Treatment Clinical Trials for Colon Cancer

Clinical trials are research studies that involve people. The clinical trials on this list are for colon cancer treatment. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 55
1 2 3 Next >

  • Targeted Therapy Directed by Genetic Testing in Treating Patients with Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma (The MATCH Screening Trial)

    This phase II MATCH trial studies how well treatment that is directed by genetic testing works in patients with solid tumors or lymphomas that have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.
    Location: 1174 locations

  • S1613, Trastuzumab and Pertuzumab or Cetuximab and Irinotecan Hydrochloride in Treating Patients with Locally Advanced or Metastatic HER2 / Neu Amplified Colorectal Cancer That Cannot Be Removed by Surgery

    This randomized phase II trial studies how well trastuzumab and pertuzumab work compared to cetuximab and irinotecan hydrochloride in treating patients with HER2 / neu amplified colorectal cancer that has spread from where it started to other places in the body and cannot be removed by surgery. Immunotherapy with monoclonal antibodies, such as trastuzumab and pertuzumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as cetuximab and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving trastuzumab and pertuzumab may work better compared to cetuximab and irinotecan hydrochloride in treating patients with colorectal cancer.
    Location: 655 locations

  • Combination Chemotherapy with or without Atezolizumab in Treating Patients with Stage III Colon Cancer and Deficient DNA Mismatch Repair

    This phase III trial studies combination chemotherapy and atezolizumab to see how well it works compared with combination chemotherapy alone in treating patients with stage III colon cancer and deficient deoxyribonucleic acid (DNA) mismatch repair. Drugs used in combination chemotherapy, such as oxaliplatin, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving combination chemotherapy with atezolizumab may work better than combination chemotherapy alone in treating patients with colon cancer.
    Location: 817 locations

  • Phase 1 / 2 Study of LOXO-292 in Patients With Advanced Solid Tumors, RET Fusion-Positive Solid Tumors, and Medullary Thyroid Cancer

    This is a Phase 1 / 2, open-label, first-in-human study designed to evaluate the safety, tolerability, pharmacokinetics (PK) and preliminary anti-tumor activity of LOXO-292 administered orally to patients with advanced solid tumors, including RET-fusion-positive solid tumors, medullary thyroid cancer (MTC) and other tumors with RET activation.
    Location: 28 locations

  • Phase 1 Study of the Highly-selective RET Inhibitor BLU-667 in Patients With Thyroid Cancer, Non-Small Cell Lung Cancer, and Other Advanced Solid Tumors

    This is a Phase 1, open-label, first-in-human study designed to evaluate the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary antineoplastic activity of BLU-667 administered orally in patients with medullary thyroid cancer, RET-altered NSCLC and other RET-altered solid tumors.
    Location: 15 locations

  • A Study of ABT-165 Plus FOLFIRI vs Bevacizumab Plus FOLFIRI in Subjects With Metastatic Colorectal Cancer Previously Treated With Fluoropyrimidine, Oxaliplatin and Bevacizumab

    A study to evaluate the efficacy and tolerability of ABT-165 plus FOLFIRI compared to bevacizumab plus FOLFIRI in participants with previously treated metastatic adenocarcinoma of the colon or rectum.
    Location: 14 locations

  • Safety Study of MGD009 in B7-H3-expressing Tumors

    The purpose of this study is to evaluate the safety of MGD009 when given to patients with B7-H3-expressing tumors. The study will also evaluate what is the highest dose of MGD009 that can be given safely. Assessments will be done to see how the drug acts in the body (pharmacokinetics (PK), pharmacodynamics (PD) and to evaluate potential anti-tumor activity of MGD009.
    Location: 12 locations

  • Trametinib and Trifluridine and Tipiracil Hydrochloride in Treating Patients with Colon or Rectal Cancer That is Advanced, Metastatic, or Cannot Be Removed by Surgery

    This phase I trial studies the side effects and best dose of trametinib and trifluridine and tipiracil hydrochloride in treating patients with colon or rectal cancer that has spread to other places in the body or cannot be removed by surgery. Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as trifluridine and tipiracil hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving trametinib and trifluridine and tipiracil hydrochloride may prevent cancer cells from dividing and work better in treating patients with colon and rectal cancer.
    Location: 8 locations

  • A Study of RO7198457 (Personalized Cancer Vaccine [PCV]) as a Single Agent and in Combination With Atezolizumab in Participants With Locally Advanced or Metastatic Tumors

