Clinical Trials Using Pegaspargase

Clinical trials are research studies that involve people. The clinical trials on this list are studying Pegaspargase. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-19 of 19
  • Combination Chemotherapy with or without Blinatumomab in Treating Patients with Newly Diagnosed BCR-ABL-Negative B Lineage Acute Lymphoblastic Leukemia

    This randomized phase III trial studies combination chemotherapy with blinatumomab to see how well it works compared to induction chemotherapy alone in treating patients with newly diagnosed breakpoint cluster region (BCR)-c-abl oncogene 1, non-receptor tyrosine kinase (ABL)-negative B lineage acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as blinatumomab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread It is not yet known whether combination chemotherapy is more effective with or without blinatumomab in treating newly diagnosed acute lymphoblastic leukemia.
    Location: 455 locations

  • Blinatumomab in Treating Younger Patients with Relapsed B-cell Acute Lymphoblastic Leukemia

    This randomized phase III trial studies how well blinatumomab works compared with standard combination chemotherapy in treating patients with B-cell acute lymphoblastic leukemia that has returned after a period of improvement (relapsed). Immunotherapy with blinatumomab, may induce changes in body’s immune system and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether standard combination chemotherapy is more effective than blinatumomab in treating relapsed B-cell acute lymphoblastic leukemia.
    Location: 164 locations

  • Imatinib Mesylate and Combination Chemotherapy in Treating Patients with Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    This randomized phase III trial studies how well imatinib mesylate and combination chemotherapy work in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia. Imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving imatinib mesylate and combination chemotherapy may work better in treating patients with Philadelphia chromosome positive acute lymphoblastic leukemia.
    Location: 147 locations

  • Azacitidine and Combination Chemotherapy in Treating Infants with Acute Lymphoblastic Leukemia and KMT2A Gene Rearrangement

    This pilot phase II trial studies the side effects of azacitidine and combination chemotherapy in infants with acute lymphoblastic leukemia and KMT2A gene rearrangement. Drugs used in chemotherapy, such as methotrexate, prednisolone, daunorubicin hydrochloride, cytarabine, dexamethasone, vincristine sulfate, pegaspargase, hydrocortisone sodium succinate, azacitidine, cyclophosphamide, mercaptopurine, leucovorin calcium, and thioguanine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug may kill more cancer cells.
    Location: 157 locations

  • A Phase 2 Study of Ruxolitinib With Chemotherapy in Children With Acute Lymphoblastic Leukemia

    This is a nonrandomized study of ruxolitinib in combination with a standard multi-agent chemotherapy regimen for the treatment of B-cell acute lymphoblastic leukemia. Part 1 of the study will optimize the dose of study drug (ruxolitinib) in combination with the chemotherapy regimen. Part 2 will evaluate the efficacy of combination chemotherapy and ruxolitinib at the recommended dose determined in Part 1.
    Location: 33 locations

  • Bortezomib, Vorinostat, and Combination Chemotherapy in Treating Infants with Newly Diagnosed Acute Lymphoblastic Leukemia

    This phase I / II trial studies the side effects and best dose of vorinostat and to see how well it works when given together with bortezomib and combination chemotherapy in treating infants (patients less than 1 year old) with newly diagnosed acute lymphoblastic leukemia. Bortezomib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as methotrexate, hydrocortisone, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) with bortezomib and vorinostat may be a better treatment for acute lymphoblastic leukemia.
    Location: 11 locations

  • A Study of Venetoclax in Combination With Navitoclax and Chemotherapy in Subjects With Relapsed / Refractory Acute Lymphoblastic Leukemia or Relapsed / Refractory Lymphoblastic Lymphoma

    This dose-escalating study is to determine the safety, pharmacokinetics, and preliminary efficacy of venetoclax in combination with navitoclax and chemotherapy in adult and pediatric participants with relapsed / refractory acute lymphoblastic leukemia (ALL) or relapsed / refractory lymphoblastic lymphoma.
    Location: 12 locations

  • Risk Classification Schemes in Identifying Better Treatment Options for Children and Adolescents with Acute Lymphoblastic Leukemia

    This randomized phase III trial studies risk classification schemes in identifying better treatment options for children and adolescents with acute lymphoblastic leukemia. Risk factor classification may help identify how strong treatment should be for patients with acute lymphoblastic leukemia.
    Location: 7 locations

  • Study of Carfilzomib in Combination With Induction Chemotherapy in Children With Relapsed or Refractory Acute Lymphoblastic Leukemia

    The purpose of the study is to determine the maximum tolerated dose and assess the safety, tolerability and activity of carfilzomib, alone and in combination with induction chemotherapy, in children with relapsed or refractory acute lymphoblastic leukemia (ALL).
    Location: 11 locations

  • A Study of the Safety and Pharmacokinetics of Venetoclax in Pediatric and Young Adult Patients With Relapsed or Refractory Malignancies

