Clinical Trials Using Temozolomide

Clinical trials are research studies that involve people. The clinical trials on this list are studying Temozolomide. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 84
1 2 3 4 Next >

  • Testing the Use of the Immunotherapy Drugs Ipilimumab and Nivolumab plus Radiation Therapy Compared to the Usual Treatment (Temozolomide and Radiation Therapy) for Newly Diagnosed MGMT Unmethylated Glioblastoma

    This phase II / III trial compares the usual treatment with radiation therapy and temozolomide to radiation therapy in combination with immunotherapy with ipilimumab and nivolumab in treating patients with newly diagnosed MGMT unmethylated glioblastoma. Radiation therapy uses high energy photons to kill tumor and shrink tumors. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Temozolomide, may not work as well for the treatment of tumors that have the unmethylated MGMT. Immunotherapy with monoclonal antibodies called immune checkpoint inhibitors, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is possible that immune checkpoint inhibitors may work better at time of first diagnosis as opposed to when tumor comes back. Giving radiation therapy with ipilimumab and nivolumab may lengthen the time without brain tumor returning or growing and may extend patients’ life compared to usual treatment with radiation therapy and temozolomide.
    Location: 179 locations

  • Veliparib, Radiation Therapy, and Temozolomide in Treating Patients with Newly Diagnosed Malignant Glioma without H3 K27M or BRAFV600 Mutations

    This phase II trial studies how well veliparib, radiation therapy, and temozolomide work in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations. Poly adenosine diphosphate (ADP) ribose polymerases (PARPs) are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations compared to radiation therapy and temozolomide alone.
    Location: 142 locations

  • Testing the Addition of an Anticancer Drug, Olaparib, to the Usual Chemotherapy (Temozolomide) for Advanced Neuroendocrine Cancer

    This phase II trial studies how well the addition of olaparib to the usual treatment, temozolomide, works in treating patients with neuroendocrine cancer (pheochromocytoma or paraganglioma) that has spread to other places in the body (metastatic) or cannot be removed by surgery (unresectable). PARPs are proteins that help repair DNA mutations. PARP inhibitors, such as olaparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving olaparib with temozolomide may shrink or stabilize the cancer in patients with pheochromocytoma or paraganglioma better than temozolomide alone.
    Location: 132 locations

  • Radiation Therapy or Radiation Therapy and Temozolomide in Treating Patients with Newly Diagnosed Anaplastic Glioma or Low Grade Glioma

    This randomized phase III trial compares giving radiation therapy alone or temozolomide together with radiation therapy and to see which works best in treating patients with newly diagnosed anaplastic glioma or low grade glioma. Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving radiation therapy alone or temozolomide together with radiation therapy is better in treating anaplastic glioma or low grade glioma.
    Location: 203 locations

  • Treatment with Dinutuximab, Sargramostim (GM-CSF), and Isotretinoin in Combination with Irinotecan and Temozolomide after Intensive Therapy for People with High-Risk Neuroblastoma (NBL)

    This phase II trial studies if dinutuximab, GM-CSF, isotretinoin in combination with irinotecan, and temozolomide (chemo-immunotherapy) can be given safely to patients with high-risk neuroblastoma after Consolidation therapy (which usually consists of two autologous stem cell transplants and radiation) who have not experienced worsening or recurrence of their disease. Dinutuximab represents a kind of cancer therapy called immunotherapy. Unlike chemotherapy and radiation, dinutuximab targets the cancer cells without destroying nearby healthy cells. Sargramostim helps the body produce normal infection-fighting white blood cells. Isotretinoin helps the neuroblastoma cells become more mature. These 3 drugs (standard immunotherapy) are already given to patients with high-risk neuroblastoma after Consolidation because they have been proven to be beneficial in this setting. Chemotherapy drugs, such as irinotecan and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. They may also effect how well immunotherapy works on neuroblastoma cells. Giving chemo-immunotherapy after intensive therapy may work better in treating patients with high-risk neuroblastoma compared to standard immunotherapy.
    Location: 46 locations

  • Dose-Escalated Photon IMRT or Proton Beam Radiation Therapy versus Standard-Dose Radiation Therapy and Temozolomide in Treating Patients with Newly Diagnosed Glioblastoma

