Clinical Trials Using Leucovorin Calcium

Clinical trials are research studies that involve people. The clinical trials on this list are studying Leucovorin Calcium. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 61
1 2 3 Next >

  • Vitamin D3 with Chemotherapy and Bevacizumab in Treating Patients with Advanced or Metastatic Colorectal Cancer, SOLARIS Trial

    This phase III trial studies how well vitamin D3 given with standard chemotherapy and bevacizumab works in treating patients with colorectal cancer that has spread to other parts of the body. Vitamin D3 helps the body use calcium and phosphorus to make strong bones and teeth. Vitamin D3 may also modulate the immune system and is being studied in the prevention and treatment of some types of cancer. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, oxaliplatin, and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bevacizumab is a monoclonal antibody that binds to Vascular Endothelial Growth Factor (VEGF). VEGF is a substance made by cells that helps the formation of new blood vessels. Bevacizumab may prevent the growth of new blood vessels that tumors need to grow. Giving vitamin D3 with chemotherapy and bevacizumab may work better in shrinking or stabilizing colorectal cancer. It is not yet known whether giving high-dose vitamin D3 in addition to chemotherapy and bevacizumab would extend patients time without disease compared to the usual approach (chemotherapy and bevacizumab).
    Location: 811 locations

  • Circulating Tumor DNA Testing in Predicting Treatment for Patients with Stage IIA Colon Cancer After Surgery, COBRA Trial

    This phase II / III trial studies how well circulating tumor deoxyribonucleic acid (ctDNA) testing in the blood works to identify patients with stage IIA colon cancer who might benefit from additional treatment with chemotherapy after surgery. ctDNA are small pieces of genetic materials (DNA) that are shed by tumors into the blood. Finding ctDNA in the blood means that there are very likely small amounts of cancer remaining after surgery that may not be detectable using other tests, such as medical imaging. Testing for ctDNA levels may help identify patients with colon cancer who benefit from receiving chemotherapy after surgery. It is not yet known whether giving additional treatment with chemotherapy after surgery to patients who test positive for ctDNA and are at low risk for cancer recurrence would extend their time without disease compared to the usual approach (active surveillance).
    Location: 616 locations

  • Combination Chemotherapy with or without Atezolizumab in Treating Patients with Stage III Colon Cancer and Deficient DNA Mismatch Repair

    This phase III trial studies combination chemotherapy and atezolizumab to see how well it works compared with combination chemotherapy alone in treating patients with stage III colon cancer and deficient deoxyribonucleic acid (DNA) mismatch repair. Drugs used in combination chemotherapy, such as oxaliplatin, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving combination chemotherapy with atezolizumab may work better than combination chemotherapy alone in treating patients with colon cancer.
    Location: 882 locations

  • Comparing Two Treatment Combinations, Gemcitabine and Nab-Paclitaxel with 5-Fluorouracil, Leucovorin, and Liposomal Irinotecan for Older Patients with Pancreatic Cancer That Has Spread

    This phase II trial compares two treatment combinations: gemcitabine hydrochloride and nab-paclitaxel, or fluorouracil, leucovorin calcium, and liposomal irinotecan in older patients with pancreatic cancer that has spread to other places in the body (metastatic). Drugs used in chemotherapy, such as gemcitabine hydrochloride, nab-paclitaxel, fluorouracil, leucovorin calcium, and liposomal irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This study may help doctors find out which treatment combination is better at prolonging life in older patients with metastatic pancreatic cancer.
    Location: 393 locations

  • Ramucirumab and Paclitaxel or FOLFIRI in Advanced Small Bowel Cancers

    This phase II trial studies how well ramucirumab and paclitaxel or the FOLFIRI regimen (leucovorin calcium, fluorouracil, and irinotecan hydrochloride) work in treating patients with small bowel cancers that have spread extensively to other anatomic sites (advanced) or are no longer responding to treatment (refractory). Ramucirumab is a monoclonal antibody that attaches to and inhibits a molecule called VEGFR-2. This may restrain new blood vessel formation therefore reducing nutrient supply to tumor which may interfere with tumor cell growth and expansion. Drugs used in chemotherapy, such as paclitaxel, leucovorin calcium, fluorouracil, and irinotecan hydrochloride work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving Ramucirumab plus paclitaxel or FOLFIRI, may be helpful in treating advanced or refractory small bowel cancers and may help patients live longer.
    Location: 332 locations

