Treatment Clinical Trials for Myelodysplastic/Myeloproliferative Disease

Clinical trials are research studies that involve people. The clinical trials on this list are for myelodysplastic/myeloproliferative disease treatment. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 26-50 of 94

  • RGI-2001 for the Prevention of Graft Versus Host Disease in Patients with Hematological Malignancies after Stem Cell Transplantation

    This phase I trial investigates how well RGI-2001 works in preventing graft versus host disease in patients with hematological malignancies after a stem cell transplantation. Graft versus host disease is a very common condition that patients experience after receiving a stem cell transplant. It is a condition in which cells from the donor’s tissue attack the organs. RGI-2001 may work by altering the donor’s immune system in the transplanted blood to help it adjust to the body tissues. Giving RGI-2001, in combination with standard of care interventions, may prevent graft versus host disease in patients after undergoing blood stem cell transplantation.
    Location: Massachusetts General Hospital Cancer Center, Boston, Massachusetts

  • CLAG-M Chemotherapy and Reduced-Intensity Conditioning Donor Stem Cell Transplant for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Chronic Myelomonocytic Leukemia

    This phase I trial studies the best dose of total body irradiation when given with CLAG-M chemotherapy reduced-intensity conditioning regimen before stem cell transplant in treating patients with acute myeloid leukemia, myelodysplastic syndrome, or chronic myelomonocytic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Giving chemotherapy and total body irradiation before a donor peripheral blood stem cell transplant helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. When the healthy stem cells from a donor are infused into a patient, they may help the patient's bone marrow make more healthy cells and platelets and may help destroy any remaining cancer cells. Sometimes the transplanted cells from a donor can attack the body's normal cells called graft versus host disease. Giving cyclophosphamide, cyclosporine, and mycophenolate mofetil after the transplant may stop this from happening.
    Location: Fred Hutch / University of Washington Cancer Consortium, Seattle, Washington

  • A Study of AZD0466 in Patients With Advanced Hematologic or Solid Tumors

    This is a first-time-in-human (FTIH), Phase 1 study to determine the safety, tolerability, maximum tolerated dose (MTD), recommended Phase 2 dose (RP2D), and pharmacokinetics (PK) of AZD0466 in patients with solid tumors, lymphoma and multiple myeloma at low risk for tumor lysis syndrome (TLS), as well as in patients at intermediate risk or high risk of TLS with hematologic malignancies for whom no standard therapy exists. Once an MTD / RP2D has been determined in the dose escalation portion, further disease-specific expansions (solid tumor and hematologic) will be undertaken. Combinations of AZD0466 with other standard of care treatments may be evaluated in the future.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Giving Chemotherapy and rATG for a Shortened Amount of Time before a Donor Stem Cell Transplantation for the Treatment of Patients with Blood Cancers

    This phase I trial studies the side effects of giving chemotherapy and a drug called rATG for a shorter period of time before a donor stem cell transplant in treating patients with blood cancers. This study will also look at whether the condensed regimen can shorten hospitalization following the transplantation. A chemotherapy regimen with the drugs busulfan, melphalan, and fludarabine may kill cancer cells in the body, making room in the bone marrow for new blood stem cells to grow and reducing the chance of transplanted cell rejection. The chemotherapy drugs work to interrupt the DNA (genetic information) in the cancer cells, stopping the cells from dividing and causing them to die. rATG targets and deactivates white blood cells called T cells that survive the chemotherapy. T cells may see the donor’s cells as foreign, causing a serious condition called graft-versus-host disease (GVHD). rATG helps prevent the donor stem cells from being rejected. Giving chemotherapy and rATG for a shorter period of time before a donor stem cell transplantation may help in reducing the number of side effects and shortening hospitalization following the transplantation.
    Location: Memorial Sloan Kettering Cancer Center, New York, New York

