Treatment Clinical Trials for Myelodysplastic Syndrome

Clinical trials are research studies that involve people. The clinical trials on this list are for myelodysplastic syndrome treatment. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 196
1 2 3 ... 8 Next >

  • Response-Based Chemotherapy in Treating Newly Diagnosed Acute Myeloid Leukemia or Myelodysplastic Syndrome in Younger Patients with Down Syndrome

    This phase III trial studies response-based chemotherapy in treating newly diagnosed acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Response-based chemotherapy separates patients into different risk groups and treats them according to how they respond to the first course of treatment (Induction I). Response-based treatment may be effective in treating acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome while reducing the side effects.
    Location: 158 locations

  • APR-246 & Azacitidine for the Treatment of TP53 Mutant Myelodysplastic Syndromes (MDS)

    A Phase III, multicenter, randomized study to compare the rate of complete response (CR) and duration of CR, in patients with TP53-mutated MDS who will receive APR-246 and azacitidine or azacitidine alone.
    Location: 17 locations

  • Entinostat and Pembrolizumab in Treating Patients with Myelodysplastic Syndrome after DNMTi Therapy Failure

    This phase Ib trial studies the side effects and best dose of entinostat when given together with pembrolizumab in treating patients with myelodysplastic syndrome after deoxyribonucleic acid (DNA) methyltransferase inhibitor (DNMTi) therapy failure. Entinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving entinostat together with pembrolizumab may work better in treating patients with myelodysplastic syndrome after DNMTi therapy failure.
    Location: 17 locations

  • Study of Biomarker-Based Treatment of Acute Myeloid Leukemia

    This screening and multi-sub-study Phase 1b / 2 trial will establish a method for genomic screening followed by assigning and accruing simultaneously to a multi-study "Master Protocol (BAML-16-001-M1)." The specific subtype of acute myeloid leukemia will determine which sub-study, within this protocol, a participant will be assigned to evaluate investigational therapies or combinations with the ultimate goal of advancing new targeted therapies for approval. The study also includes a marker negative sub-study which will include all screened patients not eligible for any of the biomarker-driven sub-studies.
    Location: 16 locations

  • Clinical Transplant-Related Long-term Outcomes of Alternative Donor Allogeneic Transplantation

    The purpose of this study is to determine if a search strategy of searching for an HLA-matched unrelated donor for allogeneic transplantation if possible then an alternative donor if an HLA-matched unrelated donor is not available versus proceeding directly to an alternative donor transplant will result in better survival for allogeneic transplant recipients within 2 years after study enrollment.
    Location: 15 locations

  • Controlled Study of Rigosertib Versus Physician's Choice of Treatment in MDS Patients After Failure of an HMA

    The study's primary objective [in a population of patients with MDS after failure of treatment with azacitidine (AZA) or decitabine (DAC)], is to compare the overall survival (OS) of patients in the rigosertib group vs the Physician's Choice group, in all patients and in a subgroup of patients with IPSS-R very high risk.
    Location: 15 locations

  • Azacitidine or Decitabine in Epigenetic Priming in Patients with Newly Diagnosed Acute Myeloid Leukemia

    This randomized phase II trial studies how well azacitidine or decitabine work in epigenetic priming in patients with newly diagnosed acute myeloid leukemia. Azacitidine and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
    Location: 13 locations

  • A Safety, Tolerability and PK Study of DCC-2618 in Patients With Advanced Malignancies

    This is a Phase 1, open-label, first-in-human (FIH) dose-escalation study designed to evaluate the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD) and preliminary antitumor activity of DCC-2618, administered orally (PO), in adult patients with advanced malignancies. The study consists of 2 parts, a dose-escalation phase and an expansion phase.
    Location: 12 locations

  • Study of AZD5991 in Relapsed or Refractory Haematologic Malignancies.

