Colorectal Cancer Clinical Trials

Clinical trials are research studies that involve people. The clinical trials on this list are for colorectal cancer. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 379
1 2 3 ... 16 Next >

  • Targeted Therapy Directed by Genetic Testing in Treating Patients with Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma (The MATCH Screening Trial)

    This phase II MATCH trial studies how well treatment that is directed by genetic testing works in patients with solid tumors or lymphomas that have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.
    Location: 1196 locations

  • Nivolumab and Ipilimumab in Treating Patients with Rare Tumors

    This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07 / 27 / 2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03 / 20 / 2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05 / 10 / 2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10 / 17 / 2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03 / 20 / 2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible 9. Intrahepatic cholangiocarcinoma (closed to accrual 03 / 20 / 2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03 / 20 / 2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03 / 30 / 2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual 04 / 15 / 2019) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual 04 / 15 / 2019) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non-seminomatous tumor C) Teratoma with malignant transformation (closed to accrual 3 / 15 / 2019) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07 / 27 / 2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12 / 19 / 2017) 24. Pheochromocytoma, malignant 25. Paraganglioma (closed to accrual 11 / 29 / 2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09 / 19 / 2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11 / 29 / 2018) 31. Adrenal cortical tumors (closed to accrual 06 / 27 / 2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12 / 22 / 2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03 / 15 / 2019) 34. Adenoid cystic carcinoma (closed to accrual 02 / 06 / 2018) 35. Vulvar cancer 36. MetaPLASTIC carcinoma (of the breast) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09 / 26 / 2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors / extramammary Paget’s disease 40. Peritoneal mesothelioma 41. Basal cell carcinoma 42. Clear cell cervical cancer 43. Esthenioneuroblastoma 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)
    Location: 896 locations

  • Vitamin D3 with Chemotherapy and Bevacizumab in Treating Patients with Advanced or Metastatic Colorectal Cancer, SOLARIS Trial

    This phase III trial studies how well vitamin D3 given with standard chemotherapy and bevacizumab works in treating patients with colorectal cancer that has spread to other parts of the body. Vitamin D3 helps the body use calcium and phosphorus to make strong bones and teeth. Vitamin D3 may also modulate the immune system and is being studied in the prevention and treatment of some types of cancer. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, oxaliplatin, and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bevacizumab is a monoclonal antibody that binds to Vascular Endothelial Growth Factor (VEGF). VEGF is a substance made by cells that helps the formation of new blood vessels. Bevacizumab may prevent the growth of new blood vessels that tumors need to grow. Giving vitamin D3 with chemotherapy and bevacizumab may work better in shrinking or stabilizing colorectal cancer. It is not yet known whether giving high-dose vitamin D3 in addition to chemotherapy and bevacizumab would extend patients time without disease compared to the usual approach (chemotherapy and bevacizumab).
    Location: 783 locations

  • Trastuzumab and Pertuzumab or Cetuximab and Irinotecan Hydrochloride in Treating Patients with Locally Advanced or Metastatic HER2 / Neu Amplified Colorectal Cancer That Cannot Be Removed by Surgery

    This randomized phase II trial studies how well trastuzumab and pertuzumab work compared to cetuximab and irinotecan hydrochloride in treating patients with HER2 / neu amplified colorectal cancer that has spread from where it started to other places in the body (advanced / metastatic) and cannot be removed by surgery. Trastuzumab is a form of “targeted therapy” because it works by attaching itself to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors. When trastuzumab attaches to HER2 receptors, the signals that tell the cells to grow are blocked and the cancer cell may be marked for destruction by the body’s immune system. Immunotherapy with monoclonal antibodies, such as pertuzumab and cetuximab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving trastuzumab and pertuzumab may work better compared to cetuximab and irinotecan hydrochloride in treating patients with colorectal cancer.
    Location: 735 locations

  • Circulating Tumor DNA Testing in Predicting Treatment for Patients with Stage IIA Colon Cancer After Surgery, COBRA Trial

    This phase II / III trial studies how well circulating tumor deoxyribonucleic acid (ctDNA) testing in the blood works to identify patients with stage IIA colon cancer who might benefit from additional treatment with chemotherapy after surgery. ctDNA are small pieces of genetic materials (DNA) that are shed by tumors into the blood. Finding ctDNA in the blood means that there are very likely small amounts of cancer remaining after surgery that may not be detectable using other tests, such as medical imaging. Testing for ctDNA levels may help identify patients with colon cancer who benefit from receiving chemotherapy after surgery. It is not yet known whether giving additional treatment with chemotherapy after surgery to patients who test positive for ctDNA and are at low risk for cancer recurrence would extend their time without disease compared to the usual approach (active surveillance).
    Location: 585 locations