    This is a Phase 1a / 1b, open-label, multicenter, global, dose-escalation study designed to evaluate the safety, tolerability, immune response, and pharmacokinetics of RO7198457 as a single agent and in combination with atezolizumab (MPDL3280A, an engineered anti-programmed death-ligand 1 [anti-PD-L1] antibody).
    Location: 12 locations

  • Cabozantinib-S-Malate and Panitumumab in Treating Patients with Colorectal Cancer That is Metastatic or Cannot Be Removed by Surgery

    This phase Ib / II trial studies the safety and best dose of cabozantinib-s-malate when given together with panitumumab in treating patients with colorectal cancer that has spread to other parts of the body or cannot be removed by surgery. Cabozantinib-s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as panitumumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread Giving cabozantinib-s-malate with panitumumab may work better in treating patients with colorectal cancer.
    Location: 8 locations

  • Medtronic Pump and Codman Catheter in Delivering Chemotherapy Directly to the Liver in Patients with Metastatic Colorectal Cancer or Cholangiocarcinoma

    This phase II trial studies the side effects of a Medtronic pump and Codman catheter when used to deliver chemotherapy directly to the liver in patients with cholangiocarcinoma or colorectal cancer that has spread to other places in the body. The Medtronic pump and Codman catheter are devices that are surgically placed in the liver and used to deliver treatment directly to tumor cells which may help to shrink the tumor. Drugs used in chemotherapy, such as floxuridine and dexamethasone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Using the Medtronic pump and Codman catheter to deliver chemotherapy may work better in treating patients with colorectal cancer or cholangiocarcinoma.
    Location: 7 locations

  • Genetic Testing in Determining Irinotecan Hydrochloride Dose in Patients with Metastatic Colorectal Cancer Receiving FOLFIRI and Bevacizumab

    This phase II trial studies how well genetic testing works in determining irinotecan hydrochloride dose in patients with colorectal cancer that has spread to other areas of the body, who are receiving leucovorin calcium, fluorouracil, and irinotecan hydrochloride (FOLFIRI) and bevacizumab. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as bevacizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving monoclonal antibody therapy with chemotherapy may kill more tumor cells. Genetic testing may help doctors determine how the body breaks down and removes irinotecan hydrochloride. Using genetic testing to determine the dose of irinotecan hydrochloride may be more effective and safer than standard dosing.
    Location: 7 locations

  • A Study of ASN007 in Patients With Advanced Solid Tumors

    The study is divided into two parts. The first part of the study will test various doses of ASN007 to find out the highest safe dose to test in five specific groups. The second part of the study will test how well ASN007 can control cancer.
    Location: 6 locations

  • A Phase 2 Study of NIR178 in Combination With PDR001 in Patients With Solid Tumors and Non-Hodgkin Lymphoma

    The purpose of this phase 2 study is to evaluate the efficacy and safety of NIR178 in combination with PDR001 in multiple solid tumors and diffuse large B-cell lymphoma (DLBCL) and further explore schedule variations of NIR178 to optimize immune activation through inhibition of A2aR.
    Location: 6 locations

  • Study of A166 in Patients With Relapsed / Refractory Cancers Expressing HER2 Antigen or Having Amplified HER2 Gene

    Open-label, Phase I-II, first-in-human (FIH) study for A166 monotherapy in HER2-expressing or amplified patients who progressed on or did not respond to available standard therapies. Patients must have documented HER2 expression or amplification. The patient must have exhausted available standard therapies. Patients will receive study drug as a single IV infusion. Cycles will continue until disease progression or unacceptable toxicity.
    Location: 4 locations

  • A Phase 1 / 2 Safety Study of Intratumorally Dosed INT230-6

    This study evaluates the intratumoral administration of escalating doses of a novel, experimental drug, INT230-6. The study is being conducted in patients with several types of refractory cancers including those at the surface of the skin (melanoma, head and neck, lymphoma, breast) and tumors within the body such (pancreatic, colon, liver, lung, etc.). Sponsor also plans to test INT230-6 in combination with anti-PD-1 antibodies.
    Location: 3 locations

  • Trial to Evaluate the Safety ofTalimogene Laherparepvec Injected Into Liver Tumors Alone and in Combination With Systemic Pembrolizumab

