Treatment Clinical Trials for Rectal Cancer

Clinical trials are research studies that involve people. The clinical trials on this list are for rectal cancer treatment. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 46
1 2 Next >

  • Targeted Therapy Directed by Genetic Testing in Treating Patients with Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma (The MATCH Screening Trial)

    This phase II MATCH trial studies how well treatment that is directed by genetic testing works in patients with solid tumors or lymphomas that have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.
    Location: 1175 locations

  • S1613, Trastuzumab and Pertuzumab or Cetuximab and Irinotecan Hydrochloride in Treating Patients with Locally Advanced or Metastatic HER2 / Neu Amplified Colorectal Cancer That Cannot Be Removed by Surgery

    This randomized phase II trial studies how well trastuzumab and pertuzumab work compared to cetuximab and irinotecan hydrochloride in treating patients with HER2 / neu amplified colorectal cancer that has spread from where it started to other places in the body and cannot be removed by surgery. Immunotherapy with monoclonal antibodies, such as trastuzumab and pertuzumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as cetuximab and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving trastuzumab and pertuzumab may work better compared to cetuximab and irinotecan hydrochloride in treating patients with colorectal cancer.
    Location: 655 locations

  • Chemotherapy before or after Chemoradiation Followed by Surgery or Non-operative Management in Treating Patients with Previously Untreated Stage II-III Rectal Cancer

    This randomized phase II trial studies how well chemotherapy before or after chemoradiation followed by surgery or non-operative management works in treating patients with previously untreated stage II-III rectal cancer. Drugs used in chemotherapy, such as FOLFOX regimen (leucovorin calcium, fluorouracil, oxaliplatin), and CapeOX (oxaliplatin and capecitabine), work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high energy x rays to kill tumor cells. It is not yet known whether giving chemotherapy before or after chemoradiation is more effective in treating rectal cancer. Additional chemotherapy may reduce the number of patients that require surgery.
    Location: 18 locations

  • Transanal Total Mesorectal Excision with Laparoscopic Assistance in Treating Patients with Rectal Cancer

    This phase II trial studies how well transanal mesorectal excision with laparoscopic assistance works in treating patients with rectal cancer. Transanal mesorectal excision with laparoscopic assistance is a procedure that combines standard laparoscopy, or multiple small abdominal incisions, with surgery through the anus in order to remove rectal cancer, and it may work better in treating patients with rectal cancer.
    Location: 12 locations

  • A Study of ABT-165 Plus FOLFIRI vs Bevacizumab Plus FOLFIRI in Subjects With Metastatic Colorectal Cancer Previously Treated With Fluoropyrimidine, Oxaliplatin and Bevacizumab

    A study to evaluate the efficacy and tolerability of ABT-165 plus FOLFIRI compared to bevacizumab plus FOLFIRI in participants with previously treated metastatic adenocarcinoma of the colon or rectum.
    Location: 14 locations

  • Genetic Testing in Determining Irinotecan Hydrochloride Dose in Patients with Metastatic Colorectal Cancer Receiving FOLFIRI and Bevacizumab

    This phase II trial studies how well genetic testing works in determining irinotecan hydrochloride dose in patients with colorectal cancer that has spread to other areas of the body, who are receiving leucovorin calcium, fluorouracil, and irinotecan hydrochloride (FOLFIRI) and bevacizumab. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as bevacizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving monoclonal antibody therapy with chemotherapy may kill more tumor cells. Genetic testing may help doctors determine how the body breaks down and removes irinotecan hydrochloride. Using genetic testing to determine the dose of irinotecan hydrochloride may be more effective and safer than standard dosing.
    Location: 9 locations

  • Trametinib and Trifluridine and Tipiracil Hydrochloride in Treating Patients with Colon or Rectal Cancer That is Advanced, Metastatic, or Cannot Be Removed by Surgery

    This phase I trial studies the side effects and best dose of trametinib and trifluridine and tipiracil hydrochloride in treating patients with colon or rectal cancer that has spread to other places in the body or cannot be removed by surgery. Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as trifluridine and tipiracil hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving trametinib and trifluridine and tipiracil hydrochloride may prevent cancer cells from dividing and work better in treating patients with colon and rectal cancer.
    Location: 8 locations