    An open-label, global, multi-center study to evaluate the safety and pharmacokinetics of venetoclax monotherapy, to determine the dose limiting toxicity (DLT) and the recommended Phase 2 dose (RPTD), and to assess the preliminary efficacy of venetoclax in pediatric and young adult participants with relapsed or refractory malignancies.
    Location: 8 locations

  • A Study to Evaluate the Efficacy and Safety of Daratumumab in Pediatric and Young Adult Participants Greater Than or Equal to (>=)1 and Less Than or Equal to (<=) 30 Years of Age With Relapsed / Refractory Precursor B-cell or T-cell Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    The purpose of this study is to evaluate the efficacy of daratumumab in addition to standard chemotherapy in pediatric participants with relapsed / refractory B-cell acute lymphoblastic leukemia (ALL) / lymphoblastic lymphoma (LL) and T-cell ALL / LL as measured by the complete response (CR) rate.
    Location: 11 locations

  • Combination Chemotherapy in Treating Adult Patients with Newly Diagnosed Acute Lymphoblastic Leukemia

    This phase II trial studies how well combination chemotherapy works in treating adult patients with newly diagnosed acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more cancer cells.
    Location: 3 locations

  • Combination Chemotherapy in Treating Patients with Acute Lymphoblastic Leukemia or Lymphoma

    This randomized phase II / III trial studies the side effects of combination chemotherapy and how well it works in treating patients with acute lymphoblastic leukemia or lymphoma. Drugs used in combination chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: 2 locations

  • Intensive Combination Chemotherapy in Treating Patients with Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    This partially randomized phase II trial studies how well intensive combination chemotherapy works in treating patients with acute lymphoblastic leukemia or lymphoblastic lymphoma. Drugs used in chemotherapy, such as daunorubicin hydrochloride, cyclophosphamide, vincristine sulfate, prednisone, leucovorin calcium, cytarabine, etoposide, and liposomal cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as rituximab, may induce changes in body’s immune system and may interfere with the ability of cancer cells to grow and spread. Biological therapies, such as mercaptopurine, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Dietary supplements, such as levocarnitine, may reduce the incidence of liver damage. Pegaspargase, methotrexate, dasatinib and imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving combination chemotherapy with, rituximab, mercaptopurine, levocarnitine, pegaspargase, methotrexate, dasatinib and imatinib mesylate may be an effective treatment for acute lymphoblastic leukemia or lymphoblastic lymphoma.
    Location: 3 locations

  • Low-Intensity Chemotherapy and Venetoclax in Treating Patients with Relapsed or Refractory B- or T-Cell Acute Lymphoblastic Leukemia

    This phase I / II trial studies the side effects and best dose of venetoclax and how well it works in combination with low-intensity chemotherapy in patients with B- or T-cell acute lymphoblastic leukemia that has not responded to treatment or that has come back. Venetoclax may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, including vincristine, cyclophosphamide, dexamethasone, rituximab, methotrexate, and cytarabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax with low-intensity chemotherapy may work better in treating patient with B- or T-cell acute lymphoblastic leukemia.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Palbociclib in Combination With Chemotherapy in Treating Children With Relapsed Acute Lymphoblastic Leukemia (ALL) or Lymphoblastic Lymphoma (LL)

    AINV18P1 is a Phase 1 study where palbociclib will be administrated in combination with a standard re-induction platform in pediatric relapsed Acute Lymphoblastic Leukemia (ALL) and lymphoblastic lymphoma (LL). LL patients are included because the patient population is rare and these patients are most commonly treated with ALL regimens. The proposed starting dose for this study will be 50 mg / m^2 / day for 21 days.
    Location: Laura and Isaac Perlmutter Cancer Center at NYU Langone, New York, New York

  • Ruxolitinib in Combination with Standard Chemotherapy in Treating Adolescents and Young Adults with Ph-Like Acute Lymphoblastic Leukemia

    This phase I trial studies the best dose and side effects of ruxolitinib in combination with standard chemotherapy in treating adolescents and young adults with Philadelphia (Ph)-like acute lymphoblastic leukemia. Ruxolitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ruxolitinib and chemotherapy may work better in treating patients with h-like acute lymphoblastic leukemia.
    Location: University of Chicago Comprehensive Cancer Center, Chicago, Illinois

  • Combination Chemotherapy and Nelarabine in Treating Patients with T-cell Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    This phase II trial studies the side effects and how well combination chemotherapy and nelarabine work in treating patients with T-cell acute lymphoblastic leukemia or lymphoblastic lymphoma. Drugs used in chemotherapy, such as cyclophosphamide, vincristine sulfate, doxorubicin hydrochloride, dexamethasone, methotrexate, cytarabine, mercaptopurine, prednisone, pegaspargase, nelarabine, and venetoclax work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Different Therapies in Treating Infants With Newly Diagnosed Acute Leukemia

    RATIONALE: Giving chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, methotrexate, leucovorin, and antithymocyte globulin before and after transplant may stop this from happening. It is not yet known which treatment regimen is most effective in treating acute leukemia. PURPOSE: This randomized clinical trial is studying how well different therapies work in treating infants with newly diagnosed acute leukemia.
    Location: See Clinical Trials.gov