  • Testing the Addition of Radiotherapy to the Usual Treatment (Chemotherapy) for Patients with Esophageal and Gastric Cancer that has Spread to a Limited Number of Other Places in the Body

    This phase III trial studies how well the addition of radiotherapy to the usual treatment (chemotherapy) works compared to the usual treatment alone in treating patients with esophageal and gastric cancer that has spread to a limited number of other places in the body (oligometastatic disease). Radiotherapy uses high energy x-rays, gamma rays, or protons to kill tumor cells and shrink tumors. Drugs used in usual chemotherapy, such as leucovorin, 5-fluorouracil, oxaliplatin, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding radiotherapy to the usual chemotherapy may work better compared to the usual chemotherapy alone in treating patients with esophageal and gastric cancer.
    Location: 333 locations

  • A Study to Investigate Blinatumomab in Combination with Chemotherapy in Patients with Newly Diagnosed B-Lymphoblastic Leukemia

    This phase III trial studies how well blinatumomab works in combination with chemotherapy in treating patients with newly diagnosed, standard risk B-lymphoblastic leukemia or B-lymphoblastic lymphoma with or without Down syndrome. Monoclonal antibodies, such as blinatumomab, may induce changes in the body’s immune system and may interfere with the ability of cancer cells to grow and spread. Drugs used in chemotherapy, such as vincristine, dexamethasone, prednisone, prednisolone, pegaspargase, methotrexate, cytarabine, mercaptopurine, doxorubicin, cyclophosphamide, and thioguanine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Leucovorin decreases the toxic effects of methotrexate. Giving monoclonal antibody therapy with chemotherapy may kill more cancer cells. Giving blinatumomab and combination chemotherapy may work better than combination chemotherapy alone in treating patients with B-ALL. This trial also assigns patients into different chemotherapy treatment regimens based on risk (the chance of cancer returning after treatment). Treating patients with chemotherapy based on risk may help doctors decide which patients can best benefit from which chemotherapy treatment regimens.
    Location: 194 locations

  • Inotuzumab Ozogamicin and Post-Induction Chemotherapy in Treating Patients with High-Risk B-ALL, Mixed Phenotype Acute Leukemia, and B-LLy

    This phase III trial studies whether inotuzumab ozogamicin added to post-induction chemotherapy for patients with High-Risk B-cell Acute Lymphoblastic Leukemia (B-ALL) improves outcomes. This trial also studies the outcomes of patients with mixed phenotype acute leukemia (MPAL), and B-lymphoblastic lymphoma (B-LLy) when treated with ALL therapy without inotuzumab ozogamicin. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a type of chemotherapy called calicheamicin. Inotuzumab attaches to cancer cells in a targeted way and delivers calicheamicin to kill them. Other drugs used in the chemotherapy regimen, such as cyclophosphamide, cytarabine, dexamethasone, doxorubicin, daunorubicin, methotrexate, leucovorin, mercaptopurine, prednisone, thioguanine, vincristine, and pegaspargase work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial will also study the outcomes of patients with mixed phenotype acute leukemia (MPAL) and disseminated B lymphoblastic lymphoma (B-LLy) when treated with high-risk ALL chemotherapy. The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The first part of the study includes the first two phases of therapy: Induction and Consolidation. This part will collect information on the leukemia, as well as the effects of the initial treatment, in order to classify patients into post-consolidation treatment groups. On the second part of this study, patients will receive the remainder of the chemotherapy cycles (interim maintenance I, delayed intensification, interim maintenance II, maintenance), with some patients randomized to receive inotuzumab. Other aims of this study include investigating whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for an additional year compared to girls, as well as to evaluate the best ways to help patients adhere to oral chemotherapy regimens. Finally, this study will be the first to track the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B LLy) or Mixed Phenotype Acute Leukemia (MPAL) when treated with B-ALL chemotherapy.
    Location: 189 locations

