Treatment Clinical Trials for Childhood Acute Lymphoblastic Leukemia

Clinical trials are research studies that involve people. The clinical trials on this list are for childhood acute lymphoblastic leukemia treatment. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-17 of 17
  • Bortezomib, Vorinostat, and Combination Chemotherapy in Treating Infants with Newly Diagnosed Acute Lymphoblastic Leukemia

    This phase I / II trial studies the side effects and best dose of vorinostat and to see how well it works when given together with bortezomib and combination chemotherapy in treating infants (patients less than 1 year old) with newly diagnosed acute lymphoblastic leukemia. Bortezomib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as methotrexate, hydrocortisone, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) with bortezomib and vorinostat may be a better treatment for acute lymphoblastic leukemia.
    Location: 11 locations

  • Study of Carfilzomib in Combination With Induction Chemotherapy in Children With Relapsed or Refractory Acute Lymphoblastic Leukemia

    The purpose of the study is to determine the maximum tolerated dose and assess the safety, tolerability and activity of carfilzomib, alone and in combination with induction chemotherapy, in children with relapsed or refractory acute lymphoblastic leukemia (ALL).
    Location: 11 locations

  • A Study of the Safety and Pharmacokinetics of Venetoclax in Pediatric and Young Adult Patients With Relapsed or Refractory Malignancies

    An open-label, global, multi-center study to evaluate the safety and pharmacokinetics of venetoclax monotherapy, to determine the dose limiting toxicity (DLT) and the recommended Phase 2 dose (RPTD), and to assess the preliminary efficacy of venetoclax in pediatric and young adult participants with relapsed or refractory malignancies.
    Location: 8 locations

  • CD5.CAR / 28 T Cells, Cyclophosphamide, and Fludarabine in Treating Participants with Recurrent T-Cell Malignancies Expressing the CD5 Antigen

    This phase I trial studies the side effects and best dose of autologous CD5-specific CAR-28 zeta CAR T-cells (CD5.CAR / 28 T cells) when given together with cyclophosphamide and fludarabine in treating participants with T-cell cancers expressing the CD5 antigen that that has come back. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells including tumor cells. The antibody used in this study is called anti-CD5, which sticks to T-cell leukemia or lymphoma cells because of a substance on the outside of these cells called CD5. The T cells will also contain a substance called CD28 which may help stimulate the T cells and may make them last longer. Drugs used in chemotherapy, such as cyclophosphamide and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CD5.CAR / 28 T cells with cyclophosphamide and fludarabine may work better in treating participants with T-cell malignancies expressing the CD5 antigen.
    Location: 3 locations

  • T-allo10 Cell Infusion before Donor Stem Cell Transplant in Treating Patients with Relapsed or Refractory Blood Cancer

    This phase I trial studies side effects and best dose of T-allo10 cells and to see how well they work when given before donor stem cell transplant in treating patients with blood cancer that has come back or does not respond to treatment. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft versus host disease). Giving T-allo10 cells before the transplant may help prevent this from happening. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient’s immune cells and help destroy any remaining cancer cells. Giving T-allo10 cells before donor stem cell transplant may work better in treating patients with blood cancer that has come back or dose not respond to treatment.
    Location: 2 locations

  • Combination Chemotherapy in Treating Patients with Acute Lymphoblastic Leukemia or Lymphoma

    This randomized phase II / III trial studies the side effects of combination chemotherapy and how well it works in treating patients with acute lymphoblastic leukemia or lymphoma. Drugs used in combination chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: 2 locations

  • Selective Depletion of CD45RA+ T Cells from Allogeneic Peripheral Blood Stem Cell Grafts from HLA-Matched Related and Unrelated Donors in Preventing GVHD

