Colorectal Cancer Clinical Trials

Clinical trials are research studies that involve people. The clinical trials on this list are for colorectal cancer. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 347
1 2 3 ... 14 Next >

  • Targeted Therapy Directed by Genetic Testing in Treating Patients with Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma (The MATCH Screening Trial)

    This phase II MATCH trial studies how well treatment that is directed by genetic testing works in patients with solid tumors or lymphomas that have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.
    Location: 1191 locations

  • Nivolumab and Ipilimumab in Treating Patients with Rare Tumors

    This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07 / 27 / 2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03 / 20 / 2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05 / 10 / 2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10 / 17 / 2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03 / 20 / 2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible 9. Intrahepatic cholangiocarcinoma (closed to accrual 03 / 20 / 2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03 / 20 / 2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03 / 30 / 2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual 04 / 15 / 2019) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual 04 / 15 / 2019) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non-seminomatous tumor C) Teratoma with malignant transformation (closed to accrual 3 / 15 / 2019) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07 / 27 / 2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12 / 19 / 2017) 24. Pheochromocytoma, malignant 25. Paraganglioma (closed to accrual 11 / 29 / 2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09 / 19 / 2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11 / 29 / 2018) 31. Adrenal cortical tumors (closed to accrual 06 / 27 / 2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12 / 22 / 2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03 / 15 / 2019) 34. Adenoid cystic carcinoma (closed to accrual 02 / 06 / 2018) 35. Vulvar cancer 36. MetaPLASTIC carcinoma (of the breast) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09 / 26 / 2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors / extramammary Paget’s disease 40. Peritoneal mesothelioma 41. Basal cell carcinoma 42. Clear cell cervical cancer 43. Esthenioneuroblastoma 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)
    Location: 885 locations

  • Trastuzumab and Pertuzumab or Cetuximab and Irinotecan Hydrochloride in Treating Patients with Locally Advanced or Metastatic HER2 / Neu Amplified Colorectal Cancer That Cannot Be Removed by Surgery

    This randomized phase II trial studies how well trastuzumab and pertuzumab work compared to cetuximab and irinotecan hydrochloride in treating patients with HER2 / neu amplified colorectal cancer that has spread from where it started to other places in the body (advanced / metastatic) and cannot be removed by surgery. Trastuzumab is a form of “targeted therapy” because it works by attaching itself to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors. When trastuzumab attaches to HER2 receptors, the signals that tell the cells to grow are blocked and the cancer cell may be marked for destruction by the body’s immune system. Immunotherapy with monoclonal antibodies, such as pertuzumab and cetuximab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving trastuzumab and pertuzumab may work better compared to cetuximab and irinotecan hydrochloride in treating patients with colorectal cancer.
    Location: 712 locations

  • Combination Chemotherapy with or without Atezolizumab in Treating Patients with Stage III Colon Cancer and Deficient DNA Mismatch Repair

    This phase III trial studies combination chemotherapy and atezolizumab to see how well it works compared with combination chemotherapy alone in treating patients with stage III colon cancer and deficient deoxyribonucleic acid (DNA) mismatch repair. Drugs used in combination chemotherapy, such as oxaliplatin, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving combination chemotherapy with atezolizumab may work better than combination chemotherapy alone in treating patients with colon cancer.
    Location: 858 locations

  • Vitamin D3 with Chemotherapy and Bevacizumab in Treating Patients with Advanced or Metastatic Colorectal Cancer, SOLARIS Trial

    This phase III trial studies how well vitamin D3 given with standard chemotherapy and bevacizumab works in treating patients with colorectal cancer that has spread to other parts of the body. Vitamin D3 helps the body use calcium and phosphorus to make strong bones and teeth. Vitamin D3 may also modulate the immune system and is being studied in the prevention and treatment of some types of cancer. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, oxaliplatin, and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bevacizumab is a monoclonal antibody that binds to Vascular Endothelial Growth Factor (VEGF). VEGF is a substance made by cells that helps the formation of new blood vessels. Bevacizumab may prevent the growth of new blood vessels that tumors need to grow. Giving vitamin D3 with chemotherapy and bevacizumab may work better in shrinking or stabilizing colorectal cancer. It is not yet known whether giving high-dose vitamin D3 in addition to chemotherapy and bevacizumab would extend patients time without disease compared to the usual approach (chemotherapy and bevacizumab).
    Location: 544 locations

