Treatment Clinical Trials for Pancreatic Islet Cell Tumors

Clinical trials are research studies that involve people. The clinical trials on this list are for pancreatic islet cell tumors treatment. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-17 of 17
  • Nivolumab and Ipilimumab in Treating Patients with Rare Tumors

    This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07 / 27 / 2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03 / 20 / 2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05 / 10 / 2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10 / 17 / 2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03 / 20 / 2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible 9. Intrahepatic cholangiocarcinoma (closed to accrual 03 / 20 / 2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03 / 20 / 2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03 / 30 / 2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non-seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07 / 27 / 2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12 / 19 / 2017) 24. Pheochromocytoma, malignant (closed to accrual) 25. Paraganglioma (closed to accrual 11 / 29 / 2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09 / 19 / 2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11 / 29 / 2018) 31. Adrenal cortical tumors (closed to accrual 06 / 27 / 2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12 / 22 / 2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03 / 15 / 2019) 34. Adenoid cystic carcinoma (closed to accrual 02 / 06 / 2018) 35. Vulvar cancer (temporarily closed to accrual) 36. MetaPLASTIC carcinoma (of the breast) (closed to accrual) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09 / 26 / 2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors / extramammary Paget’s disease (closed to accrual) 40. Peritoneal mesothelioma (temporarily closed to accrual 05 / 08 / 2020) 41. Basal cell carcinoma (temporarily closed to accrual 04 / 29 / 2020) 42. Clear cell cervical cancer 43. Esthenioneuroblastoma (closed to accrual) 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell ovarian cancer (closed to accrual) 46. Gestational trophoblastic disease (GTD) 47. Gallbladder cancer 48. Small cell carcinoma of the ovary, hypercalcemic type 49. PD-L1 amplified tumors 50. Angiosarcoma 51. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 52). Small cell lung cancer is not eligible (temporarily closed to accrual 03 / 25 / 2020) 52. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)
    Location: 893 locations

  • Cisplatin, Carboplatin and Etoposide or Temozolomide and Capecitabine in Treating Patients with Neuroendocrine Carcinoma of the Gastrointestinal Tract or Pancreas That Is Metastatic or Cannot Be Removed by Surgery

    This phase II trial studies how well temozolomide and capecitabine work compared to standard treatment with cisplatin or carboplatin and etoposide in treating patients with neuroendocrine carcinoma of the gastrointestinal tract or pancreas that has spread to other parts of the body (metastatic) or cannot be removed by surgery (unresectable). Drugs used in chemotherapy, such as temozolomide, capecitabine, cisplatin, carboplatin and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Certain types of neuroendocrine carcinomas may respond better to treatments other than the current standard treatment of cisplatin and etoposide. It is not yet known whether temozolomide and capecitabine may work better than cisplatin or carboplatin and etoposide in treating patients with this type of neuroendocrine carcinoma, called non-small cell neuroendocrine carcinoma.
    Location: 554 locations

  • Testing Cabozantinib in Patients with Advanced Pancreatic Neuroendocrine and Carcinoid Tumors

    This randomized phase III trial studies cabozantinib to see how well it works compared with placebo in treating patients with neuroendocrine or carcinoid tumors that have spread to other places in the body (advanced). Cabozantinib is a chemotherapy drug known as a tyrosine kinase inhibitor, and it targets specific tyrosine kinase receptors, that when blocked, may slow tumor growth.
    Location: 363 locations

  • A Study of XmAb®18087 in Subjects With NET and GIST

    This is a Phase 1, multiple dose, ascending dose escalation study; to define a MTD / RD and regimen consisting of a first "priming" dose and escalated subsequent doses of XmAb18087; to describe safety and tolerability; to assess PK and immunogenicity; and to preliminarily assess anti-tumor activity of XmAb18087 in subjects with advanced NET or GIST. The study will enroll dosing cohorts to establish a MTD / RD and regimen in subjects with advanced NET or GIST, then enroll additional subjects into separate NET and GIST expansion cohorts to collect additional data on safety and potential efficacy of XmAb18087.
    Location: 13 locations