  • Combination Chemotherapy with or without Atezolizumab in Treating Patients with Stage III Colon Cancer and Deficient DNA Mismatch Repair

    This phase III trial studies combination chemotherapy and atezolizumab to see how well it works compared with combination chemotherapy alone in treating patients with stage III colon cancer and deficient deoxyribonucleic acid (DNA) mismatch repair. Drugs used in combination chemotherapy, such as oxaliplatin, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving combination chemotherapy with atezolizumab may work better than combination chemotherapy alone in treating patients with colon cancer.
    Location: 870 locations

  • Savolitinib in Treating Patients with MET Amplified Metastatic or Unresectable Colorectal Cancer

    This phase II trial studies how well savolitinib works in treating patients with MET amplified colorectal cancer that has spread to other places in the body (metastatic) or cannot be removed by surgery (unresectable). Savolitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
    Location: 30 locations

  • Study of Cabozantinib in Combination With Atezolizumab to Subjects With Locally Advanced or Metastatic Solid Tumors

    This is a multicenter Phase 1b, open-label study to assess safety, tolerability, preliminary efficacy, and pharmacokinetics (PK) of cabozantinib taken in combination with atezolizumab in subjects with multiple tumor types, including advanced urothelial carcinoma (UC) (including bladder, renal pelvis, ureter, urethra), renal cell carcinoma (RCC), castration-resistant prostate cancer (CRPC), non-small-cell lung cancer (NSCLC), triple negative breast cancer (TNBC), ovarian cancer (OC), endometrial cancer (EC), hepatocellular cancer (HCC), gastric cancer / gastroesophageal junction cancer / lower esophageal cancer (GC / GEJC / LEC), colorectal cancer (CRC), head and neck (H&N) cancer, and differentiated thyroid cancer (DTC). The study consists of two stages: in the Dose Escalation Stage, an appropriate recommended cabozantinib dose for the combination with standard dosing regimen of atezolizumab will be established; in the Expansion Stage, tumor-specific cohorts will be enrolled in order to further evaluate the safety and efficacy of the combination treatment in these tumor indications. Three exploratory single-agent cabozantinib (SAC) cohorts may also be enrolled with UC, NSCLC, or CRPC subjects. One exploratory single-agent atezolizumab (SAA) cohort may also be enrolled with CRPC subjects. Subjects enrolled in the SAC cohorts and SAA cohort may receive combination treatment with both cabozantinib and atezolizumab after they experience radiographic progressive disease per the Investigator per RECIST 1.1. Due to the nature of this study design, some tumor cohorts may complete enrollment earlier than others.
    Location: 31 locations

  • Neratinib HER Mutation Basket Study

    This is an open-label, multicenter, multinational, Phase 2 basket study exploring the efficacy and safety of neratinib as monotherapy or in combination with other therapies in participants with HER (EGFR, HER2) mutation-positive solid tumors.
    Location: 26 locations

  • Study of TSR-042, an Anti-programmed Cell Death-1 Receptor (PD-1) Monoclonal Antibody, in Participants With Advanced Solid Tumors

    This is a multi-center, open-label, first-in-human Phase 1 study evaluating the anti-programmed death receptor 1 (anti-PD-1) antibody dostarlimab (also known as TSR-042) n participants with advanced solid tumors who have limited available treatment options. The study will be conducted in 2 parts with Part 1 consisting of safety evaluation, pharmacokinetics (PK), and pharmacodynamics (PDy) of escalating doses of dostarlimab. Dose escalation will be based on ascending weight-based dose levels (DLs) of dostarlimab and will continue until the maximum tolerated dose (MTD) is reached or may be stopped at any dose level up to the highest dose of 20 milligrams per kilograms (mg / kg) based on emerging safety and PK / PDy data. Part 2 will be conducted in two subparts, Part 2A (fixed-dose safety evaluation cohorts) and Part 2B (expansion cohorts). Part 2A of the study will evaluate the safety and tolerability of dostarlimab at fixed doses of 500 mg administered every 3 weeks (Q3W) and 1000 mg administered every 6 weeks (Q6W). Part 2B of the study will examine the safety and clinical activity of dostarlimab in cohorts of participants with specific types of advanced solid tumors.
    Location: 24 locations

  • Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1 / 2 / 3 (Trk A / B / C), ROS1, or ALK Gene Rearrangements (Fusions)