  • Combination Chemotherapy, Bevacizumab, and / or Atezolizumab in Treating Patients with Deficient DNA Mismatch Repair Metastatic Colorectal Cancer, the COMMIT Study

    This randomized phase III trial studies how well combination chemotherapy, bevacizumab, and / or atezolizumab work in treating patients with deficient deoxyribonucleic acid (DNA) mismatch repair colorectal cancer that has spread to other places in the body (metastatic). Drugs used in chemotherapy, such as fluorouracil, oxaliplatin, and leucovorin calcium, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as bevacizumab and atezolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving combination chemotherapy, bevacizumab, and atezolizumab may work better in treating patients with colorectal cancer.
    Location: 374 locations

  • Phase 1 / 2 Study of LOXO-292 in Patients With Advanced Solid Tumors, RET Fusion-Positive Solid Tumors, and Medullary Thyroid Cancer

    This is a Phase 1 / 2, open-label, first-in-human study designed to evaluate the safety, tolerability, pharmacokinetics (PK) and preliminary anti-tumor activity of LOXO-292 administered orally to patients with advanced solid tumors, including RET-fusion-positive solid tumors, medullary thyroid cancer (MTC) and other tumors with RET activation.
    Location: 30 locations

  • Savolitinib in Treating Participants with MET Amplified Metastatic or Unresectable Colorectal Cancer

    This phase II trial studies how well savolitinib works in treating participants with MET amplified colorectal cancer that has spread to other places in the body or cannot be removed by surgery. Savolitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
    Location: 26 locations

  • Neratinib HER Mutation Basket Study (SUMMIT)

    This is an open-label, non-randomized, multicenter, multinational, Phase 2 study exploring the efficacy and safety of neratinib as monotherapy or in combination with other therapies in patients with ERBB mutation-positive or EGFR gene-amplified solid tumors.
    Location: 25 locations

  • Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1 / 2 / 3 (Trk A / B / C), ROS1, or ALK Gene Rearrangements (Fusions)

    This is an open-label, multicenter, global Phase 2 basket study of entrectinib (RXDX-101) for the treatment of patients with solid tumors that harbor an NTRK1 / 2 / 3, ROS1, or ALK gene fusion. Patients will be assigned to different baskets according to tumor type and gene fusion.
    Location: 25 locations

  • A Study of BMS-813160 in Combination With Chemotherapy or Nivolumab in Patients With Advanced Solid Tumors

    This study will evaluate the safety profile, tolerability, PK, PD, and preliminary efficacy of BMS-813160 alone or in combination with either chemotherapy or nivolumab in participants with metastatic colorectal and pancreatic cancers.
    Location: 20 locations

  • A Dose Escalation and Cohort Expansion Study of NKTR-214 in Combination With Nivolumab and Other Anti-Cancer Therapies in Patients With Select Advanced Solid Tumors ( PIVOT-02 )

    In this four-part study, NKTR-214 will be administered in combination with nivolumab in Part 1, in combination with nivolumab with or without various chemotherapies in Part 2, and with nivolumab and ipilimumab in Parts 3 & 4. In Part 1, the Recommended Phase 2 Dose (RP2D) of NKTR-214 in combination with nivolumab will be determined. In Part 2, NKTR-214 with nivolumab at the RP2D will be evaluated as first-line therapy and / or as second or third line therapy in select patients with Melanoma, Renal Cell Carcinoma (RCC), Non-Small Cell Lung Cancer (NSCLC), Urothelial Carcinoma (UC), metastatic Breast Cancer (mBC) and Colorectal Cancer (CRC). In addition, in Part 2, the RP2D of NKTR-214 with nivolumab and various chemotherapies and regimens in select cohorts of NSCLC patients will be determined. In Part 3, several different regimens of the triplet combination of NKTR-214 plus nivolumab and ipilimumab will be evaluated in select patients with RCC, NSCLC, Melanoma, and UC. In Part 4, the safety and efficacy of the triplet combination will be evaluated further in select patients with RCC, NSCLC, Melanoma and UC.
    Location: 21 locations

  • Study of Cabozantinib in Combination With Atezolizumab to Subjects With Locally Advanced or Metastatic Solid Tumors