    This phase II trial is for patients with acute lymphocytic leukemia, acute myeloid leukemia, myelodysplastic syndrome or chronic myeloid leukemia who have been referred for a peripheral blood stem cell transplantation to treat their cancer. In these transplants, chemotherapy and total-body radiotherapy ('conditioning') are used to kill residual leukemia cells and the patient's normal blood cells, especially immune cells that could reject the donor cells. Following the chemo / radiotherapy, blood stem cells from the donor are infused. These stem cells will grow and eventually replace the patient's original blood system, including red cells that carry oxygen to our tissues, platelets that stop bleeding from damaged vessels, and multiple types of immune-system white blood cells that fight infections. Mature donor immune cells, especially a type of immune cell called T lymphocytes (or T cells) are transferred along with these blood-forming stem cells. T cells are a major part of the curative power of transplantation because they can attack leukemia cells that have survived the chemo / radiation therapy and also help to fight infections after transplantation. However, donor T cells can also attack a patient's healthy tissues in an often-dangerous condition known as Graft-Versus-Host-Disease (GVHD). Drugs that suppress immune cells are used to decrease the severity of GVHD; however, they are incompletely effective and prolonged immunosuppression used to prevent and treat GVHD significantly increases the risk of serious infections. Removing all donor T cells from the transplant graft can prevent GVHD, but doing so also profoundly delays infection-fighting immune reconstitution and eliminates the possibility that donor immune cells will kill residual leukemia cells. Work in animal models found that depleting a type of T cell, called naive T cells or T cells that have never responded to an infection, can diminish GVHD while at least in part preserving some of the benefits of donor T cells including resistance to infection and the ability to kill leukemia cells. This clinical trial studies how well the selective removal of naive T cells works in preventing GVHD after peripheral blood stem cell transplants. This study will include patients conditioned with high or medium intensity chemo / radiotherapy who can receive donor grafts from related or unrelated donors.
    Location: 2 locations

  • CD19-CAR T-cell Immunotherapy in Treating Patients with CD19-Positive Leukemia

    This phase I / II clinical trial studies the side effects of CD19-CAR T-cell immunotherapy and how well it works in treating patients with CD19-positive leukemia. Biological therapies, such as CD19-CAR T-cell immunotherapy, use substances made from living organisms that may attack specific tumor cells and stop them from growing or kill them.
    Location: 2 locations

  • Low-Dose Daunorubicin Hydrochloride in Treating Patients with Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

    This phase I trial studies how well low-dose daunorubicin hydrochloride works in treating patients with acute myeloid leukemia or acute lymphoblastic leukemia that has come back or has not responded to treatment. Drugs used in chemotherapy, such as daunorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: University of Kansas Cancer Center, Kansas City, Kansas

  • Partially HLA-Mismatched Related Donor Stem Cell Transplant Using Killer Immunoglobulin Receptor and Human Leukocyte Antigen Based Donor Selection in Treating Patients with Hematologic Malignancies

    This pilot clinical trial studies how well partially human leukocyte antigen (HLA)-mismatched related donor stem cell transplant using killer immunoglobulin receptor or HLA based donor selection works in treating patients with hematologic malignancies. Partially mismatched donor stem cells may reduce the risk of cancer recurring after transplant.
    Location: Memorial Sloan Kettering Cancer Center, New York, New York

  • Blinatumomab and T Cell Depleted Donor Blood Cell Transplant in Treating Younger Patients with Relapsed or Refractory Hematologic Malignancy after a Previous Transplant

    This phase II trial studies how well blinatumomab and T cell depleted donor blood cell transplant work in treating children and young adults with hematologic cancer that has not responded or has come back after a previous transplant. White blood cells from donors may be able to kill cancer cells in patients with hematologic cancer. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Removing the T cells from the donor cells before the transplant may stop this from happening. Monoclonal antibodies, such as blinatumomab, may interfere with the ability of cancer cells to grow and spread. Giving blinatumomab after a blood cell transplant may destroy any remaining cancer cells.
    Location: St. Jude Children's Research Hospital, Memphis, Tennessee