  • Optimizing PTCy Dose and Timing

    Background: Stem cell or bone marrow transplants can cure or control blood cancers. Sometimes the donor cells see the recipient s body as foreign. This can cause complications. A high dose of the drug cyclophosphamide (PTCy) can help reduce these risks. Researchers want to see if a lower dose of PTCy can have the same benefits. Objective: To see if a lower dose of PTCy will help people with blood cancers have a more successful transplant and fewer side effects. Eligibility: People ages 15-65 with leukemia, lymphoma, or multiple myeloma that is not curable with standard therapy and is at high risk of returning without transplant, and their healthy adult relatives Design: Transplant participants will be screened with: Blood, urine, breathing, and heart tests Scans Chest x-ray Bone marrow samples: A needle inserted into the participant s pelvis will remove marrow and a bone fragment. Transplant recipients will stay at the hospital and be prepped with chemotherapy over 6 days for the transplant. They will get stem cells through a catheter in the chest or neck. They will get the cyclophosphamide chemotherapy. They will stay in the hospital about 4 more weeks. They will have blood transfusions. They will have frequent blood tests and 2 bone marrow samples within 1 year after the transplant. Donor participants will be screened with: Blood, urine, and heart tests Chest x-ray Scans Donor participants will have bone marrow taken from their pelvis or stem cells taken from their blood. For the blood donation, blood will be taken from a vein in one arm, move through a machine to remove white blood cells, and be returned through a vein in the other arm. Participation will last up to 5 years....
    Location: National Institutes of Health Clinical Center, Bethesda, Maryland

  • Adoptive Cellular Therapy (PRGN-3006 T Cells) in Treating Patients with Recurrent or Refractory Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome

    This phase I / Ib trial studies the side effects and best dose of PRGN-3006 T cells in treating patients with acute myeloid leukemia that has come back or does not respond to treatment or high-risk myelodysplastic syndrome. PRGN-3006 T cells uses the patient’s own genetically altered blood cells to treat cancer. PRGN-3006 T cells are made from white blood cells that are removed from the patient. The cells are genetically modified to create a protein (called a chimeric antigen receptor or CAR) on the surface of T cells, a type of blood cell that fights infection and cancer cells. The hope is that the CAR on the T cells will bind to and kill cells that express CD33, a molecule that is found on the surface of cancer cells from myelodysplastic syndrome or acute myeloid leukemia patients.
    Location: Moffitt Cancer Center, Tampa, Florida

  • Serial Measurements of Molecular and Architectural Responses to Therapy (SMMART) PRIME Trial

    This phase Ib trial determines if samples from a patient’s cancer can be tested to find combinations of drugs that provide clinical benefit for the kind of cancer the patient has. This study is also being done to understand why cancer drugs can stop working and how different cancers in different people respond to different types of therapy.
    Location: OHSU Knight Cancer Institute, Portland, Oregon

  • CD45RA Depleted T Cell Infusion after Alpha / Beta Depleted Stem Cell Transplant for the Reduction of Complications in Patients at Risk for Viral or Fungal Infections

    This phase I trial studies the side effects of CD45RA depleted T cell infusion given after an alpha / beta depleted stem cell transplant, and to see how well it works in reducing complications in patients at risk for viral or fungal infections. There is a higher rate of complications using cells from an unrelated or partially matched related donor. Some donor cells may cause a complication called graft versus host disease (GVHD) and an infection with the Epstein-Barr virus (EBV). In this study, the CliniMACs device is used before the transplant to remove alpha / beta T cells that may cause GVHD and B cells that carry EBV. The device is also used to remove CD45RA T cells. Giving CD45RA depleted T cells after the transplant may reduce some of the complications of the transplant and decrease the time it takes for the new stem cells to grow in the body.
    Location: Children's Hospital of Philadelphia, Philadelphia, Pennsylvania

  • Donor T Cell Depletion in Preventing Graft Versus Host Disease in Patients with Blood Cancer Undergoing a Donor Stem Cell Transplant

    This phase II trial studies donor T cell depletion in preventing graft versus host disease (GVHD) in patients with blood cancer undergoing a donor stem cell transplant. Donor stem cell transplants, especially in the mismatched donor setting, are associated with increased risk for GVHD, a condition where the transplanted donor white blood cells attack your body’s normal tissues. Using a cell separation device may remove a subset of white blood cells (called alpha / beta T cells) from the donor product before the product is transplanted. This study is being done to assess whether this manipulation (called selective T cell depletion) will reduce the risk of GVHD and improve transplant outcome.
    Location: Dana-Farber Cancer Institute, Boston, Massachusetts

  • 211At-BC8-B10 followed by Donor Stem Cell Transplant in Treating Patients with Relapsed or Refractory High-Risk Acute Leukemia or Myelodysplastic Syndrome

