Clinical Trials Using Cyclophosphamide

Clinical trials are research studies that involve people. The clinical trials on this list are studying Cyclophosphamide. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 369
1 2 3 ... 15 Next >

  • Doxorubicin Hydrochloride and Cyclophosphamide Followed by Paclitaxel with or without Carboplatin in Treating Patients with Triple-Negative Breast Cancer

    This randomized phase III trial studies how well doxorubicin hydrochloride and cyclophosphamide followed by paclitaxel with or without carboplatin work in treating patients with triple-negative breast cancer. Drugs used in chemotherapy, such as doxorubicin hydrochloride, cyclophosphamide, paclitaxel, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether doxorubicin hydrochloride and cyclophosphamide is more effective when followed by paclitaxel alone or paclitaxel and carboplatin in treating triple-negative breast cancer.
    Location: 1101 locations

  • Testing the Addition of a New Anti-cancer Drug, Venetoclax, to Usual Chemotherapy for High Grade B-cell Lymphomas

    This phase II / III trial tests whether it is possible to decrease the chance of high-grade B-cell lymphomas returning or getting worse by adding a new drug, venetoclax to the usual combination of drugs used for treatment. Venetoclax may stop the growth of cancer cells by blocking a protein called Bcl-2. Drugs used in usual chemotherapy, such as rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax together with usual chemotherapy may work better than usual chemotherapy alone in treating patients with high-grade B-cell lymphomas, and may increase the chance of cancer going into remission and not returning.
    Location: 336 locations

  • Combination Chemotherapy with or without Temsirolimus in Treating Patients with Intermediate Risk Rhabdomyosarcoma

    This randomized phase III trial studies how well combination chemotherapy (vincristine sulfate, dactinomycin, cyclophosphamide alternated with vincristine sulfate and irinotecan hydrochloride or vinorelbine) works compared to combination chemotherapy plus temsirolimus in treating patients with rhabdomyosarcoma (cancer that forms in the soft tissues, such as muscle), and has an intermediate chance of coming back after treatment (intermediate risk). Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Combination chemotherapy and temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether combination chemotherapy or combination chemotherapy plus temsirolimus is more effective in treating patients with intermediate-risk rhabdomyosarcoma.
    Location: 317 locations

  • Inotuzumab Ozogamicin and Frontline Chemotherapy in Treating Young Adults with Newly Diagnosed B Acute Lymphoblastic Leukemia

    This partially randomized phase III trial studies the side effects of inotuzumab ozogamicin and how well it works when given with frontline chemotherapy in treating patients with newly diagnosed B acute lymphoblastic leukemia. Monoclonal antibodies, such as inotuzumab ozogamicin, may block cancer growth in different ways by targeting certain cells. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving inotuzumab ozogamicin with chemotherapy may work better in treating young adults with B acute lymphoblastic leukemia.
    Location: 240 locations

  • Response and Biology-Based Risk Factor-Guided Therapy in Treating Younger Patients with Non-high Risk Neuroblastoma

    This phase III trial studies how well response and biology-based risk factor-guided therapy works in treating younger patients with non-high risk neuroblastoma. Sometimes a tumor may not need treatment until it progresses. In this case, observation may be sufficient. Measuring biomarkers in tumor cells may help plan when effective treatment is necessary and what the best treatment is. Response and biology-based risk factor-guided therapy may be effective in treating patients with non-high risk neuroblastoma and may help to avoid some of the risks and side effects related to standard treatment.
    Location: 182 locations

  • A Study to Determine the Outcomes of Patients with Localized B Cell Lymphoblastic Lymphoma (B-LLy) When Treated with Standard Risk B-ALL Therapy

    This phase III trial studies how well blinatumomab works in combination with chemotherapy in treating patients with newly diagnosed, standard risk B-lymphoblastic leukemia or B-lymphoblastic lymphoma with or without Down syndrome. Monoclonal antibodies, such as blinatumomab, may induce changes in body’s immune system and may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as vincristine, dexamethasone, prednisone, prednisolone, pegaspargase, methotrexate, cytarabine, mercaptopurine, doxorubicin, cyclophosphamide, and thioguanine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Leucovorin decreases the toxic effects of methotrexate. Giving monoclonal antibody therapy with chemotherapy may kill more cancer cells. Giving blinatumomab and combination chemotherapy may work better then combination chemotherapy alone in treating patients with B-ALL. This trial also assigns patients into different chemotherapy treatment regimens based on risk (the chance of cancer returning after treatment). Treating patients with chemotherapy based on risk may help doctors decide which patients can best benefit from which chemotherapy treatment regimens.
    Location: 170 locations