    This study is a multicenter, open-label, nonrandomized, sequential group, dose-escalation study to assess safety, tolerability, pharmacokinetics and preliminary anti-tumor activity of ascending doses of AZD5991 in subjects with relapsed or refractory hematologic malignancies. Part 1 of the study is monotherapy dose escalation. Part 2 of the study is monotherapy expansion groups for relapsed / refractory chronic lymphocytic leukaemia (CLL), AML / myelodysplastic syndromes (MDS), and multiple myeloma (MM) Part 3 is a sequential, dose-escalation study of the combination of AZD5991 and venetoclax in subjects with relapsed / refractory AML / MDS
    Location: 11 locations

  • Safety Study of MGD006 in Relapsed / Refractory Acute Myeloid Leukemia (AML) or Intermediate-2 / High Risk MDS

    The primary goal of this Phase 1 / 2, dose-escalation study, is to determine the maximum tolerated dose level of flotetuzumab in patients with AML whose disease is not expected to benefit from cytotoxic chemotherapy. Studies will also be done to see how the drug acts in the body (pharmacokinetics [PK], pharmacodynamics) and to evaluate potential anti-tumor activity of flotetuzumab.
    Location: 14 locations

  • Ipilimumab and Decitabine in Treating Patients with Relapsed or Refractory Myelodysplastic Syndrome or Acute Myeloid Leukemia

    This phase I trial studies the side effects and best dose of ipilimumab when given together with decitabine in treating patients with myelodysplastic syndrome or acute myeloid leukemia that has returned after a period of improvement (relapsed) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ipilimumab and decitabine may work in treating patients with relapsed or refractory myelodysplastic syndrome or acute myeloid leukemia.
    Location: 10 locations

  • An Open-Label Study of Defibrotide for the Prevention of Acute Graft-versus-Host-Disease (AGvHD)

    This is a study comparing the defibrotide prophylaxis arm vs standard of care arm for the prevention of aGvHD.
    Location: 9 locations

  • Hu5F9-G4 Monotherapy or Hu5F9-G4 in Combination With Azacitidine in Patients With Hematological Malignancies

    This trial will evaluate Hu5F9-G4, a monoclonal antibody which is designed to block a protein called CD47, which is widely expressed on human cancer cells. Blocking CD47 with Hu5F9-G4 may enable the body's immune system to find and destroy the cancer cells. In this study, Hu5F9-G4 may be given alone or in combination with azacitidine to patients with acute myeloid leukemia (AML) or higher risk myelodysplastic syndrome (MDS). Azacitidine is a drug used for treatment of AML or MDS in patients who are not eligible for typical chemotherapy. The major aims of the study are: to confirm the safety and tolerability of Hu5F9-G4 monotherapy in a relapsed / refractory AML and MDS population, and of Hu5F9-G4 in combination with azacitidine in previously untreated AML and MDS; and to evaluate the efficacy of Hu5F9-G4 monotherapy in relapsed / refractory AML / MDS, and of Hu5F9-G4 in combination with azacitidine in previously untreated AML / MDS, as measured by the objective response rate.
    Location: 8 locations

  • A Phase 2 Study of CPI-0610 With and Without Ruxolitinib in Patients With Myelofibrosis

    Phase 1 Part (Complete): Open-label, sequential dose escalation study of CPI-0610 in patients with previously treated Acute Leukemia, Myelodysplastic Syndrome, Myelodysplastic / Myeloproliferative Neoplasms, and Myelofibrosis. Phase 2 Part: Open-label study of CPI-0610 with and without Ruxolitinib in patients with Myelofibrosis. CPI-0610 is a small molecule inhibitor of bromodomain and extra-terminal (BET) proteins.
    Location: 8 locations

  • Study of APVO436 in Patients With AML or MDS

    APVO436 is being studied in this Phase 1 / 1b, open-label, multi-center, dose-escalation study to evaluate the safety, pharmacokinetic / pharmacodynamic and clinical activity of APVO436 monotherapy in: 1) patients with AML that have relapsed on prior therapy or are refractory to therapy and are not candidates for intensive chemotherapy or transplant, and 2) patients with MDS that have > 5% blasts in the bone marrow or blasts in the peripheral blood who have also failed prior therapy with an hypomethylating agent (HMA). The primary objective of the Phase 1 part of the study is to determine the recommended dose of APVO436 administered intravenously to patients with AML or MDS. The primary objective of the Phase 1b part of the study is to evaluate the clinical activity of APVO436 in patients with AML or MDS.
    Location: 7 locations

