Treatment Clinical Trials for Pancreatic Islet Cell Tumors

Clinical trials are research studies that involve people. The clinical trials on this list are for pancreatic islet cell tumors treatment. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-20 of 20
  • Nivolumab and Ipilimumab in Treating Patients with Rare Tumors

    This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07 / 27 / 2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03 / 20 / 2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05 / 10 / 2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10 / 17 / 2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03 / 20 / 2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible 9. Intrahepatic cholangiocarcinoma (closed to accrual 03 / 20 / 2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03 / 20 / 2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03 / 30 / 2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual 04 / 15 / 2019) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual 04 / 15 / 2019) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non-seminomatous tumor C) Teratoma with malignant transformation (closed to accrual 3 / 15 / 2019) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07 / 27 / 2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12 / 19 / 2017) 24. Pheochromocytoma, malignant 25. Paraganglioma (closed to accrual 11 / 29 / 2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09 / 19 / 2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11 / 29 / 2018) 31. Adrenal cortical tumors (closed to accrual 06 / 27 / 2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12 / 22 / 2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03 / 15 / 2019) 34. Adenoid cystic carcinoma (closed to accrual 02 / 06 / 2018) 35. Vulvar cancer 36. MetaPLASTIC carcinoma (of the breast) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09 / 26 / 2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors / extramammary Paget’s disease 40. Peritoneal mesothelioma 41. Basal cell carcinoma 42. Clear cell cervical cancer 43. Esthenioneuroblastoma 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell cervical endometrial cancer 46. Clear cell ovarian cancer 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)
    Location: 857 locations

  • Cisplatin, Carboplatin and Etoposide or Temozolomide and Capecitabine in Treating Patients with Neuroendocrine Carcinoma of the Gastrointestinal Tract or Pancreas That Is Metastatic or Cannot Be Removed by Surgery

    This randomized phase II trial studies how well temozolomide and capecitabine work compared to standard treatment with cisplatin or carboplatin and etoposide in treating patients with neuroendocrine carcinoma of the gastrointestinal tract or pancreas that has spread to other parts of the body (metastatic) or cannot be removed by surgery. Drugs used in chemotherapy, such as temozolomide, capecitabine, cisplatin, carboplatin and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Certain types of neuroendocrine carcinomas may respond better to treatments other than the current standard treatment of cisplatin and etoposide. It is not yet known whether temozolomide and capecitabine may work better than cisplatin or carboplatin and etoposide in treating patients with this type of neuroendocrine carcinoma, called non-small cell neuroendocrine carcinoma.
    Location: 539 locations

  • Cabozantinib S-malate in Treating Patients with Neuroendocrine Tumors Previously Treated with Everolimus That Are Locally Advanced, Metastatic, or Cannot Be Removed by Surgery

    This randomized phase III trial studies cabozantinib S-malate to see how well it works compared with placebo in treating patients with neuroendocrine tumors previously treated with everolimus that have spread to nearby tissues or lymph nodes, have spread to other places in the body, or cannot be removed by surgery. Cabozantinib S-malate is a chemotherapy drug known as a tyrosine kinase inhibitor, and it targets specific tyrosine kinase receptors, that when blocked, may slow tumor growth.
    Location: 305 locations

  • A Study of XmAb®18087 in Subjects With NET and GIST

    This is a Phase 1, multiple dose, ascending dose escalation study; to define a MTD / RD and regimen consisting of a first "priming" dose and escalated subsequent doses of XmAb18087; to describe safety and tolerability; to assess PK and immunogenicity; and to preliminarily assess anti-tumor activity of XmAb18087 in subjects with advanced NET or GIST. The study will enroll dosing cohorts to establish a MTD / RD and regimen in subjects with advanced NET or GIST, then enroll additional subjects into separate NET and GIST expansion cohorts to collect additional data on safety and potential efficacy of XmAb18087.
    Location: 13 locations

  • Study of Pembrolizumab (MK-3475) in Participants With Advanced Solid Tumors (MK-3475-158 / KEYNOTE-158)