    This is an open-label, multicenter, global Phase 2 basket study of entrectinib (RXDX-101) for the treatment of patients with solid tumors that harbor an NTRK1 / 2 / 3, ROS1, or ALK gene fusion. Patients will be assigned to different baskets according to tumor type and gene fusion.
    Location: 22 locations

  • A Study of XmAb®20717 in Subjects With Selected Advanced Solid Tumors

    This is a Phase 1, multiple dose, ascending dose escalation study to define a MTD / RD and regimen of XmAb20717, to describe safety and tolerability, to assess PK and immunogenicity, and to preliminarily assess anti-tumor activity of XmAb20717 in subjects with selected advanced solid tumors.
    Location: 15 locations

  • Phase 1 / 2 Study of the Highly-selective RET Inhibitor, Pralsetinib (BLU-667), in Patients With Thyroid Cancer, Non-Small Cell Lung Cancer, and Other Advanced Solid Tumors

    This is a Phase 1 / 2, open-label, first-in-human (FIH) study designed to evaluate the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary antineoplastic activity of pralsetinib (BLU-667) administered orally in patients with medullary thyroid cancer, RET-altered NSCLC and other RET-altered solid tumors.
    Location: 16 locations

  • Chemotherapy before or after Chemoradiation Followed by Surgery or Non-operative Management in Treating Patients with Previously Untreated Stage II-III Rectal Cancer

    This randomized phase II trial studies how well chemotherapy before or after chemoradiation followed by surgery or non-operative management works in treating patients with previously untreated stage II-III rectal cancer. Drugs used in chemotherapy, such as FOLFOX regimen (leucovorin calcium, fluorouracil, oxaliplatin), and CapeOX (oxaliplatin and capecitabine), work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high energy x rays to kill tumor cells. It is not yet known whether giving chemotherapy before or after chemoradiation is more effective in treating rectal cancer. Additional chemotherapy may reduce the number of patients that require surgery.
    Location: 14 locations

  • A Study of BMS-813160 in Combination With Chemotherapy or Nivolumab in Patients With Advanced Solid Tumors

    This study will evaluate the safety profile, tolerability, PK, PD, and preliminary efficacy of BMS-813160 alone or in combination with either chemotherapy or nivolumab in participants with metastatic colorectal and pancreatic cancers.
    Location: 20 locations

  • Transanal Total Mesorectal Excision with Laparoscopic Assistance in Treating Patients with Rectal Cancer

    This phase II trial studies how well transanal mesorectal excision with laparoscopic assistance works in treating patients with rectal cancer. Transanal mesorectal excision with laparoscopic assistance is a procedure that combines standard laparoscopy, or multiple small abdominal incisions, with surgery through the anus in order to remove rectal cancer, and it may work better in treating patients with rectal cancer.
    Location: 12 locations

  • A Study of TSR-022 in Participants With Advanced Solid Tumors (AMBER)

    This is a multicenter, open-label, first-in-human Phase 1 study evaluating the anti-T cell immunoglobulin and mucin containing protein-3 (TIM-3) antibody TSR-022. The study will be conducted in 2 parts: with Part 1 consisting of dose escalation and Part 2 dose expansion. Part 1 will determine the recommended Phase 2 dose (RP2D) of TSR-022 as a single agent (Part 1a); in combination with anti-programmed cell death protein-1 (PD-1) antibody, nivolumab (Part 1b); in combination with anti-PD-1 antibody, TSR-042 (Part 1c); in combination with TSR-042 and anti-lymphocyte-activation gene 3 (LAG-3) antibody, TSR-033 (Part 1d); in combination with TSR-042 in participants not previously treated with programmed death-ligand 1 [PD-(L)1] (Part 1e) and in combination with docetaxel (Part 1f). Part 2 of the study will evaluate the antitumor activity of TSR-022, both as monotherapy and in combination with TSR-042 in participants with pre-specified tumor types.
    Location: 15 locations

  • CPI-006 Alone and in Combination With Ciforadenant and With Pembrolizumab for Patients With Advanced Cancers

    This is a Phase 1 / 1b open-label, dose escalation and dose expansion study of CPI-006, a humanized monoclonal antibody (mAb) targeting the CD73 cell-surface ectonucleotidase in adult subjects with select advanced cancers. CPI-006 will be evaluated as a single agent, in combination with ciforadenant (an oral adenosine 2A receptor antagonist), in combination with pembrolizumab (an anti-PD1 antibody), and in combination with ciforadenant and pembrolizumab.
    Location: 12 locations

  • A Study of NKTR-262 in Combination With Bempegaldesleukin (NKTR-214) and With Bempegaldesleukin Plus Nivolumab in Patients With Locally Advanced or Metastatic Solid Tumor Malignancies