  • Phase 1-2 Study of Low Dose ASTX727 (ASTX727 LD) in Lower Risk MDS

    Multicenter, open-label study of various ASTX727 LD doses and schedules to assess safety, pharmacodynamics, pharmacokinetics, and hematologic response in subjects with IPSS risk category of low-risk or Intermediate-1 MDS. This study will be conducted in two phases. In phase 1 subjects will be randomized into 3 cohorts in a 28-day cycles. Phase 2, 80 new subjects will be randomized in a 1:1 ratio into 2 doses / schedules.
    Location: 10 locations

  • Low Dose Azacitidine after Transplant in Preventing Recurrence in Patients with Myelodysplastic Syndromes or Acute Myeloid Leukemia in Remission

    This phase II trial studies the side effects and how well low dose azacitidine after transplant works in preventing cancer from coming back in patients with myelodysplastic syndromes or acute myeloid leukemia in remission. Drugs used in chemotherapy, such as azacitidine, work to stop the growth of cancer cells either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: 6 locations

  • AZD6738 for the Treatment of Myelodysplastic Syndrome or Chronic Myelomonocytic Leukemia Progressing on Standard Therapy

    This phase Ib trial studies the side effects, best dose, and response to AZD6738 in treating patients with myelodysplastic syndrome or chronic myelomonocytic leukemia progressing on standard therapy. DNA is the genetic material that serves as the body’s instruction book. Cancer is caused by changes (mutations) to genes (DNA) that control the way cells function. AZD6738 blocks a protein called ATR. ATR notices when there is injury to DNA and works to repair that damage. Studies done in a laboratory setting and cell lines suggest that myelodysplastic syndrome and chronic myelomonocytic leukemia cells rely specifically on the ATR pathway (a network of genes that interact with ATR) to fix DNA damage and survive; by inhibiting ATR with AZD6738, myelodysplastic syndrome or chronic myelomonocytic leukemia cells appear to selectively accumulate DNA damage and die, but healthy cells appear to be less sensitive to this drug. Inhibiting ATR may be a way to selectively target myelodysplastic syndrome or chronic myelomonocytic leukemia cells for treatment.
    Location: 5 locations

  • Study to Investigate the Safety and Clinical Activity of GSK3326595 and Other Agents to Treat Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukaemia (AML)

    GSK3326595 is a potent, selective, reversible inhibitor of the protein arginine methyltransferase 5 (PRMT5) / Methylosome protein 50 (MEP50) complex that is being tested as an oral treatment for human subjects with cancer. Myelodysplastic syndrome and acute myeloid leukaemia are bone marrow neoplasms for which novel, effective therapies are desperately needed. This is an open-label, multicentre, multi-part study to evaluate the safety, tolerability, and clinical activity of GSK3326595 in subjects with relapsed and refractory MDS, chronic myelomonocytic leukaemia (CMML), and hypoproliferative AML that has evolved from an antecedent MDS. The study will be conducted in two parts and at the end of Part 1, if pre-specified criteria are met, then the study will be expanded with three additional parts that will be opened in parallel (Part 2A, 2B and 2C). Part 1 is composed of a single-arm dose expansion cohort to determine the clinical benefit rate of GSK3326595. Part 2A is a randomized head-to-head Phase II evaluation of GSK3326595 compared to investigator's choice of best available care (BAC). Part 2B is composed of an abbreviated series of dose escalation cohorts followed by a single-arm dose expansion cohort to determine the overall response rate of the combination of GSK3326595 plus 5-azaciditine in newly-diagnosed MDS. Part 2C is a single-arm dose expansion study to evaluate the clinical activity of single-agent GSK3326595 in subjects with AML whose disease contains mutations in spliceosome proteins.
    Location: 5 locations