    This randomized phase II trial studies how well dose-escalated photon intensity-modulated radiation therapy (IMRT) or proton beam radiation therapy works compared with standard-dose radiation therapy when given with temozolomide in patients with newly diagnosed glioblastoma. Radiation therapy uses high-energy x-rays and other types of radiation to kill tumor cells and shrink tumors. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs, such as temozolomide, may make tumor cells more sensitive to radiation therapy. It is not yet known whether dose-escalated photon IMRT or proton beam radiation therapy is more effective than standard-dose radiation therapy with temozolomide in treating glioblastoma.
    Location: 151 locations

  • A Trial to Evaluate Multiple Regimens in Newly Diagnosed and Recurrent Glioblastoma

    Glioblastoma (GBM) adaptive, global, innovative learning environment (GBM AGILE) is an international, seamless Phase II / III response adaptive randomization platform trial designed to evaluate multiple therapies in newly diagnosed (ND) and recurrent GBM.
    Location: 29 locations

  • Proton Beam or Intensity-Modulated Radiation Therapy in Preserving Brain Function in Patients with IDH Mutant Grade II or III Glioma

    This randomized phase II clinical trial studies the side effects and how well proton beam or intensity-modulated radiation therapy works in preserving brain function in patients with IDH mutant grade II or III glioma. Proton beam radiation therapy uses tiny charged particles to deliver radiation directly to the tumor and may cause less damage to normal tissue. Intensity-modulated or photon beam radiation therapy uses high-energy x-ray beams shaped to treat the tumor and may also cause less damage to normal tissue. It is not yet known if proton beam radiation therapy is more effective than photon-based beam intensity-modulated radiation therapy in treating patients with glioma.
    Location: 26 locations

  • Study Of Palbociclib Combined With Chemotherapy In Pediatric Patients With Recurrent / Refractory Solid Tumors

    This study will evaluate palbociclib in combination with chemotherapy (temozolomide with irinotecan and topotecan with cyclophosphamide) in children, adolescents and young adults with recurrent or refractory solid tumors. The main purpose of this study is to evaluate the safety of palbociclib in combination with chemotherapy in order to estimate the maximum tolerated dose. Pharmacokinetics and efficacy of palbociclib in combination with chemotherapy will be evaluated.
    Location: 24 locations

  • Nanoparticle Albumin-Bound Rapamycin, Temozolomide, and Irinotecan Hydrochloride in Treating Pediatric Patients with Recurrent or Refractory Solid Tumors

    This phase I trial studies the side effects and best dose of nanoparticle albumin-bound rapamycin when given together with temozolomide and irinotecan hydrochloride in treating pediatric patients with solid tumors that have come back after a period of time during which the tumor could not be detected or has not responded to treatment. Nanoparticle albumin-bound rapamycin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as temozolomide and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nanoparticle albumin-bound rapamycin, temozolomide, and irinotecan hydrochloride may cause the cancer to stop growing or shrink for a period of time, and may lessen the symptoms that are caused by the cancer.
    Location: 21 locations

  • Testing the Safety of the Study Drug Pamiparib (BGB-290) When Given with Different Doses of the Usual Chemotherapy (Temozolomide) for Patients with Recurrent Glioma Having the IDH1 / 2 Genetic Change

    This phase I / II trial studies the side effects and how well pamiparib and temozolomide work in treating patients with gliomas (brain tumors) with IDH1 / 2 mutations that have come back (recurrent). Pamiparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pamiparib and temozolomide may work better in treating patients with recurrent gliomas compared to temozolomide alone.
    Location: 14 locations

  • Abemaciclib, DNA-PK / TOR Kinase Inhibitor CC-115, or Neratinib in Treating Patients with Brain Tumors after Biomarker Screening

    This randomized phase II trial studies how well abemaciclib, DNA-PK / TOR kinase inhibitor CC-115, or neratinib works in treating patients with brain tumors after biomarker screening. Drugs such as abemaciclib, DNA-PK / TOR kinase inhibitor CC-115, or neratinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Screening tumor samples for biomarkers may help doctors to determine if certain treatments work better on patients with certain biomarkers. Giving abemaciclib, DNA-PK / TOR kinase inhibitor CC-115, or neratinib may work better in treating patients with brain tumors.
    Location: 12 locations

  • A Study of Selinexor in Combination With Standard of Care Therapy for Newly Diagnosed or Recurrent Glioblastoma