    This is a multicenter Phase 1b, open-label study to assess safety, tolerability, preliminary efficacy, and pharmacokinetics (PK) of cabozantinib taken in combination with atezolizumab in subjects with multiple tumor types, including advanced urothelial carcinoma (UC) (including bladder, renal pelvis, ureter, urethra), renal cell carcinoma (RCC), castration-resistant prostate cancer (CRPC), non-small-cell lung cancer (NSCLC), triple negative breast cancer (TNBC), ovarian cancer (OC), endometrial cancer (EC), hepatocellular cancer (HCC), gastric cancer / gastroesophageal junction cancer / lower esophageal cancer (GC / GEJC / LEC), colorectal cancer (CRC), head and neck (H&N) cancer, and differentiated thyroid cancer (DTC). The study consists of two stages: in the Dose Escalation Stage, an appropriate recommended cabozantinib dose for the combination with standard dosing regimen of atezolizumab will be established; in the Expansion Stage, tumor-specific cohorts will be enrolled in order to further evaluate the safety and efficacy of the combination treatment in these tumor indications. Three exploratory single-agent cabozantinib (SAC) cohorts may also be enrolled with UC, NSCLC, or CRPC subjects. One exploratory single-agent atezolizumab (SAA) cohort may also be enrolled with CRPC subjects. Subjects enrolled in the SAC cohorts and SAA cohort may receive combination treatment with both cabozantinib and atezolizumab after they experience radiographic progressive disease per the Investigator per RECIST 1.1. Due to the nature of this study design, some tumor cohorts may complete enrollment earlier than others.
    Location: 22 locations

  • A Study of XmAb®20717 in Subjects With Selected Advanced Solid Tumors

    This is a Phase 1, multiple dose, ascending dose escalation study to define a MTD / RD and regimen of XmAb20717, to describe safety and tolerability, to assess PK and immunogenicity, and to preliminarily assess anti-tumor activity of XmAb20717 in subjects with selected advanced solid tumors.
    Location: 15 locations

  • Phase 1 / 2 Study of the Highly-selective RET Inhibitor, Pralsetinib (BLU-667), in Patients With Thyroid Cancer, Non-Small Cell Lung Cancer, and Other Advanced Solid Tumors

    This is a Phase 1 / 2, open-label, first-in-human (FIH) study designed to evaluate the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary antineoplastic activity of pralsetinib (BLU-667) administered orally in patients with medullary thyroid cancer, RET-altered NSCLC and other RET-altered solid tumors.
    Location: 16 locations

  • Chemotherapy before or after Chemoradiation Followed by Surgery or Non-operative Management in Treating Patients with Previously Untreated Stage II-III Rectal Cancer

    This randomized phase II trial studies how well chemotherapy before or after chemoradiation followed by surgery or non-operative management works in treating patients with previously untreated stage II-III rectal cancer. Drugs used in chemotherapy, such as FOLFOX regimen (leucovorin calcium, fluorouracil, oxaliplatin), and CapeOX (oxaliplatin and capecitabine), work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high energy x rays to kill tumor cells. It is not yet known whether giving chemotherapy before or after chemoradiation is more effective in treating rectal cancer. Additional chemotherapy may reduce the number of patients that require surgery.
    Location: 14 locations

  • A Multiple-dose Study of ASP8374, an Immune Checkpoint Inhibitor, as a Single Agent and in Combination With Pembrolizumab in Subjects With Advanced Solid Tumors

    The primary purpose of this study is to evaluate the tolerability and safety profile of ASP8374 when administered as a single agent and in combination with pembrolizumab in participants with locally advanced (unresectable) or metastatic solid tumor malignancies. Also primary purpose is to characterize the pharmacokinetic profile of ASP8374 when administered as a single agent and in combination with pembrolizumab. Last primary purpose of this study is to determine the recommended Phase 2 dose (RP2D) of ASP8374 when administered as a single agent and in combination with pembrolizumab. The secondary purpose of this study is to evaluate the anti-tumor effect (objective response rate [ORR], duration of response [DOR], persistence of response after discontinuation, and disease control rate [DCR]) of ASP8374 when administered as a single agent and in combination with pembrolizumab.
    Location: 15 locations

  • Transanal Total Mesorectal Excision with Laparoscopic Assistance in Treating Patients with Rectal Cancer

    This phase II trial studies how well transanal mesorectal excision with laparoscopic assistance works in treating patients with rectal cancer. Transanal mesorectal excision with laparoscopic assistance is a procedure that combines standard laparoscopy, or multiple small abdominal incisions, with surgery through the anus in order to remove rectal cancer, and it may work better in treating patients with rectal cancer.
    Location: 12 locations