    In this study, participants with multiple types of advanced (unresectable and / or metastatic) solid tumors that have progressed on standard of care therapy will be treated with pembrolizumab.
    Location: 10 locations

  • PEN-221 in Somatostatin Receptor 2 Expressing Advanced Cancers Including Neuroendocrine and Small Cell Lung Cancers

    Protocol PEN-221-001 is an open-label, multicenter Phase 1 / 2a study evaluating PEN-221 in patients with SSTR2 expressing advanced gastroenteropancreatic (GEP) or lung or thymus or other neuroendocrine tumors or small cell lung cancer or large cell neuroendocrine carcinoma of the lung.
    Location: 7 locations

  • Pembrolizumab with or without Paclitaxel or Irinotecan in Treating Patients with Locally Advanced or Metastatic High Grade Neuroendocrine Cancer

    This phase II clinical trial studies how well pembrolizumab with or without paclitaxel or irinotecan works in treating patients with high grade neuroendocrine cancer that has spread to nearby tissues or lymph nodes or other places in the body. Monoclonal antibodies, such as pembrolizumab, may block tumor growth in different ways by targeting certain cells. Drugs used in chemotherapy, such as paclitaxel and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pembrolizumab with or without paclitaxel or irinotecan hydrochloride may work better in treating patients with neuroendocrine cancer.
    Location: 3 locations

  • Ribociclib and Everolimus in Treating Patients with Advanced Well Differentiated Neuroendocrine Tumors of Foregut Origin

    This phase II trial studies how well ribociclib and everolimus work in treating patients with well differentiated neuroendocrine tumors of foregut origin that have spread to other parts of the body and usually cannot be cured or controlled with treatment. Ribociclib and everolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
    Location: 5 locations

  • Pharmacokinetic Study of PM01183 in Combination With Irinotecan in Patients With Selected Solid Tumors

    Prospective, open-label, dose-ranging, uncontrolled phase I study with PM01183 in combination with irinotecan to determine the maximum tolerated dose (MTD) and the recommended dose (RD) of PM01183 in combination with irinotecan in patients with selected advanced solid tumors.
    Location: 2 locations

  • Cisplatin or Carboplatin and Etoposide With or Without Vandetanib in Treating Patients With Previously Untreated Extensive Stage Small Cell Lung Cancer or High-Grade or Poorly Undifferentiated Neuroendocrine Cancer

    This randomized phase II trial studies how well cisplatin or carboplatin and etoposide with or without vandetanib works in treating patients with previously untreated extensive stage small cell lung cancer or high-grade or poorly differentiated neuroendocrine cancer. Drugs used in chemotherapy, such as cisplatin, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vandetanib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether giving cisplatin or carboplatin and etoposide is more effective with or without vandetanib in treating small cell lung cancer or neuroendocrine cancer.
    Location: 2 locations

  • A Vaccine (SurVaxM) in Treating Patients with Metastatic Neuroendocrine Tumors

    This phase I trial studies the side effects of survivin long peptide vaccine (SurVaxM) and how it works with the immune system in treating patients with neuroendocrine tumors that have spread to other parts of the body (metastatic). Neuroendocrine tumors form from cells that release hormones into the blood in response to a signal from the nervous system. Tumor cells make proteins that are not usually produced by normal cells. The body sees these proteins as not belonging to itself and sends immune cells called T cells to attack the tumor cells that contain these proteins. By vaccinating with small pieces of these proteins called peptides, the immune system can be made to kill tumor cells. Giving survivin long peptide vaccine to patients who have survivin expression in their tumors may create an immune response in the blood that is directed against neuroendocrine tumors.
    Location: Roswell Park Cancer Institute, Buffalo, New York

  • Liposomal Irinotecan, Fluorouracil and Leucovorin in Treating Patients with Refractory Advanced High Grade Neuroendocrine Cancer of Gastrointestinal, Unknown, or Pancreatic Origin