  • A Study of RO7198457 (Personalized Cancer Vaccine [PCV]) as a Single Agent and in Combination With Atezolizumab in Participants With Locally Advanced or Metastatic Tumors

    This is a Phase 1a / 1b, open-label, multicenter, global, dose-escalation study designed to evaluate the safety, tolerability, immune response, and pharmacokinetics of RO7198457 as a single agent and in combination with atezolizumab (MPDL3280A, an engineered anti-programmed death-ligand 1 [anti-PD-L1] antibody).
    Location: 12 locations

  • Cabozantinib-S-Malate and Panitumumab in Treating Patients with Colorectal Cancer That is Metastatic or Cannot Be Removed by Surgery

    This phase Ib / II trial studies the safety and best dose of cabozantinib-s-malate when given together with panitumumab in treating patients with colorectal cancer that has spread to other parts of the body or cannot be removed by surgery. Cabozantinib-s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as panitumumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread Giving cabozantinib-s-malate with panitumumab may work better in treating patients with colorectal cancer.
    Location: 8 locations

  • High-Dose-Rate Brachytherapy and Chemotherapy in Treating Patients with Locally Recurrent or Residual Rectal or Anal Cancer Undergoing Non-operative Management

    This phase I trial studies the side effects and best dose of high-dose-rate brachytherapy when given together with chemotherapy in treating patients with rectal or anal cancer that has come back or gotten worse and cannot be treated with surgery. Brachytherapy, also known as internal radiation therapy, uses radioactive material placed directly into or near a tumor to kill tumor cells. High-dose-rate (HDR) brachytherapy uses the radioactive material to deliver a high radiation dose in a short period of time to the tumor. It may also send less radiation to nearby healthy tissues and may reduce the risk of side effects. Drugs used in chemotherapy, such as capecitabine and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving HDR brachytherapy together with capecitabine or fluorouracil may kill more tumor cells.
    Location: 6 locations

  • Study of A166 in Patients With Relapsed / Refractory Cancers Expressing HER2 Antigen or Having Amplified HER2 Gene

    Open-label, Phase I-II, first-in-human (FIH) study for A166 monotherapy in HER2-expressing or amplified patients who progressed on or did not respond to available standard therapies. Patients must have documented HER2 expression or amplification. The patient must have exhausted available standard therapies. Patients will receive study drug as a single IV infusion. Cycles will continue until disease progression or unacceptable toxicity.
    Location: 4 locations

  • Study of M3814 in Combination With Capecitabine and Radiotherapy in Rectal Cancer

    The main purpose of the study is to define maximum tolerated dose (MTD), recommended Phase II dose (RP2D) of M3814 in combination with capecitabine and radiotherapy (RT) in Phase Ib and to evaluate the efficacy of M3814 in terms of Pathological Clinical Response (pCR) / Clinical Complete Response (cCR) when administered in combination with capecitabine and RT versus placebo, capecitabine, and RT in Phase II.
    Location: 4 locations

  • Stereotactic Radiosurgery in Treating Patients with Oligo-Recurrent Disease

    This phase II trial studies how well stereotactic radiosurgery works in treating patients with cancer that has come back and has spread to 5 or fewer places in the body (oligometastatic disease). Stereotactic radiosurgery, also known as stereotactic body radiation therapy, is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may kill more tumor cells and cause less damage to normal tissue.
    Location: 3 locations

  • Stereotactic Radiosurgery in Treating Patients with Oligometastatic Disease

    This phase II trial studies how well stereotactic radiosurgery works in treating patients with cancer that has spread to 5 or fewer places in the body and involves 3 or fewer organs (oligometastatic disease). Stereotactic radiosurgery, also known as stereotactic body radiation therapy, is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may kill more tumor cells and cause less damage to normal tissue.
    Location: 3 locations

  • Preservation of Organs in Participants with Early Rectal Cancer

    This phase II trial studies preservation of organs in participants with early rectal cancer. Drugs used in chemotherapy, such as oxaliplatin, leucovorin, and calcium fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or stopping them from spreading. Giving more than one drug (combination chemotherapy), and giving them after local excision may kill more tumor cells. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy with radiation therapy may kill more tumor cells and allow doctors to save the part of the body where the cancer started.
    Location: 2 locations