    This phase I / II trial studies the side effects and best dose of a radioactive agent linked to an antibody (211At-BC8-B10) followed by donor stem cell transplant in treating patients with high-risk acute leukemia or myelodysplastic syndrome that has come back (recurrent) or isn't responding to treatment (refractory). Monoclonal antibodies, such as 211At-BC8-B10, may interfere with the ability of cancer cells to grow and spread. Giving chemotherapy and total body irradiation before a stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can attack the body's normal cells, called graft versus host disease. Giving cyclophosphamide, mycophenolate mofetil, and sirolimus after a transplant may stop this from happening.
    Location: Fred Hutch / University of Washington Cancer Consortium, Seattle, Washington

  • Omacetaxine and Azacitidine in Treating Participants with High Grade Myelodysplastic Syndrome or Chronic Myelomonocytic Leukemia

    This phase I / II trial studies the side effects and best dose of omacetaxine mepesuccinate (omacetaxine) and how well it works when given together with azacitidine in treating participants with high grade myelodysplastic syndrome or chronic myelomonocytic leukemia. Drugs used in chemotherapy, such as omacetaxine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Azacitidine may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving omacetaxine and azacitidine may work better at treating participants with myelodysplastic syndrome or chronic myelomonocytic leukemia.
    Location: University of Colorado Hospital, Aurora, Colorado

  • Tocilizumab in Improving Graft-Versus-Host Disease and Early Side Effects in Patients with Blood Cancers Undergoing Umbilical Cord Blood Transplant

    This phase II trial studies how well tocilizumab works in improving graft-versus-host disease (GVHD) and early side effects in patients with blood cancers undergoing umbilical cord blood transplant. Giving chemotherapy and total-body irradiation before an umbilical cord blood transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called GVHD). Giving tocilizumab in addition to the standard approach for GVHD prevention after the transplant may stop this from happening.
    Location: Memorial Sloan Kettering Cancer Center, New York, New York

  • Fludarabine Phosphate, Cyclophosphamide, Total Body Irradiation, and Donor Stem Cell Transplant in Treating Patients with Blood Cancer

    This phase II trial studies how well fludarabine phosphate, cyclophosphamide, total body irradiation, and donor stem cell transplant work in treating patients with blood cancer. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient’s immune cells and help destroy any remaining cancer cells.
    Location: Roswell Park Cancer Institute, Buffalo, New York

  • Donor Stem Cell Transplant in Treating Patients with Blood Cancer

    This phase II trial studies how well donor stem cell transplant works in treating patients with blood cancer. Giving total-body irradiation before a donor transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving cyclophosphamide, tacrolimus, and mycophenolate mofetil after the transplant may stop this from happening.
    Location: University of Minnesota / Masonic Cancer Center, Minneapolis, Minnesota

  • Comparison of Triple GVHD Prophylaxis Regimens for Nonmyeloablative or Reduced Intensity Conditioning Unrelated Mobilized Blood Cell Transplantation

    This randomized phase II trial includes a blood stem cell transplant from an unrelated donor to treat blood cancer. The treatment also includes chemotherapy drugs, but in lower doses than conventional (standard) stem cell transplants. The researchers will compare two different drug combinations used to reduce the risk of a common but serious complication called "graft versus host disease" (GVHD) following the transplant. Two drugs, cyclosporine (CSP) and sirolimus (SIR), will be combined with either mycophenolate mofetil (MMF) or post-transplant cyclophosphamide (PTCy). This part of the transplant procedure is the main research focus of the study.
    Location: Fred Hutch / University of Washington Cancer Consortium, Seattle, Washington

  • 211^At-BC8-B10 before Donor Stem Cell Transplant in Treating Patients with High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Myelodysplastic Syndrome, or Mixed-Phenotype Acute Leukemia

    This phase I / II trial studies the side effects and best dose of 211^astatine(At)-BC8-B10 before donor stem cell transplant in treating patients with high-risk acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, or mixed-phenotype acute leukemia. Radioactive substances, such as astatine-211, linked to monoclonal antibodies, such as BC8, can bind to cancer cells and give off radiation which may help kill cancer cells and have less of an effect on healthy cells before donor stem cell transplant.
    Location: Fred Hutch / University of Washington Cancer Consortium, Seattle, Washington

  • Umbilical Cord Blood Transplant with Added Sugar and Chemotherapy and Radiation Therapy in Treating Patients with Leukemia or Lymphoma

    This phase II trial studies how well an umbilical cord blood transplant with added sugar works with chemotherapy and radiation therapy in treating patients with leukemia or lymphoma. Giving chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The umbilical cord blood cells will be grown ("expanded") on a special layer of cells collected from the bone marrow of healthy volunteers in a laboratory. A type of sugar will also be added to the cells in the laboratory that may help the transplant to "take" faster.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Partially HLA-Mismatched Related Donor Stem Cell Transplant Using Killer Immunoglobulin Receptor and Human Leukocyte Antigen Based Donor Selection in Treating Patients with Hematologic Malignancies

