Clinical Trials Using Dinutuximab

Clinical trials are research studies that involve people. The clinical trials on this list are studying Dinutuximab. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-5 of 5
  • Iobenguane I-131 or Crizotinib and Standard Therapy in Treating Younger Patients with Newly-Diagnosed High-Risk Neuroblastoma or Ganglioneuroblastoma

    This partially randomized phase III trial studies iobenguane I-131 or crizotinib and standard therapy in treating younger patients with newly-diagnosed high-risk neuroblastoma or ganglioneuroblastoma. Radioactive drugs, such as iobenguane I-131, may carry radiation directly to tumor cells and not harm normal cells. Crizotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving iobenguane I-131 or crizotinib and standard therapy may work better in treating younger patients with neuroblastoma or ganglioneuroblastoma.
    Location: 116 locations

  • Irinotecan Hydrochloride, Temozolomide, and Dinutuximab with or without Eflornithine in Treating Patients with Relapsed or Refractory Neuroblastoma

    This phase II trial studies how well irinotecan hydrochloride (irinotecan), temozolomide, and dinutuximab work with or without eflornithine in treating patients with neuroblastoma that has come back or that isn't responding to treatment. Drugs used in chemotherapy, such as irinotecan hydrochloride and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as dinutuximab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Eflornithine blocks the production of chemicals called polyamines that are important in the growth of cancer cells. Giving eflornithine with irinotecan hydrochloride, temozolomide, and dinutuximab, may work better in treating patients with relapsed or refractory neuroblastoma.
    Location: 45 locations

  • Dinutuximab, Sargramostim, and Combination Chemotherapy in Treating Patients with Newly Diagnosed High-Risk Neuroblastoma Undergoing Stem Cell Transplant

    This phase II trial studies the side effects and how well dinutuximab and sargramostim work with combination chemotherapy in patients with high-risk neuroblastoma undergoing stem cell transplant. Immunotherapy with monoclonal antibodies, such as dinutuximab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Sargramostim helps the body produce normal infection-fighting white blood cells. Giving chemotherapy before a stem cell transplant, with drugs such as cisplatin, etoposide, vincristine, doxorubicin, cyclophosphamide, thiotepa, melphalan, etoposide, carboplatin, topotecan, and isotretinoin, helps kill any cancer cells that are in the body and helps make room in a patient's bone marrow for new blood-forming cells (stem cells). Giving dinutuximab and sargramostim with combination chemotherapy may work better in treating patients with high-risk neuroblastoma undergoing stem cell transplant.
    Location: 5 locations

  • MIBG With Dinutuximab

    131I-Metaiodobenzylguanidine (131I-MIBG) is one of the most effective therapies utilized for neuroblastoma patients with refractory or relapsed disease. In this pediatric phase 1 trial, 131I-MIBG will be given in combination with dinutuximab, a chimeric 14.18 monoclonal antibody. This study will utilize a traditional Phase I dose escalation 3+3 design to determine a recommended phase 2 pediatric dose. An expansion cohort of an additional 6 patients may then be enrolled.
    Location: 8 locations

  • Immunotherapy of Relapsed Refractory Neuroblastoma With Expanded NK Cells

    This NANT trial will determine the maximum tolerated dose (MTD) of autologous expanded natural killer (NK) cells when combined with standard dosing of ch14.18 and will assess the feasibility of adding lenalidomide at the recommended Phase II dose of the expanded NK cells with ch14.18, for treatment of children with refractory or recurrent neuroblastoma.
    Location: 3 locations