Treatment Clinical Trials for Colon Cancer

Clinical trials are research studies that involve people. The clinical trials on this list are for colon cancer treatment. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 55
1 2 3 Next >

  • Targeted Therapy Directed by Genetic Testing in Treating Patients with Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma (The MATCH Screening Trial)

    This phase II MATCH trial studies how well treatment that is directed by genetic testing works in patients with solid tumors or lymphomas that have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.
    Location: 1172 locations

  • S1613, Trastuzumab and Pertuzumab or Cetuximab and Irinotecan Hydrochloride in Treating Patients with Locally Advanced or Metastatic HER2 / Neu Amplified Colorectal Cancer That Cannot Be Removed by Surgery

    This randomized phase II trial studies how well trastuzumab and pertuzumab work compared to cetuximab and irinotecan hydrochloride in treating patients with HER2 / neu amplified colorectal cancer that has spread from where it started to other places in the body and cannot be removed by surgery. Monoclonal antibodies, such as trastuzumab and pertuzumab, may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as cetuximab and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving trastuzumab and pertuzumab may work better compared to cetuximab and irinotecan hydrochloride in treating patients with colorectal cancer.
    Location: 592 locations

  • Combination Chemotherapy with or without Atezolizumab in Treating Patients with Stage III Colon Cancer and Deficient DNA Mismatch Repair

    This randomized phase III trial studies combination chemotherapy and atezolizumab to see how well it works compared with combination chemotherapy alone in treating patients with stage III colon cancer and deficient deoxyribonucleic acid (DNA) mismatch repair. Drugs used in combination chemotherapy, such as oxaliplatin, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as atezolizumab, may interfere with the ability of tumor cells to grow and spread. Giving combination chemotherapy with atezolizumab may work better than combination chemotherapy alone in treating patients with colon cancer.
    Location: 747 locations

  • Phase 1 Study of LOXO-292 in Patients With Advanced Solid Tumors, RET-Fusion Lung Cancer and Medullary Thyroid Cancer

    This is a Phase 1, open-label, first-in-human study designed to evaluate the safety, tolerability, pharmacokinetics (PK) and preliminary anti-tumor activity of LOXO-292 administered orally to patients with advanced solid tumors, including RET-fusion non-small cell lung cancer (NSCLC), medullary thyroid cancer (MTC) and other tumors with increased RET activity.
    Location: 17 locations

  • Genetic Testing in Determining Irinotecan Hydrochloride Dose in Patients with Metastatic Colorectal Cancer Receiving FOLFIRI and Bevacizumab

    This phase II trial studies how well genetic testing works in determining irinotecan hydrochloride dose in patients with colorectal cancer that has spread to other areas of the body, who are receiving leucovorin calcium, fluorouracil, and irinotecan hydrochloride (FOLFIRI) and bevacizumab. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Giving monoclonal antibody therapy with chemotherapy may kill more tumor cells. Genetic testing may help doctors determine how the body breaks down and removes irinotecan hydrochloride. Using genetic testing to determine the dose of irinotecan hydrochloride may be more effective and safer than standard dosing.
    Location: 9 locations

  • Trametinib and Trifluridine and Tipiracil Hydrochloride in Treating Patients with Colon or Rectal Cancer That is Advanced, Metastatic, or Cannot Be Removed by Surgery

    This phase I trial studies the side effects and best dose of trametinib and trifluridine and tipiracil hydrochloride in treating patients with colon or rectal cancer that has spread to other places in the body or cannot be removed by surgery. Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as trifluridine and tipiracil hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving trametinib and trifluridine and tipiracil hydrochloride may prevent cancer cells from dividing and work better in treating patients with colon and rectal cancer.
    Location: 8 locations

  • Cabozantinib-S-Malate and Panitumumab in Treating Patients with Colorectal Cancer That is Metastatic or Cannot Be Removed by Surgery

    This phase Ib / II trial studies the safety and best dose of cabozantinib-s-malate when given together with panitumumab in treating patients with colorectal cancer that has spread to other parts of the body or cannot be removed by surgery. Cabozantinib-s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Panitumumab is a monoclonal antibody that blocks the ability of tumor cells to grow and spread. Giving cabozantinib-s-malate with panitumumab may work better in treating patients with colorectal cancer.
    Location: 8 locations

  • Efficacy Evaluation of TheraSphere Following Failed First Line Chemotherapy in Metastatic Colorectal Cancer