  • Study of ASTX727 vs IV Decitabine in MDS, CMML, and AML

    Multicenter, randomized, open-label, crossover PK study of ASTX727 versus IV decitabine. Adult subjects who are candidates to receive IV decitabine will be randomized 1:1 to receive the ASTX727 tablet Daily×5 in Cycle 1 followed by IV decitabine 20 mg / m^2 Daily×5 in Cycle 2, or the converse order. After completion of PK studies during the first 2 treatment cycles, subjects will continue to receive treatment with ASTX727 from Cycle 3 onward (in 28-day cycles) until disease progression, unacceptable toxicity, or the subject discontinues treatment or withdraws from the study.
    Location: 6 locations

  • Pevonedistat and Azacitidine in Treating Patients with Refractory or Relapsed Myelodysplastic Syndrome or Myelodysplastic Syndrome / Myeloproliferative Neoplasm Who Fail Primary Therapy

    This phase II trial studies how well pevonedistat and azacitidine work in treating patients with myelodysplastic syndrome or myelodysplastic syndrome / myeloproliferative neoplasm that have fails primary therapy and that does not respond to treatment or has come back. Pevonedistat and azacitidine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
    Location: 5 locations

  • Safety Study of Cord Blood Units for Stem Cell Transplants

    Background: - Cord blood is blood that is taken from the umbilical cord and placenta of healthy newborns after childbirth. The cord blood collected from a baby is called a cord blood unit. Cord blood units are stored frozen in public cord blood banks. About 10,000 cord blood transplants have been performed in children and adults for blood cancers and other diseases in the world. These transplants have helped save lives and improve treatments. However, not all available units of cord blood have been collected, stored, and licensed according to specific government requirements. These unlicensed units can still be used in transplant, but they can only be given as part of specific research studies. This study will evaluate the safety of giving these unlicensed units by recording any problems that may occur during and after giving the cord blood. Objectives: - To test the safety and effectiveness of unlicensed cord blood units in people who need stem cell transplants. Eligibility: - Individuals who are scheduled to have a stem cell transplant. Design: - Participants will be screened with a medical history and physical exam. - Participants will receive the cord blood unit as part of their stem cell transplant procedure. The transplant will be performed according to the current standard of care for the procedure. - After the transplant, participants will be monitored for up to 1 year. Any problems or side effects from the transplant will be treated as necessary. All outcomes will be reported to the National Cord Blood Program and to the Center for International Blood and Marrow Transplant.
    Location: 5 locations

  • Durvalumab and Tremelimumab for Pediatric Malignancies

    The purpose of the study is to determine the recommended dose of durvalumab and tremelimumab (immunotherapy drugs) in pediatric patients with advanced solid and hematological cancers and expand in a second phase to test the efficacy of these drugs once this dose is determined.
    Location: 4 locations

  • Efficacy and Safety Study of Luspatercept (ACE-536) Versus Epoetin Alfa for the Treatment of Anemia Due to IPSS-R Very Low, Low or Intermediate Risk Myelodysplastic Syndromes (MDS) in ESA Naïve Subjects Who Require Red Blood Cell Transfusions

    The study will be conducted in compliance with the International Council for Harmonisation (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use / Good Clinical Practice (GCP) and applicable regulatory requirements. This is an interventional active-controlled, open-label, randomized Phase 3 study to compare the efficacy and safety of luspatercept (ACE-536) versus epoetin alfa for the treatment of anemia due to IPSS-R very low, low or intermediate risk MDS in ESA naïve subjects who require RBC transfusions. The study is divided into the Screening Period, a Treatment Period and a Post-Treatment Follow-up Period.
    Location: 4 locations

  • Study to Evaluate the Safety and Efficacy of the Coadministration of Ibrexafungerp (SCY-078) With Voriconazole in Patients With Invasive Pulmonary Aspergillosis

    Study to evaluate the safety and efficacy of coadminstration of SCY-078 with a mold-active azole (voriconazole) compared to voriconazole in patients with invasive pulmonary aspergillosis.
    Location: 4 locations


1 2 3 ... 8 Next >