  • Study of Pembrolizumab (MK-3475) in Participants With Advanced Solid Tumors (MK-3475-158 / KEYNOTE-158)

    In this study, participants with multiple types of advanced (unresectable and / or metastatic) solid tumors who have progressed on standard of care therapy will be treated with pembrolizumab (MK-3475).
    Location: 7 locations

  • Liposomal Irinotecan, Fluorouracil and Leucovorin in Treating Patients with Refractory Advanced High Grade Neuroendocrine Cancer of Gastrointestinal, Unknown, or Pancreatic Origin

    This phase II trial studies how well liposomal irinotecan, leucovorin, and fluorouracil work in treating patients with high grade neuroendocrine cancer of gastrointestinal, unknown, or pancreatic origin that does not respond to treatment (refractory) and has spread to other places in the body (advanced). Liposomal irinotecan may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as fluorouracil and leucovorin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving liposomal irinotecan, leucovorin and fluorouracil may work better than liposomal irinotecan alone in treating patients with neuroendocrine cancer.
    Location: 3 locations

  • DKN-01 with or without Docetaxel in Treating Patients with Advanced Prostate Cancer with Elevated DKK1

    This phase Ib / IIa trial studies best dose of DKN-01 and how well it works with or without docetaxel in treating patients with prostate cancer with elevated DKK1 that had spread to other places in the body (advanced). DKN-01 is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving DKN-01 with or without docetaxel will work better in treating patients with prostate cancer with elevated DKK1.
    Location: 2 locations

  • Lutathera for the Treatment of Unresectable Pancreatic Neuroendocrine Tumors That Have Spread to the Liver

    This phase I trial investigates if it is safe and possible to give Lutathera directly into an artery of the liver (hepatic intra-arterial infusion) in treating patients with pancreatic neuroendocrine tumors that cannot be removed by surgery (unresectable) and have spread to the liver. Lutathera is a medication that gives off small amounts of radiation (radioactive medication), and doctors use it to treat different types of neuroendocrine tumors. However, doctors normally give the medication to people through a vein in the arm (intravenous infusion). Giving Lutathera via hepatic intra-arterial infusion may give a greater dose of radiation to the liver tumors for patients with pancreatic neuroendocrine tumors.
    Location: Memorial Sloan Kettering Cancer Center, New York, New York

  • Rapid Analysis and Response Evaluation of Combination Anti-Neoplastic Agents in Rare Tumors (RARE CANCER) Trial: RARE 1 Nilotinib and Paclitaxel

    Background: People with rare cancers often have limited treatment options. The biology of rare cancers is not well understood. Researchers want to find better treatments for these cancers. They want to test 2 drugs that, taken separately, have helped people with non-rare cancers. They want to see if these drugs together can make rare cancers shrink or stop growing. Objective: To learn if nilotinib and paclitaxel will benefit people with rare cancers. Eligibility: People age 18 and older who have a rare, advanced cancer that has progressed after receiving standard treatment, or for which no effective therapy exists. Design: Participants will be screened with medical history and physical exam. They will have blood and urine tests. They will have a pregnancy test if needed. They will have an electrocardiogram to check their heart. They will have imaging scans to measure their tumors. Participants will repeat the screening tests during the study. Participants will receive nilotinib and paclitaxel. The drugs are given in 28-day cycles. Nilotinib is a capsule taken by mouth twice a day. Paclitaxel will be given intravenously by peripheral line or central line once a week for the first 3 weeks of each cycle. Participants will keep a medicine diary. They will track when they take the study drugs and any side effects they may have. Participants may have optional tumor biopsies. Participants can stay on the study until their disease gets worse or they have intolerable side effects. Participants will have a follow-up phone call about 30 days after taking the last dose of study drugs.
    Location: National Institutes of Health Clinical Center, Bethesda, Maryland