  • A Study to Evaluate the Safety, Tolerability, and Activity of TAK-931 in Participants With Metastatic Pancreatic Cancer, Metastatic Colorectal Cancer, and Other Advanced Solid Tumors

    The purpose of this study is to confirm the safety and tolerability of TAK-931 in a cohort of Western participants with metastatic solid tumors and to evaluate the anti-tumor activity of TAK-931 in participants with metastatic pancreatic cancer, colorectal cancer (CRC), squamous esophageal cancer (sqEC), and squamous non-small-cell lung cancer (sqNSCLC).
    Location: 2 locations

  • Gemcitabine Hydrochloride and Docetaxel in Treating Patients with Relapsed or Refractory Colorectal Cancer That Is Metastatic or Cannot Be Removed by Surgery

    This phase II trial studies how well gemcitabine hydrochloride and docetaxel work in treating patients with colorectal cancer that has returned or did not respond to treatment and has spread to other parts of the body or cannot be removed by surgery. Drugs used in chemotherapy, such as gemcitabine hydrochloride and docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more tumor cells.
    Location: Johns Hopkins University / Sidney Kimmel Cancer Center, Baltimore, Maryland

  • A Phase Ib Study to Evaluate the Safety, Efficacy, and Pharmacokinetics of Cibisatamab in Combination With Atezolizumab After Pretreatment With Obinutuzumab in Participants With Previously Treated Metastatic Colorectal Adenocarcinoma

    CO40939 is a Phase Ib, open-label, multicenter, single-arm study designed to evaluate the safety, efficacy, pharmacokinetics, and immunogenicity of cibisatamab in combination with atezolizumab administered after pretreatment with obinutuzumab in patients with Stage IV microsatellite stable (MSS) metastatic colorectal cancer (mCRC) whose tumors have high carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) expression and who have progressed on two or more chemotherapy regimens. The study is composed of a safety run-in and an exploratory part.
    Location: 2 locations

  • Administering Peripheral Blood Lymphocytes Transduced With a Murine T-Cell Receptor Recognizing the G12D Variant of Mutated RAS in HLA-A*11:01 Patients

    Background: A new cancer therapy takes white blood cells from a person, grows them in a lab, genetically changes them, then gives them back to the person. Researchers think this may help attack tumors in people with certain cancers. It is called gene transfer using anti-KRAS G12D mTCR cells. Objective: To see if anti-KRAS G12D mTCR cells are safe and cause tumors to shrink. Eligibility: Adults ages 18-70 who have cancer with a molecule on the tumors that can be recognized by the study cells Design: Participants will be screened with medical history, physical exam, scans, photography, and heart, lung, and lab tests. An intravenous (IV) catheter will be placed in a large vein in the chest. Participants will have leukapheresis. Blood will be removed through a needle in an arm. A machine will divide the blood and collect white blood cells. The rest of the blood will be returned to the participant through a needle in the other arm. A few weeks later, participants will have a hospital stay. They will: - Get 2 chemotherapy medicines by IV over 5 days. - Get the changed cells through the catheter. Get up to 9 doses of a medicine to help the cells. They may get a shot to stimulate blood cells. - Recover in the hospital for up to 3 weeks. They will provide blood samples. Participants will take an antibiotic for at least 6 months. Participants will have several follow-up visits over 2 years. They will repeat most of the screening tests and may have leukapheresis. Participants blood will be collected for several years.
    Location: National Institutes of Health Clinical Center, Bethesda, Maryland

  • M7824 in Treating Patients with Metastatic or Unresectable Color or Rectal Cancer with Microsatellite Instability

    This phase Ib / II trial studies how well anti-PD-L1 / TGFbetaRII fusion protein M7824 (M7824) works in treating patients with colorectal cancer that has spread to other places in the body or cannot be removed by surgery with microsatellite instability. Immunotherapy with monoclonal antibodies, such as M7824, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
    Location: M D Anderson Cancer Center, Houston, Texas