  • Imatinib Mesylate and Combination Chemotherapy in Treating Patients with Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    This randomized phase III trial studies how well imatinib mesylate and combination chemotherapy work in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia. Imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving imatinib mesylate and combination chemotherapy may work better in treating patients with Philadelphia chromosome positive acute lymphoblastic leukemia.
    Location: 157 locations

  • Reduced Craniospinal Radiation Therapy and Chemotherapy in Treating Younger Patients with Newly Diagnosed WNT-Driven Medulloblastoma

    This phase II trial studies how well reduced doses of radiation therapy to the brain and spine (craniospinal) and chemotherapy work in treating patients with newly diagnosed type of brain tumor called WNT) / Wingless (WNT)-driven medulloblastoma. Recent studies using chemotherapy and radiation therapy have been shown to be effective in treating patients with WNT-driven medulloblastoma. However, there is a concern about the late side effects of treatment, such as learning difficulties, lower amounts of hormones, or other problems in performing daily activities. Radiotherapy uses high-energy radiation from x-rays to kill cancer cells and shrink tumors. Drugs used in chemotherapy, such as cisplatin, vincristine sulfate, cyclophosphamide and lomustine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving reduced craniospinal radiation therapy and chemotherapy may kill tumor cells and may also reduce the late side effects of treatment.
    Location: 162 locations

  • Azacitidine and Combination Chemotherapy in Treating Infants with Acute Lymphoblastic Leukemia and KMT2A Gene Rearrangement

    This pilot phase II trial studies the side effects of azacitidine and combination chemotherapy in infants with acute lymphoblastic leukemia and KMT2A gene rearrangement. Drugs used in chemotherapy, such as methotrexate, prednisolone, daunorubicin hydrochloride, cytarabine, dexamethasone, vincristine sulfate, pegaspargase, hydrocortisone sodium succinate, azacitidine, cyclophosphamide, mercaptopurine, leucovorin calcium, and thioguanine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug may kill more cancer cells.
    Location: 160 locations

  • Ibrutinib before and after Stem Cell Transplant in Treating Patients with Relapsed or Refractory Diffuse Large B-cell Lymphoma

    This randomized phase III trial studies ibrutinib to see how well it works compared to placebo when given before and after stem cell transplant in treating patients with diffuse large B-cell lymphoma that has returned after a period of improvement (relapsed) or does not respond to treatment (refractory). Before transplant, stem cells are taken from patients and stored. Patients then receive high doses of chemotherapy to kill cancer cells and make room for healthy cells. After treatment, the stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Ibrutinib is a drug that may stop the growth of cancer cells by blocking a protein that is needed for cell growth. It is not yet known whether adding ibrutinib to chemotherapy before and after stem cell transplant may help the transplant work better in patients with relapsed or refractory diffuse large B-cell lymphoma.
    Location: 235 locations

  • Iobenguane I-131 or Crizotinib and Standard Therapy in Treating Younger Patients with Newly-Diagnosed High-Risk Neuroblastoma or Ganglioneuroblastoma

    This phase III trial studies iobenguane I-131 or crizotinib and standard therapy in treating younger patients with newly-diagnosed high-risk neuroblastoma or ganglioneuroblastoma. Radioactive drugs, such as iobenguane I-131, may carry radiation directly to tumor cells and not harm normal cells. Crizotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving iobenguane I-131 or crizotinib and standard therapy may work better compared to crizotinib and standard therapy alone in treating younger patients with neuroblastoma or ganglioneuroblastoma.
    Location: 126 locations

  • Inotuzumab Ozogamicin and Post-Induction Chemotherapy in Treating Patients with High-Risk B-ALL, Mixed Phenotype Acute Leukemia, and B-LLy

