locations

  • Alisertib Alone or in Combination with Chemotherapy and Radiation Therapy in Treating Younger Patients with Recurrent, Progressive, or Newly Diagnosed Central Nervous System Atypical Teratoid Rhabdoid Tumors or Extra-Central Nervous System Malignant Rhabdoid Tumors

    This phase II trial studies how well alisertib alone or in combination with chemotherapy and radiation therapy works in treating younger patients with central nervous system (CNS) atypical teratoid rhabdoid tumors that are newly diagnosed; have returned; or are growing, spreading, or getting worse or extra-CNS malignant rhabdoid tumors that have returned or are growing, spreading, or getting worse. Alisertib may stop the growth of cancer cells by blocking a protein called aurora kinase A that is needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses x-rays to kill tumor cells. Giving alisertib alone or with chemotherapy and radiation therapy may be effective in treating patients with rhabdoid tumors.
    Location: 10 locations

  • Risk Classification Schemes in Identifying Better Treatment Options for Children and Adolescents with Acute Lymphoblastic Leukemia

    This randomized phase III trial studies risk classification schemes in identifying better treatment options for children and adolescents with acute lymphoblastic leukemia. Risk factor classification may help identify how strong treatment should be for patients with acute lymphoblastic leukemia.
    Location: 7 locations

  • Study of Carfilzomib in Combination With Induction Chemotherapy in Children With Relapsed or Refractory Acute Lymphoblastic Leukemia

    The purpose of the study is to determine the maximum tolerated dose and assess the safety, tolerability and activity of carfilzomib, alone and in combination with induction chemotherapy, in children with relapsed or refractory acute lymphoblastic leukemia (ALL).
    Location: 11 locations

  • Pevonedistat, Azacitidine, Fludarabine Phosphate, and Cytarabine in Treating Patients with Relapsed or Refractory Acute Myeloid Leukemia or Relapsed High-Risk Myelodysplastic Syndrome

    This phase I trial studies the side effects and how well pevonedistat, azacitidine, fludarabine phosphate, and cytarabine work in treating patients with acute myeloid leukemia that has come back or has not responded to treatment or high-risk myelodysplastic syndrome that has come back. Pevonedistat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacitidine, and fludarabine phosphate, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) and pevonedistat may work better in treating patients with acute myeloid leukemia or myelodysplastic syndrome.
    Location: 8 locations

  • Glucarpidase in Treating Patients with Central Nervous System B-Cell Non-Hodgkin Lymphoma

    This early phase I trial studies how well glucarpidase works in treating patients with central nervous system B-cell non-Hodgkin lymphoma. Glucarpidase is a type of bacterial enzyme that breaks down proteins and other substances. It may also help activate certain drugs to kill cancer. Giving glucarpidase may work better in treating patients with central nervous system B-cell non-Hodgkin lymphoma.
    Location: 8 locations

  • Bone Marrow Transplantation vs Standard of Care in Patients With Severe Sickle Cell Disease (BMT CTN 1503)

    This is a clinical trial that will compare survival and sickle related outcomes in adolescents and young adults with severe sickle cell disease after bone marrow transplantation and standard of care. The primary outcome is 2-year overall survival.
    Location: 7 locations

  • Pembrolizumab in Treating Patients with Untreated Nasal Type Extranodal NK / T-Cell Lymphoma

    This phase II trial studies how well pembrolizumab works in treating patients with nasal type extranodal natural killer (NK) / T-cell lymphoma. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
    Location: 7 locations

  • Combination Chemotherapy, Rituximab, and Ixazomib Citrate in Treating Patients with Non-Hodgkin Lymphoma

    The purpose of this study is to evaluate the effects, good and bad of a new drug called ixazomib (also called MLN9708), when it is given along with a common treatment combination, called Dose-Adjusted EPOCH-R (DA-EPOCH-R, for short). This is a type of study called a phase I / II trial. In the phase I part, the dose of the study drug (ixazomib) will be adjusted (either up or down) to find the maximum (highest) dose that does not cause excessive (too many) harmful side effects. In the phase II part, this dose of ixazomib will be given at the maximum safe dose found in phase I. In both phase I and II, DA-EPOCH-R will be adjusted between cycles depending on how blood cell levels are affected between cycles. Ixazomib is considered investigational because it is not approved by the U.S. Food and Drug Administration (FDA). DA-EPOCH-R is a combination chemotherapy treatment developed over the last 14-15 years, and each of the drugs in this regimen is FDA-approved and considered part of the standard of care.
    Location: 5 locations

  • Ibrutinib with or without Methotrexate and Rituximab in Treating Patients with Refractory or Recurrent Primary or Secondary Central Nervous System Lymphoma

    This phase I / II trial studies the side effects and best dose of ibrutinib and to see how well it works when giving with or without methotrexate and rituximab in treating patients with primary or secondary central nervous system lymphoma that has not responded to previous treatment (refractory) or has come back (recurrent). Ibrutinib and methotrexate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Giving ibrutinib with or without methotrexate and rituximab may work better in treating patients with primary or secondary central nervous system lymphoma.
    Location: 5 locations

  • Venetoclax and Cytarabine with or without Idarubicin Hydrochloride in Treating Pediatric Patients with Refractory or Relapsed Acute Myeloid Leukemia

    This phase I trial studies the side effects and best dose of venetoclax and cytarabine when given with or without idarubicin hydrochloride in treating pediatric patients with acute myeloid leukemia that does not respond to treatment or has returned after a period of improvement. Venetoclax may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and idarubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax, cytarabine, and idarubicin hydrochloride may work better in treating pediatric patients with acute myeloid leukemia.
    Location: 4 locations

  • LCH-IV, International Collaborative Treatment Protocol for Children and Adolescents With Langerhans Cell Histiocytosis

    The LCH-IV is an international, multicenter, prospective clinical study for pediatric Langerhans Cell Histiocytosis LCH (age < 18 years).
    Location: 6 locations

  • Treatment for Advanced B-Cell Lymphoma

    To safely reduce the burden of therapy in children, adolescents and young adults with mature B-NHL by reducing the number of intrathecal (IT) injections by the introduction of IT Liposomal Cytarabine (L-ARA-C, [Depocyt®]) and reducing the dose of anthracycline (doxorubicin) in good risk patients with the addition of rituximab to the FAB chemotherapy backbone (Immunochemotherapy).
    Location: 4 locations

  • Vaccine Therapy after Donor Stem Cell Transplant in Treating Patients with Advanced Myelodysplastic Syndrome or Acute Myeloid Leukemia

    This randomized phase II trial studies how well vaccine therapy after donor stem cell transplant works in treating patients with myelodysplastic syndrome or acute myeloid leukemia that has spread to other places in the body (advanced). Vaccines made from a gene-modified virus and a person's tumor cells may help the body build an immune response to kill cancer cells. Giving chemotherapy before a donor peripheral blood or bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient’s immune system from rejecting the donor’s stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient’s bone marrow make stem cells, red blood cells, white blood cells, and platelets. It is not yet known whether giving vaccine therapy after a donor peripheral blood or bone marrow transplant is more effective than transplant alone in treating myelodysplastic syndrome or acute myeloid leukemia.
    Location: 4 locations


1 2 3 4 Next >