    This pilot clinical trial studies how well partially human leukocyte antigen (HLA)-mismatched related donor stem cell transplant using killer immunoglobulin receptor or HLA based donor selection works in treating patients with hematologic malignancies. Partially mismatched donor stem cells may reduce the risk of cancer recurring after transplant.
    Location: Memorial Sloan Kettering Cancer Center, New York, New York

  • Blinatumomab and T Cell Depleted Donor Blood Cell Transplant in Treating Younger Patients with Relapsed or Refractory Hematologic Malignancy after a Previous Transplant

    This phase II trial studies how well blinatumomab and T cell depleted donor blood cell transplant work in treating children and young adults with hematologic cancer that has not responded or has come back after a previous transplant. White blood cells from donors may be able to kill cancer cells in patients with hematologic cancer. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Removing the T cells from the donor cells before the transplant may stop this from happening. Monoclonal antibodies, such as blinatumomab, may interfere with the ability of cancer cells to grow and spread. Giving blinatumomab after a blood cell transplant may destroy any remaining cancer cells.
    Location: Saint Jude Children's Research Hospital, Memphis, Tennessee

  • Hu8F4 in Treating Patients with Advanced Hematologic Malignancies

    This phase I trial studies the side effects and best dose of anti-PR1 / HLA-A2 monoclonal antibody Hu8F4 (Hu8F4) in treating patients with malignancies related to the blood (hematologic). Monoclonal antibodies, such as Hu8F4, may interfere with the ability of cancer cells to grow and spread.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Genetically Modified Donor Stem Cell Transplant Followed by Zoledronic Acid in Treating Younger Patients with Relapsed / Refractory Hematologic Malignancies or High Risk Solid Tumors

    This phase I trial studies the side effects of zoledronic acid given after genetically modified donor stem cell transplant in treating younger patients with hematologic malignancies or high risk tumors that have returned after a period of improvement (relapsed) or do not respond to treatment (refractory). Giving chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When healthy stem cells from a donor that have been genetically modified are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving mycophenolate mofetil and tacrolimus after the transplant may stop this from happening. Giving zoledronic acid after the transplant may help strengthen the immune system and make the immune cells work better.
    Location: University of Wisconsin Hospital and Clinics, Madison, Wisconsin

  • Nivolumab and Azacitidine with or without Ipilimumab in Treating Patients with Refractory / Relapsed or Newly Diagnosed Acute Myeloid Leukemia

    This phase II trial studies the side effects and best dose of nivolumab and azacitidine with or without ipilimumab when given together and to see how well they work in treating patients with acute myeloid leukemia that has not responded to previous treatment (refractory) or has returned after a period of improvement (relapsed) or is newly diagnosed. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nivolumab, azacitidine and ipilimumab may kill more cancer cells.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Ruxolitinib Phosphate and Azacytidine in Treating Patients with Myelofibrosis or Myelodysplastic Syndrome / Myeloproliferative Neoplasm

    This phase II trial studies how well ruxolitinib phosphate and azacytidine work in treating patients with myelofibrosis or myelodysplastic syndrome / myeloproliferative neoplasm. Ruxolitinib phosphate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacytidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ruxolitinib phosphate and azacytidine may be an effective treatment for myelofibrosis or myelodysplastic syndrome / myeloproliferative neoplasm.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Reduced-Intensity Conditioning before Donor Stem Cell Transplant in Treating Patients with High-Risk Hematologic Malignancies

    This phase II trial studies reduced-intensity conditioning before donor stem cell transplant in treating patients with high-risk hematologic malignancies. Giving low-doses of chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient’s immune system from rejecting the donor’s stem cells. The donated stem cells may replace the patient’s immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor’s T cells (donor lymphocyte infusion) before the transplant may help increase this effect.
    Location: Thomas Jefferson University Hospital, Philadelphia, Pennsylvania

  • Sotatercept in Treating Patients with Myeloproliferative Neoplasm-Associated Myelofibrosis or Anemia

    This phase II trial studies the side effects of and how well sotatercept works in treating patients with myeloproliferative neoplasm-associated myelofibrosis or anemia. Sotatercept may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
    Location: M D Anderson Cancer Center, Houston, Texas