  • Efficacy and Safety Study of Tisotumab Vedotin for Patients With Solid Tumors

    This trial will study tisotumab vedotin to find out whether it is an effective treatment for certain solid tumors and what side effects (unwanted effects) may occur. There are two parts to this study. In Part A, the treatment will be given to participants every 3 weeks (3-week cycles). In Part B, participants will receive tisotumab vedotin on Days 1, 8, and 15 every 4-week cycle.
    Location: 12 locations

  • An Investigational Immuno-therapy Study to Assess the Safety, Tolerability and Effectiveness of Anti-LAG-3 With and Without Anti-PD-1 in the Treatment of Solid Tumors

    The purpose of the study is to assess the safety, tolerability and effectiveness of experimental medication BMS-986016 administered alone and in combination with nivolumab in patients with solid tumors that have spread and / or cannot be removed by surgery. The following tumor types are included in this study: Non-Small Cell Lung Cancer (NSCLC), gastric cancer, hepatocellular carcinoma, renal cell carcinoma, bladder cancer, squamous cell carcinoma of the head and neck, and melanoma, that have NOT previously been treated with immunotherapy. NSCLC and melanoma that HAVE previously been treated with immunotherapy.
    Location: 12 locations

  • CPI-006 Alone and in Combination With CPI-444 and With Pembrolizumab for Patients With Advanced Cancers

    This is a phase 1 / 1b open label, multicenter, dose-selection study of CPI-006, a Type 2 humanized IgG1 antibody inhibiting enzymatic activity of CD73 and adenosine production. This trial will study the safety, tolerability, and anti-tumor activity of CPI-006 as a single agent, in combination with CPI-444, a small molecule targeting the adenosine-A2A receptor on immune cells, and in combination with pembrolizumab, an anti-PD1 antibody against various solid tumors and Non-Hodgkin lymphoma.
    Location: 11 locations

  • First-in-human Study of ATR Inhibitor BAY1895344 in Patients With Advanced Solid Tumors and Lymphomas

    The ATR(ataxia-telangiectasia and Rad3 related protein) inhibitor BAY1895344 is developed for the treatment of patients with advanced solid tumors and lymphomas. The purpose of the proposed trial is to evaluate the safety and tolerability of BAY1895344, and to identify the maximum tolerated dose of BAY1895344 that could be safely given to cancer patients. Further, the response of the cancer to the treatment will be determined.
    Location: 10 locations

  • Ph 1-2 Study ADI-PEG 20 Plus FOLFOX in Subjects With Advanced GI Malignancies Focusing on Hepatocellular Carcinoma

    Assessment of safety and tolerability of ADI-PEG 20 in combination with folinic acid (leucovorin), fluorouracil and oxaliplatin (FOLFOX) in advanced GI malignancies.
    Location: 10 locations

  • A Study of XmAb®23104 in Subjects With Selected Advanced Solid Tumors (DUET-3)

    This is a Phase 1, multiple dose, ascending dose escalation study to define a MTD / RD and regimen of XmAb23104, to describe safety and tolerability, to assess PK and immunogenicity, and to preliminarily assess anti-tumor activity of XmAb23104 in subjects with selected advanced solid tumors.
    Location: 9 locations

  • QUILT-3.055: A Study of ALT-803 in Combination With PD-1 / PD-L1 Checkpoint Inhibitor in Patients With Advanced Cancer

    This is a Phase IIb, single-arm, multicohort, open-label multicenter study of ALT-803 in combination with an FDA-approved PD-1 / PD-L1 checkpoint inhibitor in patients with advanced cancers who have progressed following an initial response to treatment with PD-1 / PD-L1 checkpoint inhibitor therapy. All patients will receive the combination treatment of PD-1 / PD-L1 checkpoint inhibitor plus ALT-803 for up to 16 cycles. Each cycle is six weeks in duration. All patients will receive ALT-803 once every 3 weeks. Patients will also receive the same checkpoint inhibitor that they received during their previous therapy. Radiologic evaluation will occur at the end of each treatment cycle. Treatment will continue for up to 2 years, or until the patient experiences confirmed progressive disease or unacceptable toxicity, withdraws consent, or if the Investigator feels it is no longer in the patient's best interest to continue treatment. Patients will be followed for disease progression, post-therapies, and survival through 24 months past administration of the first dose of study drug.
    Location: 9 locations


1 2 3 ... 14 Next >