  • Imatinib Mesylate and Combination Chemotherapy in Treating Patients with Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    This randomized phase III trial studies how well imatinib mesylate and combination chemotherapy work in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia. Imatinib mesylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving imatinib mesylate and combination chemotherapy may work better in treating patients with Philadelphia chromosome positive acute lymphoblastic leukemia.
    Location: 167 locations

  • A Phase 2 Study of Ruxolitinib With Chemotherapy in Children With Acute Lymphoblastic Leukemia

    This is a nonrandomized study of ruxolitinib in combination with a standard multi-agent chemotherapy regimen for the treatment of B-cell acute lymphoblastic leukemia. Part 1 of the study will optimize the dose of study drug (ruxolitinib) in combination with the chemotherapy regimen. Part 2 will evaluate the efficacy of combination chemotherapy and ruxolitinib at the recommended dose determined in Part 1.
    Location: 39 locations

  • Testing the Use of the Usual Chemotherapy before and after Surgery for Removable Pancreatic Cancer

    This phase III trial compares perioperative chemotherapy (given around the time of surgery) versus adjuvant chemotherapy (given after surgery) for the treatment of pancreatic cancer that can be removed by surgery (removable / resectable). Chemotherapy drugs, such as fluorouracil, irinotecan, leucovorin, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before and after surgery (perioperative) may work better in treating patients with pancreatic cancer compared to giving chemotherapy after surgery (adjuvant).
    Location: 168 locations

  • A Study of BMS-813160 in Combination With Chemotherapy or Nivolumab in Patients With Advanced Solid Tumors

    This study will evaluate the safety profile, tolerability, PK, PD, and preliminary efficacy of BMS-813160 alone or in combination with either chemotherapy or nivolumab in participants with metastatic colorectal and pancreatic cancers.
    Location: 22 locations

  • A Study of Multiple Immunotherapy-Based Treatment Combinations in Participants With Metastatic Pancreatic Ductal Adenocarcinoma (Morpheus-Pancreatic Cancer)

    A Phase Ib / II, open-label, multicenter, randomized study designed to assess the safety, tolerability, pharmacokinetics and preliminary anti-tumor activity of immunotherapy-based treatment combinations in participants with metastatic Pancreatic Ductal Adenocarcinoma (PDAC). Two cohorts will be enrolled in parallel in this study: Cohort 1 will consist of patients who have received no prior systemic therapy for metastatic PDAC, and Cohort 2 will consist of patients who have received one line of prior systemic therapy for PDAC. In each cohort, eligible patients will be assigned to one of several treatment arms.
    Location: 12 locations

  • Losartan and Nivolumab in Combination with Combination Chemotherapy and SBRT in Treating Patients with Localized Pancreatic Cancer

    This phase II trial studies how well losartan and nivolumab work in combination with combination chemotherapy and stereotactic body radiation therapy (SBRT) in treating patients with pancreatic cancer that has not spread to other parts of the body (localized). Losartan is a drug that is used to lower blood pressure. Immunotherapy with monoclonal antibodies, such as nivolumab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as fluorouracil, oxaliplatin, irinotecan hydrochloride, and leucovorin calcium, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method can kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. It is not yet known how well losartan and nivolumab work in combination with combination chemotherapy and stereotactic body radiation therapy in treating patients with localized pancreatic cancer.
    Location: 9 locations

  • Risk Classification Schemes in Identifying Better Treatment Options for Children and Adolescents with Acute Lymphoblastic Leukemia

    This randomized phase III trial studies risk classification schemes in identifying better treatment options for children and adolescents with acute lymphoblastic leukemia. Risk factor classification may help identify how strong treatment should be for patients with acute lymphoblastic leukemia.
    Location: 7 locations

  • Alisertib Alone or in Combination with Chemotherapy and Radiation Therapy in Treating Younger Patients with Recurrent, Progressive, or Newly Diagnosed Central Nervous System Atypical Teratoid Rhabdoid Tumors or Extra-Central Nervous System Malignant Rhabdoid Tumors