    This phase III trial studies how well inotuzumab ozogamicin and post-induction chemotherapy work in treating patients with high-risk B-cell lymphoblastic lymphoma (B-ALL), mixed phenotype acute leukemia, and B-lymphoblastic lymphoma (B-LLy). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called calicheamicin. Inotuzumab attaches to cancer cells in a targeted way and delivers calicheamicin to kill them. Drugs used in chemotherapy, such as cyclophosphamide, cytarabine, doxorubicin, daunorubicin, methotrexate, leucovorin, mercaptopurine, thioguanine, vincristine, and pegaspargase, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The goal of the part 1 of the study is to collect information about leukemia and the effects of the first two phases of treatment, called Induction and Consolidation on this cancer. Additionally, this study aims to investigate whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for 3 years from the start of Interim Maintenance in patient with High Risk Favorable (HR-Fav) and HR B-ALL. Another aim is to understand the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B LLy) receiving HR B-ALL therapy. Finally, another goal of this study is to determine the outcomes of subjects with Mixed Phenotype Acute Leukemia (MPAL) with a favorable early response to treatment using High Risk B-cell Acute Lymphoblastic Leukemia therapy.
    Location: 53 locations

  • Standard Chemotherapy in Treating Young Patients with Medulloblastoma or Other Central Nervous System Primitive Neuro-ectodermal Tumors

    This phase IV trial studies how well standard chemotherapy works in treating young patients with medulloblastoma or other central nervous system primitive neuro-ectodermal tumors. Drugs used in standard chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: 36 locations

  • A Phase 2 Study of Ruxolitinib With Chemotherapy in Children With Acute Lymphoblastic Leukemia

    This is a nonrandomized study of ruxolitinib in combination with a standard multi-agent chemotherapy regimen for the treatment of B-cell acute lymphoblastic leukemia. Part 1 of the study will optimize the dose of study drug (ruxolitinib) in combination with the chemotherapy regimen. Part 2 will evaluate the efficacy of combination chemotherapy and ruxolitinib at the recommended dose determined in Part 1.
    Location: 33 locations

  • Clinical and Molecular Risk-Directed Craniospinal Irradiation and Combination Chemotherapy in Treating Younger Patients with Newly Diagnosed Medulloblastoma

    This partially randomized phase II trial studies clinical and molecular risk-directed craniospinal irradiation and combination chemotherapy in treating younger patients with newly diagnosed medulloblastoma. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as cisplatin, carboplatin, cyclophosphamide, vincristine sulfate, vismodegib, gemcitabine hydrochloride, and pemetrexed disodium, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving clinical and molecular risk-directed radiation therapy and combination chemotherapy may kill more tumor cells.
    Location: 13 locations

  • Bortezomib, Vorinostat, and Combination Chemotherapy in Treating Infants with Newly Diagnosed Acute Lymphoblastic Leukemia

    This phase I / II trial studies the side effects and best dose of vorinostat and to see how well it works when given together with bortezomib and combination chemotherapy in treating infants (patients less than 1 year old) with newly diagnosed acute lymphoblastic leukemia. Bortezomib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as methotrexate, hydrocortisone, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) with bortezomib and vorinostat may be a better treatment for acute lymphoblastic leukemia.
    Location: 11 locations

  • Ibrutinib, Rituximab, Etoposide, Prednisone, Vincristine Sulfate, Cyclophosphamide, and Doxorubicin Hydrochloride in Treating Patients with HIV-Positive Stage II-IV Diffuse Large B-Cell Lymphomas

    This phase I trial studies the side effect and best dose of ibrutinib in combination with rituximab, etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride in treating patients with human immunodeficiency virus (HIV)-positive stage II-IV diffuse large B-cell lymphomas. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ibrutinib and etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride may work better in treating patients with HIV-positive diffuse large B-cell lymphomas.
    Location: 15 locations

  • A Phase 2 Multicenter Study of Axicabtagene Ciloleucel in Subjects With Relapsed / Refractory Indolent Non-Hodgkin Lymphoma

    This study will enroll approximately 160 adult subjects who have relapsed or refractory (r / r) iNHL to be infused with the study treatment, axicabtagene ciloleucel, to see if their disease responds to this experimental product and if this product is safe. Axicabtagene ciloleucel is made from the subjects own white blood cells which are genetically modified and grown to fight cancer. An objective response rate of 70% is targeted.
    Location: 15 locations

  • I-SPY 2 TRIAL: Neoadjuvant and Personalized Adaptive Novel Agents to Treat Breast Cancer

    The purpose of this study is to further advance the ability to practice personalized medicine by learning which new drug agents are most effective with which types of breast cancer tumors and by learning more about which early indicators of response (tumor analysis prior to surgery via magnetic resonance imaging (MRI) images along with tissue and blood samples) are predictors of treatment success.
    Location: 16 locations