    The effectiveness and safety of TheraSphere will be evaluated in patients with colorectal cancer with metastases in the liver, who are scheduled to receive second line chemotherapy. All patients receive the standard of care chemotherapy with or without the addition of TheraSphere.
    Location: 9 locations

  • Safety Study of Enoblituzumab (MGA271) in Combination With Pembrolizumab in Refractory Cancer

    The purpose of this study is to evaluate the safety of enoblituzumab (MGA271) in combination with Keytruda (pembrolizumab) when given to patients with B7-H3-expressing melanoma, squamous cell carcinoma of the head and neck (SCCHN), non small cell lung cancer (NSCLC), Urothelial Cancer and other B7-H3 expressing cancers. The study will also evaluate what is the highest dose of enoblituzumab that can be given safely when given with pembrolizumab. Assessments will also be done to see how the drug acts in the body (pharmacokinetics (PK), pharmacodynamics) and to evaluate potential anti-tumor activity of MGA271 in combination with pembrolizumab.
    Location: 7 locations

  • Dose-escalation Study of Lupartumab Amadotin (BAY1129980)

    The purpose of this study is to evaluate: - The side effects of BAY1129980 when given every 21 days different dose levels. - Determine the dose level of BAY1129980 that should be tested in future clinical research studies. - Measure how much BAY1129980 is in the blood at specific times after administration. - If treatment with BAY1129980 shows any effect on reducing the tumor growth. - If there are specific biomarkers that might be able to explain why some patients respond to treatment and others do not. - If treatment with BAY1129980 causes an immune response from the body against the drug (immunogenicity).
    Location: 6 locations

  • A Study of ABT-165 Plus FOLFIRI vs Bevacizumab Plus FOLFIRI in Subjects With Metastatic Colorectal Cancer Previously Treated With Fluoropyrimidine / Oxaliplatin and Bevacizumab

    A study to evaluate the efficacy and tolerability of ABT-165 plus FOLFIRI compared to bevacizumab plus FOLFIRI in participants with previously treated metastatic adenocarcinoma of the colon or rectum.
    Location: 7 locations

  • A Study of RO7198457 (Personalized Cancer Vaccine [PCV]) as a Single Agent and in Combination With Atezolizumab in Participants With Locally Advanced or Metastatic Tumors

    This is a Phase 1a / 1b, open-label, multicenter, global, dose-escalation study designed to evaluate the safety, tolerability, immune response, and pharmacokinetics of RO7198457 as a single agent and in combination with atezolizumab (MPDL3280A, an engineered anti-programmed death-ligand 1 [anti-PD-L1] antibody).
    Location: 10 locations

  • Safety Study of MGD009 in B7-H3-expressing Tumors

    The purpose of this study is to evaluate the safety of MGD009 when given to patients with B7-H3-expressing tumors. The study will also evaluate what is the highest dose of MGD009 that can be given safely. Assessments will be done to see how the drug acts in the body (pharmacokinetics (PK), pharmacodynamics (PD) and to evaluate potential anti-tumor activity of MGD009.
    Location: 7 locations

  • Phase 1 Study of MGD007 in Relapsed / Refractory Metastatic Colorectal Carcinoma

    The primary goal of this Phase 1 study is to characterize the safety and tolerability of MGD007 and establish the maximum tolerated dose (MTD) and schedule of MGD007 administered to patients with metastatic colorectal carcinoma. Pharmacokinetics, pharmacodynamics, and the anti-tumor activity of MGD007 will also be assessed.
    Location: 5 locations

  • Guadecitabine and Irinotecan Hydrochloride or Regorafenib or TAS-102 Alone in Treating Patients with Previously Treated Metastatic Colorectal Cancer

    This partially randomized phase I / II trial studies the side effects and best dose of guadecitabine and to see how well it works when given together with irinotecan hydrochloride or regorafenib or trifluridine / tipiracil hydrochloride combination agent TAS-102 (Tas-102) alone in treating patients with previously treated colorectal cancer that has spread to other parts of the body. Guadecitabine, irinotecan hydrochloride, regorafenib, and TAS-102 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
    Location: 3 locations

  • A Phase 2 Study of NIR178 in Combination With PDR001 in Patients With Solid Tumors and Non-Hodgkin Lymphoma