    Patients will receive intra-tumoral (IT) NKTR-262 in 3-week treatment cycles. During the Phase 1 dose escalation portion of the trial, NKTR-262 will be combined with systemic administration of bempegaldesleukin. After determination of the recommended Phase 2 dose (RP2D) of NKTR-262, between 6 and 18 patients may be enrolled at the RP2D to further characterize the safety and tolerability profile of the combination of NKTR 262 plus bempegaldesleukin (doublet) or NKTR 262 plus bempegaldesleukin in combination with nivolumab (triplet) in Cohorts A and B, respectively. In the Phase 2 dose expansion portion, patients will be treated with doublet or triplet in the relapsed / refractory setting and earlier lines of therapy.
    Location: 16 locations

  • A Multiple-dose Study of ASP8374, an Immune Checkpoint Inhibitor, as a Single Agent and in Combination With Pembrolizumab in Subjects With Advanced Solid Tumors

    The primary purpose of this study is to evaluate the tolerability and safety profile of ASP8374 when administered as a single agent and in combination with pembrolizumab in participants with locally advanced (unresectable) or metastatic solid tumor malignancies. Also primary purpose is to characterize the pharmacokinetic profile of ASP8374 when administered as a single agent and in combination with pembrolizumab. Last primary purpose of this study is to determine the recommended Phase 2 dose (RP2D) of ASP8374 when administered as a single agent and in combination with pembrolizumab. The secondary purpose of this study is to evaluate the anti-tumor effect (objective response rate [ORR], duration of response [DOR], persistence of response after discontinuation, and disease control rate [DCR]) of ASP8374 when administered as a single agent and in combination with pembrolizumab.
    Location: 15 locations

  • Tucatinib Plus Trastuzumab in Patients With HER2+ Colorectal Cancer

    This trial studies how well the drug tucatinib works when given with trastuzumab and when given by itself. The participants in this trial have HER2-positive (HER2+) metastatic colorectal cancer (mCRC). 'Metastatic' means that the cancer has spread to other parts of the body. In the first part of this study, participants enrolled into Cohort A and received both tucatinib and trastuzumab. In the second part of this study, participants are randomly assigned to either Cohort B or Cohort C. Participants in Cohort B will receive tucatinib and trastuzumab. Participants in Cohort C will receive tucatinib. Participants in Cohort C who do not respond to therapy may have an option to receive tucatinib plus trastuzumab.
    Location: 13 locations

  • A Study to Evaluate Ibrutinib Combination Therapy in Patients With Selected Gastrointestinal and Genitourinary Tumors

    The purpose of this study is to evaluate the safety, tolerability, and efficacy of single agent ibrutinib or the combination treatments of ibrutinib with everolimus, paclitaxel, docetaxel, pembrolizumab or cetuximab in selected advanced gastrointestinal and genitourinary tumors.
    Location: 12 locations

  • A Study of XmAb®23104 in Subjects With Selected Advanced Solid Tumors (DUET-3)

    This is a Phase 1, multiple dose, ascending dose escalation study to define a MTD / RD and regimen of XmAb23104, to describe safety and tolerability, to assess PK and immunogenicity, and to preliminarily assess anti-tumor activity of XmAb23104 in subjects with selected advanced solid tumors.
    Location: 11 locations

  • Dose Escalation and Expansion Study of FLX475 Monotherapy and in Combination With Pembrolizumab

    This clinical trial is a Phase 1 / 2, open-label, sequential-group, dose-escalation and cohort expansion study to determine the safety and preliminary anti-tumor activity of FLX475 as monotherapy and in combination with pembrolizumab. The study will be conducted in 2 parts, a dose-escalation phase (Part 1) and a cohort expansion phase (Part 2). In Part 1 of the study, subjects will be enrolled in sequential cohorts treated with successively higher doses of FLX475 as monotherapy or in combination with pembrolizumab. In Part 2 of the study, subjects will be initially enrolled in Stage 1 of parallel expansion cohorts of FLX475 as monotherapy or in combination with pembrolizumab.
    Location: 11 locations

  • Efficacy and Safety Study of Tisotumab Vedotin for Patients With Solid Tumors

    This trial will study tisotumab vedotin to find out whether it is an effective treatment for certain solid tumors and what side effects (unwanted effects) may occur. There are two parts to this study. In Part A, the treatment will be given to participants every 3 weeks (3-week cycles). In Part B, participants will receive tisotumab vedotin on Days 1, 8, and 15 every 4-week cycle.
    Location: 11 locations


1 2 3 ... 16 Next >