  • Safety and Efficacy of KTE-C19 in Adults With Refractory Aggressive Non-Hodgkin Lymphoma

    This study will be separated into 3 distinct phases designated as the Phase 1 study, Phase 2 pivotal study (Cohort 1 and Cohort 2), and Phase 2 safety management study (Cohort 3 and Cohort 4, Cohort 5 and Cohort 6). The primary objectives of this study are: - Phase 1 Study: Evaluate the safety of axicabtagene ciloleucel regimens - Phase 2 Pivotal Study; Evaluate the efficacy of axicabtagene ciloleucel - Phase 2 Safety Management Study: Assess the impact of prophylactic regimens or earlier interventions on the rate and severity of cytokine release syndrome (CRS) and neurologic toxicities
    Location: 15 locations

  • A Study to Compare the Efficacy and Safety of JCAR017 to Standard of Care in Adult Subjects With High-risk, Transplant-eligible Relapsed or Refractory Aggressive B-cell Non-Hodgkin Lymphomas

    The study will be conducted in compliance with the International Council for Harmonisation (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use / Good Clinical Practice (GCP) and applicable regulatory requirements. This is a randomized, open-label, parallel-group, multi-center trial in adult subjects with Relapsed or refractory (R / R) aggressive Non-Hodgkin lymphoma (NHL) to compare safety and efficacy between the standard of care (SOC) strategy versus JCAR017 (also known as lisocabtagene maraleucel or liso-cel). Subjects will be randomized to either receive SOC (Arm A) or to receive JCAR017 (Arm B). All subjects randomized to Arm A will receive Standard of care (SOC) salvage therapy (R-DHAP, RICE or R-GDP) as per physician's choice before proceeding to High dose chemotherapy (HDCT) and Hematopoietic stem cell transplant (HSCT). Subjects from Arm A may be allowed to cross over and receive JCAR017 upon confirmation of an EFS event. Subjects randomized to Arm B will receive Lymphodepleting (LD) chemotherapy followed by JCAR017 infusion.
    Location: 15 locations

  • A Trial of Temsirolimus With Etoposide and Cyclophosphamide in Children With Relapsed Acute Lymphoblastic Leukemia and Non-Hodgkins Lymphoma

    This is a phase I study of temsirolimus (Torisel) combined with dexamethasone, cyclophosphamide and etoposide in patients with relapsed acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL) or peripheral T-cell lymphoma (PTL).
    Location: 14 locations

  • Study to Assess Enzastaurin + R-CHOP in Subjects With DLBCL With the Genomic Biomarker DGM1™

    This randomized, placebo-controlled phase 3 study is planned to enroll approximately 235 treatment-naïve subjects with high-risk Diffuse Large B-Cell Lymphoma (DLBCL). Subjects will be randomized 1:1 to R-CHOP plus enzastaurin or R CHOP (plus placebo during induction). All subjects will receive up to 6 cycles (3 weeks per cycle) of treatment. PET / CT will be used to assess radiographic response at the end of treatment. Each subject's treatment assignment will be unblinded after initial phase of treatment. Subjects randomized to the enzastaurin arm who have a response will be offered maintenance treatment of the study drug for up to 2 additional years.
    Location: 13 locations

  • Safety and Efficacy of KTE-X19 in Adults With Relapsed / Refractory Chronic Lymphocytic Leukemia

    The primary objective of this study is to evaluate the safety (Phase 1) and efficacy (Phase 2) of KTE-X19 in adults with relapsed / refractory chronic lymphocytic leukemia (r / r CLL).
    Location: 12 locations

  • Study Evaluating the Safety and Efficacy of JCARH125 in Subjects With Relapsed and / or Refractory Multiple Myeloma

    This is an open-label, multicenter, Phase 1 / 2 study to determine the safety and efficacy of JCARH125, a CAR T-cell product that targets B-cell maturation antigen (BCMA), in adult subjects with relapsed and / or refractory multiple myeloma. The study will include a Phase 1 part to determine the recommended dose of JCARH125 in subjects with relapsed and / or refractory multiple myeloma, followed by a Phase 2 part to further evaluate the safety and efficacy of JCARH125 at the recommended dose.
    Location: 13 locations


1 2 3 ... 15 Next >