    This is a global, Phase 1 / 2, multicenter, open-label study. The clinical study will include of Phase 1: Dose Escalation (non-randomized, dose finding study) and Phase 2: Dose Expansion (randomized efficacy exploration). For Phase 1, the purpose of this study is to assess the maximum tolerated dose (MTD), recommend phase 2 dose (RP2D), preliminary efficacy, and safety of selinexor in combination with SoC therapy for newly diagnosed glioblastoma multiforme (GBM) (nGBM) or recurrent GBM (rGBM). The study will independently evaluate 3 different combination regimens in 3 treatment arms in participants with nGBM O6-methylguanine-DNA-methyltransferase [MGMT] promotor unmethylated [uMGMT] disease in Arm A, MGMT methylated [mMGMT]) in Arm B, and participants with rGBM regardless of MGMT status in Arm C. The second phase of the study will compare selinexor+SoC treatments versus SoC treatment alone in the three treatment Arms.
    Location: 11 locations

  • Talazoparib and Temozolomide in Treating Patients with Metastatic Castration Resistant Prostate Cancer with No Mutations in DNA Damage Repair

    This phase Ib / II trial studies the side effects and best dose of talazoparib and temozolomide and how well they work in treating patients with castration resistant prostate cancer that has spread to other places in the body (metastatic) and that does not have mutations in DNA damage repair. DNA damage repair (DDR) is a complex series of processes by which a cell identifies and fixes damage to its DNA, and DDR mutations are common in some types of cancer cells. Talazoparib is a type of medication called a PARP inhibitor. This kind of medication works by stopping cancer cells from repairing damage to themselves and their DNA, which can lead to the death of the cancer cells. Temozolomide is a chemotherapy drug that works by damaging the genetic “instructions” (DNA) in tumor cells that tell the cells to stop reproducing, which can cause them to die. Giving talazoparib and temozolomide may work better in treating patients with castration resistant prostate cancer compared to standard care.
    Location: 9 locations

  • Trial of Newly Diagnosed High Grade Glioma Treated With Concurrent Radiation Therapy, Temozolomide and BMX-001

    This is a Phase 2 study of newly diagnosed patients with high grade glioma (HGG) undergoing standard radiation therapy and temozolomide treatment. BMX-001 added to radiation therapy and temozolomide has the potential not only to benefit the survival of high grade glioma patients but also to protect against deterioration of cognition and impairment of quality of life. BMX-001 will be given subcutaneously first with a loading dose zero to four days prior to the start of chemoradiation and followed by twice a week doses at one-half of the loading dose for the duration of radiation therapy plus two weeks. Both safety and efficacy of BMX-001 will be evaluated. Impact on cognition will also be assessed. Eighty patients will be randomized to the treatment arm that will receive BMX-001 while undergoing chemoradiation and 80 patients randomized to receive chemoradiation alone. The sponsor hypothesizes that BMX-001 when added to standard radiation therapy and temozolomide will be safe at pharmacologically relevant doses in patients with newly diagnosed high grade glioma. The sponsor also hypothesizes that the addition of BMX-001 will positively impact the overall survival and improve objective measures of cognition in newly diagnosed high grade glioma patients.
    Location: 9 locations

  • Temozolomide, Cisplatin, and Nivolumab for the Treatment of Patients with MMR-Proficient Locally Advanced, Unresectable or Metastatic Colorectal Cancer

    This phase II trial studies how well the combination of cisplatin, nivolumab, and temozolomide works in treating patients with colorectal cancer that has spread to nearby tissues or lymph nodes and cannot be removed by surgery (locally advanced, unresectable) or has spread to other places in the body (metastatic) that is mismatch repair (MMR)-proficient. Cisplatin and temozolomide are both cytotoxic chemotherapies that work mostly by causing damage to the DNA in tumor cells, which can cause those cells to stop growing and die. Combining the two chemotherapy drugs may also cause changes (mutations) in the tumor's DNA, which triggers an immune response against the cancer and the new mutations caused by the drugs. Nivolumab is an antibody, like the proteins made by the immune system to protect the body from harm. Nivolumab blocks the protein PD-1 (programmed cell death receptor-1) that usually acts as a “brake” on the immune system. Blocking this protein is like releasing the brakes, so that the immune system can target tumor cells and destroy them. Giving cisplatin, nivolumab, and temozolomide together may work better to shrink or stabilize the cancer better than each drug alone in patients with colorectal cancer.
    Location: 7 locations

  • Irinotecan Hydrochloride, Temozolomide, and Combination Chemotherapy in Treating Patients with Newly Diagnosed Ewing Sarcoma

    This phase II trial studies how well irinotecan hydrochloride, temozolomide, and combination chemotherapy work in treating patients with newly diagnosed Ewing sarcoma. Drugs used in chemotherapy, such as irinotecan hydrochloride, temozolomide, cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, ifosfamide, and etoposide phosphate, work in different ways to stop the growth of tumor cells, either by killing the cells, or by stopping them from dividing.
    Location: 7 locations