    This phase II trial studies how well liposomal irinotecan, leucovorin, and fluorouracil work in treating patients with high grade neuroendocrine cancer of gastrointestinal, unknown, or pancreatic origin that does not respond to treatment and has spread to other places in the body. Liposomal irinotecan may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as fluorouracil and leucovorin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving liposomal irinotecan, leucovorin and fluorouracil may work better than liposomal irinotecan alone in treating patients with neuroendocrine cancer.
    Location: Roswell Park Cancer Institute, Buffalo, New York

  • Nivolumab and Ipilimumab Treating Participants with Advanced Neuroendocrine Tumors

    This phase II trial studies how well nivolumab and ipilimumab work in treating participants with neuroendocrine tumors that have spread to other places in the body. Monoclonal antibodies, such as nivolumab and ipilimumab, may interfere with the ability of tumor cells to grow and spread.
    Location: Johns Hopkins University / Sidney Kimmel Cancer Center, Baltimore, Maryland

  • Atezolizumab and Bevacizumab in Treating Patients with Rare Solid Tumors

    This phase II trial studies how well atezolizumab and bevacizumab work in treating patients with rare solid tumors. Immunotherapy with monoclonal antibodies, such as atezolizumab and bevacizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Pembrolizumab and Lanreotide Acetate in Treating Patients with Gastroenteropancreatic Neuroendocrine Tumors That Are Recurrent, Metastatic, or Cannot Be Removed by Surgery

    This phase Ib / II trial studies how well pembrolizumab and lanreotide acetate work in treating patients with gastroenteropancreatic neuroendocrine tumors that have come back, have spread to other places in the body, or cannot be removed by surgery. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Lanreotide acetate may prevent signals that help cancer cells survive and grow. Giving pembrolizumab and lanreotide may work better in treating patients with gastroenteropancreatic neuroendocrine tumors.
    Location: Duke University Medical Center, Durham, North Carolina

  • TAS-102 and Temozolomide in Treating Patients with Metastatic Neuroendocrine Tumors

    This phase IB trial studies the side effects and best dose of temozolomide when given together with trifluridine and tipiracil hydrochloride (TAS-102) and to see how well they work in treating patients with neuroendocrine tumors that have spread to other places in the body. Drugs used in chemotherapy, such as TAS-102 and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: University of Wisconsin Hospital and Clinics, Madison, Wisconsin

  • RRx-001 in Lung Cancer, Ovarian Cancer and Neuroendocrine Tumors Prior to Re-administration of Platinum Based Doublet Regimens (QUADRUPLE THREAT)

    This study is designed to explore the potential of the epigenetic agent RRx-001 to sensitize patients who previously received and now have failed a platinum based doublet regimen. RRx-001 is administered with autologous blood once weekly followed by or in combination with reintroduction of platinum-based doublet therapy.
    Location: 2 locations

  • Sapanisertib and Ziv-Aflibercept in Treating Patients with Recurrent Solid Tumors That Are Metastatic or Cannot Be Removed by Surgery

    This phase I trial studies the side effects and best dose of sapanisertib and ziv-aflibercept in treating patients with solid tumors that have come back (recurrent) and have spread to another place in the body (metastatic) or cannot be removed by surgery (unresectable). Sapanisertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Ziv-aflibercept may stop the growth of solid tumors by blocking the growth of new blood vessels necessary for tumor growth. Giving sapanisertib with ziv-aflibercept may kill more tumor cells.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Abemaciclib in Treating Patients with Advanced, Refractory, and Unresectable Digestive System Neuroendocrine Tumors

    This phase II trial studies how well abemaciclib works in treating patients with digestive system neuroendocrine tumors that have spread to other places in the body, do not respond to treatment, and cannot be removed by surgery. Abemaciclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
    Location: 2 locations

  • Sapanisertib in Treating Patients with Metastatic or Refractory Pancreatic Neuroendocrine Tumor That Cannot Be Removed by Surgery

    This phase II trial studies how well sapanisertib works in treating patients with pancreatic neuroendocrine tumor that has spread to other places in the body, does not respond to treatment, or cannot be surgically removed. Drugs such as sapanisertib may stop the growth or shrink tumor cells by blocking some of the enzymes needed for cell growth.
    Location: 396 locations