    This phase II trial studies how well alisertib alone or in combination with chemotherapy and radiation therapy works in treating younger patients with central nervous system (CNS) atypical teratoid rhabdoid tumors that are newly diagnosed; have returned; or are growing, spreading, or getting worse or extra-CNS malignant rhabdoid tumors that have returned or are growing, spreading, or getting worse. Alisertib may stop the growth of cancer cells by blocking a protein called aurora kinase A that is needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses x-rays to kill tumor cells. Giving alisertib alone or with chemotherapy and radiation therapy may be effective in treating patients with rhabdoid tumors.
    Location: 9 locations

  • A Vaccine (Personalized Cancer Vaccine RO7198457), Atezolizumab, and Combination Chemotherapy for the Treatment of Resectable Stage I-III Pancreatic Cancer

    This phase I trial studies how well a personalized cancer vaccine RO7198457 works in combination with atezolizumab and fluorouracil, irinotecan hydrochloride, leucovorin calcium and oxaliplatin in treating patients with stage I-III pancreatic cancer that has been removed by surgery (resected). The personalized cancer vaccine RO7198457 is a vaccine that is customized according to changes (mutations) in a patient's tumor cells so that it can be recognized by the immune system and target the tumor. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as fluorouracil, irinotecan hydrochloride, leucovorin calcium and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving personalized cancer vaccine RO7198457, atezolizumab, fluorouracil, irinotecan hydrochloride, leucovorin calcium and oxaliplatin may work better compared to chemotherapy alone in treating patients with pancreatic cancer.
    Location: 7 locations

  • Study of Eryaspase in Combination With Chemotherapy Versus Chemotherapy Alone as 2nd-Line Treatment in PAC

    This is an open-label, multicenter, randomized, Phase 3 study in patients with ductal adenocarcinoma of the pancreas who have failed only one prior line of systemic anti-cancer therapy for advanced pancreatic cancer and have measurable disease.
    Location: 8 locations

  • Safety and Efficacy of Pembrolizumab (MK-3475) Plus Binimetinib Alone or Pembrolizumab Plus Chemotherapy With or Without Binimetinib in Metastatic Colorectal Cancer (mCRC) Participants (MK-3475-651)

    The purpose of this study is to determine safety and tolerability and to establish a preliminary recommended Phase 2 dose (RP2D) for the following combinations: pembrolizumab plus binimetinib (Cohort A), pembrolizumab plus mFOLFOX7 (oxaliplatin 85 mg / m^2; leucovorin [calcium folinate] 400 mg / m^2; fluorouracil [5-FU] 2400 mg / m^2) (Cohort B), pembrolizumab plus mFOLFOX7 and binimetinib (Cohort C), pembrolizumab plus FOLFIRI (irinotecan 180 mg / m^2; leucovorin [calcium folinate]400 mg / m^2; 5-FU 2400 mg / m^2 over 46-48 hours) (Cohort D), and pembrolizumab plus FOLFIRI and binimetinib (Cohort E).
    Location: 8 locations

  • Combination Chemotherapy and Nab-Paclitaxel in Treating Patients with Advanced or Metastatic Gastric or Gastroesophageal Junction Cancer That Cannot Be Removed by Surgery

    This phase II trial studies how well combination chemotherapy and nab-paclitaxel work in treating patients with gastric or gastroesophageal junction cancer that has spread to other places in the body or cannot be removed by surgery. Drugs used in chemotherapy, such as leucovorin calcium, fluorouracil, oxaliplatin, and nab-paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: 7 locations

  • Durvalumab, an anti-PDLI antibody, and Chemoradiation before surgery for esophageal cancer

    This phase II trial studies the side effects of durvalumab when given together with chemotherapy and radiation therapy in treating patients with esophageal or gastroesophageal junction cancer. Monoclonal antibodies, such as durvalumab, blocks a protein called PD-L1 and may help the immune system by blocking some of the processes that stop the immune system from working. Drugs used in chemotherapy, such as fluorouracil, leucovorin calcium, oxaliplatin, carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving durvalumab together with chemotherapy and radiation therapy before surgery may work better at treating patients with esophageal or gastroesophageal junction cancer.
    Location: 7 locations