    The purpose of this phase 2 study is to evaluate the efficacy and safety of NIR178 in combination with PDR001 in multiple solid tumors and diffuse large B-cell lymphoma (DLBCL) and further explore schedule variations of NIR178 to optimize immune activation through inhibition of A2aR.
    Location: 4 locations

  • A Study of LY3039478 in Participants With Advanced or Metastatic Solid Tumors

    The main purpose of this study is to evaluate the safety of the study drug known as LY3039478 in combination with other anticancer agents in participants with advanced or metastatic solid tumors.
    Location: 5 locations

  • Stereotactic Radiosurgery in Treating Patients with Oligo-Recurrent Disease

    This phase II trial studies how well stereotactic radiosurgery works in treating patients with cancer that has come back and has spread to 5 or fewer places in the body (oligometastatic disease). Stereotactic radiosurgery, also known as stereotactic body radiation therapy, is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may kill more tumor cells and cause less damage to normal tissue.
    Location: 3 locations

  • Stereotactic Radiosurgery in Treating Patients with Oligometastatic Disease

    This phase II trial studies how well stereotactic radiosurgery works in treating patients with cancer that has spread to 5 or fewer places in the body and involves 3 or fewer organs (oligometastatic disease). Stereotactic radiosurgery, also known as stereotactic body radiation therapy, is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may kill more tumor cells and cause less damage to normal tissue.
    Location: 3 locations

  • Phase 1 Clinical Trial of Metastasis Inhibitor NP-G2-044 in Patients With Advanced or Metastatic Solid Tumors (Including Lymphoma)

    First-in-human phase 1 study to determine safety of NP-G2-044 when given orally on a daily X 28 days followed by a 14 day rest period.
    Location: 2 locations

  • A Phase 1 / 2 Safety Study of Intratumorally Dosed INT230-6

    This study evaluates the intratumoral administration of escalating doses of a novel, experimental drug, INT230-6. The study is being conducted in patients with several types of refractory cancers including those at the surface of the skin (melanoma, head and neck, lymphoma, breast) and tumors within the body such (pancreatic, colon, liver, lung, etc.). Sponsor also plans to test INT230-6 in combination with anti-PD-1 antibodies.
    Location: 2 locations

  • Study of the Safety, Tolerability and Efficacy of KPT-8602 in Patients With Relapsed / Refractory Cancer Indications

    This is a first-in-human, multi-center, open-label clinical study with separate dose escalation (Phase 1) and expansion (Phase 2) stages to assess preliminary safety, tolerability, and efficacy of the second generation oral XPO1 inhibitor KPT-8602 in patients with relapsed / refractory multiple myeloma (MM), colorectal cancer (CRC), metastatic castration resistant prostate cancer (mCRPC), and higher risk myelodysplastic syndrome (MDS). Dose escalation and dose expansion may be included for all parts of the study as determined by ongoing study results. This study is currently closed for enrollment for patients with relapsed / refractory multiple myeloma (MM) or colorectal cancer (CRC).
    Location: 2 locations

  • Panitumumab and Combination Chemotherapy in Treating Patients with Metastatic Colorectal Cancer Previously Treated with Combination Chemotherapy and Bevacizumab

    This phase II trial studies how well panitumumab and combination chemotherapy works in treating patients with colorectal cancer that has spread to other places in the body and has previously been treated with combination chemotherapy and bevacizumab. Monoclonal antibodies, such as panitumumab, may interfere with the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving panitumumab and combination chemotherapy together may kill more tumor cells.
    Location: 2 locations

  • Vaccine Therapy in Treating Patients with HER2-Positive Solid Tumors

    This phase I trial studies the side effects and best dose of vaccine therapy in treating patients with tumors that have a protein called human epidermal growth factor receptor 2 (HER2) on the surfaces of their cells. Vaccines made from a virus that has been modified to contain HER2 cells may help teach the immune system find and kill tumor cells.
    Location: 2 locations

  • Gemcitabine Hydrochloride and Docetaxel in Treating Patients with Relapsed or Refractory Colorectal Cancer That Is Metastatic or Cannot Be Removed by Surgery

    This phase II trial studies how well gemcitabine hydrochloride and docetaxel work in treating patients with colorectal cancer that has returned or did not respond to treatment and has spread to other parts of the body or cannot be removed by surgery. Drugs used in chemotherapy, such as gemcitabine hydrochloride and docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more tumor cells.
    Location: Johns Hopkins University / Sidney Kimmel Cancer Center, Baltimore, Maryland


1 2 3 Next >