  • High Throughput Drug Sensitivity Assay and Genomics- Guided Treatment of Patients with Relapsed or Refractory Acute Leukemia

    This pilot clinical trial studies the feasibility of choosing treatment based on a high throughput ex vivo drug sensitivity assay in combination with mutation analysis for patients with acute leukemia that has returned after a period of improvement or does not respond to treatment. A high throughput screening assay tests many different drugs individually or in combination that kill leukemia cells in tiny chambers at the same time. High throughput drug sensitivity assay and mutation analysis may help guide the choice most effective for an individual’s acute leukemia.
    Location: Fred Hutch / University of Washington Cancer Consortium, Seattle, Washington

  • Genetically Modified Donor Stem Cell Transplant Followed by Zoledronic Acid in Treating Younger Patients with Relapsed / Refractory Hematologic Malignancies or High Risk Solid Tumors

    This phase I trial studies the side effects of zoledronic acid given after genetically modified donor stem cell transplant in treating younger patients with hematologic malignancies or high risk tumors that have returned after a period of improvement (relapsed) or do not respond to treatment (refractory). Giving chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When healthy stem cells from a donor that have been genetically modified are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving mycophenolate mofetil and tacrolimus after the transplant may stop this from happening. Giving zoledronic acid after the transplant may help strengthen the immune system and make the immune cells work better.
    Location: University of Wisconsin Hospital and Clinics, Madison, Wisconsin

  • Intra-osseous Donor Umbilical Cord Blood and Mesenchymal Stromal Cell Co-transplant in Treating Patients with Hematologic Malignancies

    This clinical trial studies intra-osseous donor umbilical cord blood and mesenchymal stromal cell co-transplant in treating patients with hematologic malignancies. Giving low doses of chemotherapy and total-body irradiation before a co-transplant of donor umbilical cord blood and mesenchymal stromal cells into the bone (intra-osseous) helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil at the time of transplant may stop this from happening.
    Location: Case Comprehensive Cancer Center, Cleveland, Ohio

  • CD34+ Stem Cell Selection in Preventing Graft-Versus-Host Disease in Younger Patients with Malignant Disease Undergoing Donor Stem Cell Transplant

    This phase I / II trial studies cluster of differentiation 34 positive (CD34+) stem cell selection in preventing graft-versus-host-disease (GVHD) in younger patients with malignant disease undergoing donor stem cell transplant. Selected CD34+ stem cell may help stop the patient's immune system from rejecting the donor's stem cells and prevent GVHD.
    Location: NYP / Columbia University Medical Center / Herbert Irving Comprehensive Cancer Center, New York, New York

  • Donor Progenitor Cell and Natural Kill Cell Transplant in Treating Younger Patients with High-Risk Hematologic Malignancies

    This phase II trial studies how well donor progenitor cell and natural killer cell transplant works in treating younger patients with cancers of the blood that are at high risk of coming back or spreading. Giving chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient’s immune system from rejecting the donor’s stem cells. When certain stem cells and natural killer cells from a donor are infused into the patient they may help the patient’s bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body’s normal cells. Removing the T cells from the donor cells before transplant may stop this from happening.
    Location: St. Jude Children's Research Hospital, Memphis, Tennessee

  • Epstein-Barr Virus Specific Cytotoxic T-Cells in Treating Patients with Relapsed Acute Lymphoblastic Leukemia Who Have Undergone Donor Stem Cell Transplant

    This phase I trial studies the side effects and best dose of Epstein-Barr virus specific cytotoxic T-cells given together with cyclophosphamide in treating patients with relapsed acute lymphocytic leukemia who have undergone donor stem cell transplant. Vaccines made from a donor's gene-modified T-cells may help the body build an effective immune response to kill cancer cells that express cluster of differentiation (CD)19. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving Epstein-Barr virus specific cytotoxic T-cells together with chemotherapy may kill more cancer cells.
    Location: Memorial Sloan Kettering Cancer Center, New York, New York