    This is a phase 1b / 2, multicenter, open-label trial to evaluate the safety of talimogene laherparepvec injected intrahepatically into liver tumors with known progression alone and in combination with systemic IV administration of pembrolizumab, in subjects with non-HCC liver metastases from BC, CRC, GEC, melanoma, NSCLC, RCC, and subjects with HCC. The study consists of 2 parts and 2 groups, and Part 2 includes 2 stages. The objective of Part 1 is to evaluate the safety of intrahepatic injection of talimogene laherparepvec into liver tumors alone and in combination with systemically administered pembrolizumab for the non-HCC (Group A) and HCC (Group B) cohorts separately. Part 2 consists of 2-stage design to evaluate the efficacy and safety of talimogene laherparepvec in combination with systemic pembrolizumab. Efficacy and safety will be evaluated in each of the six non-HCC tumor types from Group A separately. Similarly, the efficacy and safety of the combination treatment will be determined for Group B HCC subjects.
    Location: 5 locations

  • Stereotactic Radiosurgery in Treating Patients with Oligo-Recurrent Disease

    This phase II trial studies how well stereotactic radiosurgery works in treating patients with cancer that has come back and has spread to 5 or fewer places in the body (oligometastatic disease). Stereotactic radiosurgery, also known as stereotactic body radiation therapy, is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may kill more tumor cells and cause less damage to normal tissue.
    Location: 3 locations

  • Stereotactic Radiosurgery in Treating Patients with Oligometastatic Disease

    This phase II trial studies how well stereotactic radiosurgery works in treating patients with cancer that has spread to 5 or fewer places in the body and involves 3 or fewer organs (oligometastatic disease). Stereotactic radiosurgery, also known as stereotactic body radiation therapy, is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may kill more tumor cells and cause less damage to normal tissue.
    Location: 3 locations

  • Savolitinib in Treating Participants with MET Amplified Metastatic or Unresectable Colorectal Cancer

    This phase II trial studies how well savolitinib works in treating participants with MET amplified colorectal cancer that has spread to other places in the body or cannot be removed by surgery. Savolitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
    Location: 2 locations

  • Expressing Personalized Tumor Antigens Study

    This is a Phase 1, open-label, multicenter study of ADXS-NEO administered alone and in combination with pembrolizumab in subjects with select advanced or metastatic solid tumors. This study will be performed in 2 phases, a safety phase (Part A and Part B) and an efficacy phase (Part C).
    Location: 2 locations

  • A Study to Evaluate the Safety, Tolerability, and Activity of TAK-931 in Participants With Metastatic Pancreatic Cancer, Metastatic Colorectal Cancer, and Other Advanced Solid Tumors

    The purpose of this study is to confirm the safety and tolerability of TAK-931 in a cohort of Western participants with metastatic solid tumors and to evaluate the anti-tumor activity of TAK-931 in participants with metastatic pancreatic cancer, colorectal cancer (CRC), squamous esophageal cancer (sqEC), and squamous non-small-cell lung cancer (sqNSCLC).
    Location: 2 locations

  • Phase 1 Clinical Trial of Metastasis Inhibitor NP-G2-044 in Patients With Advanced or Metastatic Solid Tumors (Including Lymphoma)

    First-in-human phase 1 study to determine safety of NP-G2-044 when given orally on a daily X 28 days followed by a 14 day rest period.
    Location: 2 locations

  • CBP501, Cisplatin and Nivolumab in Advanced Refractory Tumors

    This is a multicenter, open-label, phase 1b study of CBP501 / cisplatin / nivolumab combination administered once every 21 days to patients with advanced solid tumors.
    Location: 2 locations

  • Transcriptional Targets of Vitamin D in Patients with Stage I-III Colon Cancer or Resectable Colon Cancer Liver Metastases Receiving Preoperative Cholecalciferol

    This partially randomized pilot early phase I trial studies the transcriptional targets of vitamin D in patients with stage I-III colon cancer or colon cancer that has spread to the liver and can be removed by surgery who are receiving preoperative cholecalciferol. The vitamin D receptor is found in colon cancer cells. When vitamin D binds to the receptor in the cancer cells, it may stop cancer cells from growing abnormally and may cause cell death. Studying vitamin D-bound sites and vitamin D-regulated genes may help doctors understand how cholecalciferol works in treating colorectal cancer and help doctors plan better treatment.
    Location: 2 locations


1 2 3 Next >