  • M7824 in Subjects With HPV Associated Malignancies

    Background: In the United States, each year there are more than 30,000 cases of human papillomavirus (HPV) associated cancers. Some of these cancers are often incurable and are not improved by standard therapies. Researchers want to see if a new drug M7824, which targets and blocks a pathway that prevents the immune system from effectively fighting the cancer can shrink tumors in people with some HPV cancers. Objectives: To see if the drug M7824 causes tumors to shrink. Eligibility: Adults age 18 and older who have a cancer associated with HPV infection. Design: Participants will be screened with medical history and physical exam. They will review their symptoms and how they perform normal activities. They will have body scans. They will give blood and urine samples. They will have a sample of their tumor tissue taken if one is not available. Participants will have an electrocardiogram to evaluate their heart. Then they will get the study drug through a thin tube in an arm vein. Participants will get the drug every 2 weeks for 26 times (1 year). This is 1 course. After the course, participants will be monitored but will not take the study drug. If their condition gets worse, they will start another course with the drug. This process can be repeated as many times as needed. Treatment will stop if the participant has bad side effects or the drug stops working. Throughout the study, participants will repeat some or all the screening tests. After participants stop taking the drug, they will have a follow-up visit and repeat some screening tests. They will get periodic follow-up phone calls. ...
    Location: National Institutes of Health Clinical Center, Bethesda, Maryland

  • Anti-SEMA4D Monoclonal Antibody VX15 / 2503 with or without Ipilimumab or Nivolumab in Treating Patients with Stage I-III Pancreatic Cancer That Can Be Removed by Surgery or Stage IV Colorectal Cancer with Liver Metastasis That Can Be Removed by Surgery

    This randomized pilot phase I trial studies how well anti-SEMA4D monoclonal antibody VX15 / 2503 with or without ipilimumab or nivolumab work in treating patients with stage I-III pancreatic cancer that can be removed by surgery or stage IV colorectal cancer that has spread to the liver and can be removed by surgery. Monoclonal antibodies, such as anti-SEMA4D monoclonal antibody VX15 / 2503, ipilimumab, and nivolumab, may interfere with the ability of tumor cells to grow and spread.
    Location: Emory University Hospital / Winship Cancer Institute, Atlanta, Georgia

  • Atezolizumab with or without Cobimetinib in Treating Participants with Colorectal Cancer with Liver Metastases before surgery

    This phase II trial studies how well atezolizumab with or without cobimetinib works in treating participants with colorectal cancer that has spread to the liver before surgery. Monoclonal antibodies, such as atezolizumab, may interfere with the ability of tumor cells to grow and spread. Cobimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving atezolizumab and cobimetinib before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed.
    Location: Duke University Medical Center, Durham, North Carolina

  • Talimogene Laherparepvec, Chemotherapy, and Radiation Therapy before Surgery in Treating Patients with Locally Advanced or Metastatic Rectal Cancer

    This phase I trial studies the best dose and side effects of talimogene laherparepvec in combination with 5-fluorouracil, leucovorin, oxaliplatin, capecitabine, and chemoradiation before surgery in treating patients with rectal cancer that has spread from where it started to nearby tissue and lymph nodes. Drugs used in immunotherapy, such as talimogene laherparepvec, may stimulate the body's immune system to fight tumor cells. Drugs used in chemotherapy, such as 5-fluorouracil, leucovorin, oxaliplatin, and capecitabine work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving talimogene laherparepvec, 5-fluorouracil, leucovorin, oxaliplatin, and capecitabine and chemoradiation before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Combination of TATE and PD-1 Inhibitor in Liver Cancer

    This is a single center, open-label phase IIA study that investigates the preliminary efficacy of Trans-arterial Tirapazamine Embolization (TATE) treatment of liver cancer followed by a PD-1 checkpoint inhibitor (either nivolumab or pembrolizumab). Patients with four types of cancers will be enrolled, hepatocellular carcinoma (HCC), metastatic colorectal cancer (mCRC), metastatic gastric cancer and advanced non-small cell lung cancer. All enrolled patients need to have liver lesions.
    Location: UC Irvine Health / Chao Family Comprehensive Cancer Center, Orange, California


1 2 Next >