  • Mitomycin C or Floxuridine and Leucovorin Calcium during or after Surgery in Treating Patients with Appendiceal, Colon, or Rectal Cancer

    This randomized phase II trial studies how well mitomycin C or floxuridine and leucovorin calcium during or after surgery works in treating patients with appendiceal, colon, or rectal cancer. Chemotherapy drugs, such as mitomycin C, floxuridine, and leucovorin calcium, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether heating a chemotherapy solution and infusing it directly into the abdomen during surgery kills more tumor cells than infusing a chemotherapy solution directly into the abdomen after surgery.
    Location: 10 locations

  • A Safety and Efficacy Study of ZW25 Plus Combination Chemotherapy in HER2-expressing Gastroesophageal Adenocarcinoma

    This is a multicenter, global, Phase 2, open-label, 2-part, first-line study to investigate the safety, tolerability, and anti-tumor activity of ZW25 plus physician's choice of combination chemotherapy in HER2-expressing gastroesophageal adenocarcinoma (GEA). Eligible patients include those with unresectable, locally advanced, recurrent or metastatic HER2-expressing GEA.
    Location: 5 locations

  • Early Identification and Treatment of Occult Metastatic Disease in Stage III Colorectal Cancer

    This phase III trial studies how well either FOLFIRI (leucovorin, fluorouracil, and irinotecan), active surveillance, nivolumab, or encorafenib, binimetinib, and cetuximab work in decreasing recurrence (chance of the cancer coming back) in patients with stage III colorectal cancer who are ctDNA positive. If all the cancer is not killed after initial treatment, bloods tests may be able to detect tumor DNA in the blood called circulating tumor DNA (ctDNA). This is genetic material unique to the cancer that may be present in the blood stream and can be identified through a ctDNA blood test. Cancer researchers believe that ctDNA in the blood stream may be an indicator that cancer is more likely to recur. Chemotherapy drugs, such as leucovorin, fluorouracil, and irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Nivolumab is an anti-PD-1 antibody. It works by attaching to and blocking a molecule called PD-1. PD-1 is a protein that is present on different types of cells in the immune system and controls parts of the immune system by shutting it down. Antibodies that block PD-1 can potentially prevent PD-1 from shutting down the immune system, thus potentially allowing immune cells to recognize and destroy cancer cells. Encorafenib in combination with binimetinib and cetuximab may target the BRAF V600E-mutation in colorectal cancer. When this mutation is present, it switches on pathway called the MAPK pathway which stimulates cell division and leads to uncontrolled cell growth. Encorafenib, binimetinib and cetuximab target different parts of this important signaling pathway in tumor cells with this mutation and may slow down their growth and communication. Encorafenib and binimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Cetuximab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. This study is being done to determine whether there are differences in cancer recurrence in ctDNA positive patients treated with additional therapy versus put on active surveillance.
    Location: 5 locations

  • Study of Pembrolizumab (MK-3475) Plus Chemotherapy Versus Placebo Plus Chemotherapy in Participants With Gastric or Gastroesophageal Junction (GEJ) Adenocarcinoma (MK-3475-585 / KEYNOTE-585)

    The purpose of this study is to evaluate the efficacy of pembrolizumab (MK-3745) in the neoadjuvant (prior to surgery) or adjuvant (after surgery) treatment of previously untreated adults with gastric and gastroesophageal junction (GEJ) adenocarcinoma. The primary study hypotheses are that: - Neoadjuvant and adjuvant pembrolizumab plus chemotherapy, followed by adjuvant pembrolizumab is superior to neoadjuvant and adjuvant placebo plus chemotherapy, followed by adjuvant placebo in terms of Overall Survival (OS), and Event-free Survival (EFS) based on Response Evaluation Criteria in Solid Tumors Version 1.1 (RECIST 1.1), and - Neoadjuvant pembrolizumab plus chemotherapy is superior to neoadjuvant placebo plus chemotherapy in terms of rate of Pathological Complete Response (pathCR) at the time of surgery.
    Location: 6 locations


1 2 3 Next >