  • A Vaccine (SurVaxM) in Treating Patients with Metastatic Neuroendocrine Tumors

    This phase I trial studies the side effects of survivin long peptide vaccine (SurVaxM) and how it works with the immune system in treating patients with neuroendocrine tumors that have spread to other parts of the body (metastatic). Neuroendocrine tumors form from cells that release hormones into the blood in response to a signal from the nervous system. Tumor cells make proteins that are not usually produced by normal cells. The body sees these proteins as not belonging to itself and sends immune cells called T cells to attack the tumor cells that contain these proteins. By vaccinating with small pieces of these proteins called peptides, the immune system can be made to kill tumor cells. Giving survivin long peptide vaccine to patients who have survivin expression in their tumors may create an immune response in the blood that is directed against neuroendocrine tumors.
    Location: Roswell Park Cancer Institute, Buffalo, New York

  • Efficacy and Safety of 177Lu-edotreotide PRRT in GEP-NET Patients

    The purpose of the study is to evaluate efficacy and safety of Peptide Receptor Radionuclide Therapy (PRRT) with 177Lu-Edotreotide compared to targeted molecular therapy with Everolimus in patients with inoperable, progressive, somatostatin receptor-positive (SSTR+), neuroendocrine tumours of gastroenteric or pancreatic origin (GEP-NET).
    Location: Moffitt Cancer Center, Tampa, Florida

  • Tamoxifen for the Treatment of Hormone Receptor Positive, Well Differentiated Neuroendocrine Tumors, the HORMONET Study

    This phase II trial studies how well tamoxifen works in treating patients with hormone receptor positive, well differentiated neuroendocrine tumors. Hormones, like estrogen and progesterone, can encourage tumors to grow. Tamoxifen is a drug that may block / suppress the production of estrogen and progesterone, and therefore lower the amount of hormone in the body.
    Location: Moffitt Cancer Center, Tampa, Florida

  • Abemaciclib in Treating Patients with Advanced, Refractory, and Unresectable Digestive System Neuroendocrine Tumors

    This phase II trial studies how well abemaciclib works in treating patients with digestive system neuroendocrine tumors that have spread to other places in the body, do not respond to treatment, and cannot be removed by surgery. Abemaciclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
    Location: 2 locations

  • Pembrolizumab and Lanreotide Acetate in Treating Patients with Gastroenteropancreatic Neuroendocrine Tumors That Are Recurrent, Metastatic, or Cannot Be Removed by Surgery

    This phase Ib / II trial studies how well pembrolizumab and lanreotide acetate work in treating patients with gastroenteropancreatic neuroendocrine tumors that have come back, have spread to other places in the body, or cannot be removed by surgery. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Lanreotide acetate may prevent signals that help cancer cells survive and grow. Giving pembrolizumab and lanreotide may work better in treating patients with gastroenteropancreatic neuroendocrine tumors.
    Location: Duke University Medical Center, Durham, North Carolina

  • TAS-102 and Temozolomide in Treating Patients with Metastatic Neuroendocrine Tumors

    This phase IB trial studies the side effects and best dose of temozolomide when given together with trifluridine and tipiracil hydrochloride (TAS-102) and to see how well they work in treating patients with neuroendocrine tumors that have spread to other places in the body (metastatic). Drugs used in chemotherapy, such as TAS-102 and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: University of Wisconsin Hospital and Clinics, Madison, Wisconsin

  • Sapanisertib and Ziv-Aflibercept in Treating Patients with Recurrent Solid Tumors That Are Metastatic or Cannot Be Removed by Surgery

    This phase I trial studies the side effects and best dose of sapanisertib and ziv-aflibercept in treating patients with solid tumors that have come back (recurrent) and have spread to another place in the body (metastatic) or cannot be removed by surgery (unresectable). Sapanisertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Ziv-aflibercept may stop the growth of solid tumors by blocking the growth of new blood vessels necessary for tumor growth. Giving sapanisertib with ziv-aflibercept may kill more tumor cells.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Atezolizumab and Bevacizumab in Treating Patients with Rare Solid Tumors

    This phase II trial studies how well atezolizumab and bevacizumab work in treating patients with rare solid tumors. Immunotherapy with monoclonal antibodies, such as atezolizumab and bevacizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
    Location: M D Anderson Cancer Center, Houston, Texas