  • BGB-290 and Temozolomide in Treating Adolescents and Young Adults with IDH1 / 2-Mutant Newly Diagnosed or Recurrent Grade I-IV Gliomas

    This phase I trial studies the side effects and best dose of BGB-290 and temozolomide in treating adolescents and young adults with IDH1 / 2-mutant grade I-IV glioma that is newly diagnosed or has come back (recurrent). PARPs are proteins that help repair DNA mutations. PARP inhibitors, such as BGB-290, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Drugs used in chemotherapy, such as temozolomide work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating adolescents and young adults with IDH1 / 2-mutant grade I-IV glioma.
    Location: 22 locations

  • A Trial of Enzastaurin Plus Temozolomide During and Following Radiation Therapy in Patients With Newly Diagnosed Glioblastoma With or Without the Novel Genomic Biomarker, DGM1

    This study will be conducted as a randomized, double-blind, placebo-controlled, multi-center Phase 3 study. Approximately 300 subjects with newly diagnosed glioblastoma who meet all eligibility criteria will be enrolled.
    Location: 11 locations

  • Radiation Therapy Plus Temozolomide and Pembrolizumab With and Without HSPPC-96 in Newly Diagnosed Glioblastoma (GBM)

    Background: GBM refers to a specific kind of brain cancer called glioblastoma. The standard treatment for GBM is radiation plus temozolomide, an oral chemotherapy drug. Pembrolizumab is an immune therapy that is now used to treat other cancers. The addition of pembrolizumab to the standard treatment of radiation and temozolomide has been shown to be well tolerated. Researchers want to see if adding a vaccine made from the person s own tumor will improve the effect of the pembrolizumab. The vaccine which is developed from fresh tumor taken at the time of surgery is called HSPPC-96. Objectives: To see if the adding pembrolizumab and HSPPC-96 improves the standard treatment for glioblastoma multiforme. Eligibility: Adults at least 18 years old with glioblastoma. Design: Participants will be screened with typical cancer tests: Brain scan Medical history Blood and urine tests Questions about quality of life and symptoms These tests will be repeated throughout the study. Participants will have surgery to remove their tumor. A tissue sample from the tumor will be sent to a lab. A vaccine will be made from it. Some participants will get pembrolizumab and vaccine. Some will get pembrolizumab and placebo. Participants will not know which they get. Participants will get radiation for 6 weeks. Participants will take temozolomide by mouth before each treatment. Participants will get pembrolizumab by IV for 30 minutes 3 times over the radiation cycle. Participants will keep taking the 2 drugs every few weeks for about a year. Some may take pembrolizumab for an additional year. Most participants will get the vaccine or placebo after radiation. They will get it 5 times over 6 weeks. Some participants will continue to get the vaccine every few weeks for 1 or 2 years. Participants will repeat the screening tests when they stop study treatment. They will also have follow-up phone calls.
    Location: 6 locations

  • Olaparib and Temozolomide with or without Irinotecan Hydrochloride in Treating Patients with Recurrent or Metastatic Ewing Sarcoma or Rhabdomyosarcoma Previously Treated with Chemotherapy

    This phase I trial studies the side effects and best dose of olaparib and temozolomide in treating patients with Ewing sarcoma or rhabdomyosarcoma that has returned (recurrent) or spread to other places in the body (metastatic) or after previous treatment with chemotherapy. Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving olaparib and temozolomide with irinotecan may be a better treatment for Ewing sarcoma or rhabdomyosarcoma.
    Location: 4 locations

  • CB-839 with Radiation Therapy and Temozolomide in Treating Patients with IDH-Mutated Diffuse Astrocytoma or Anaplastic Astrocytoma

    This phase 1b trial studies the side effects and best dose of glutaminase inhibitor CB-839 hydrochloride (CB-839) in combination with radiation therapy and temozolomide in treating patients with IDH-mutated diffuse or anaplastic astrocytoma. CB-839 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving CB-839 with radiation therapy and temozolomide may work better than surgery, radiation therapy, and temozolomide in treating patients with IDH-mutated diffuse astrocytoma or anaplastic astrocytoma.
    Location: 22 locations

  • Study to Assess Safety, Tolerability and Clinical Activity of BGB-290 in Combination With Temozolomide (TMZ) in Participants With Locally Advanced or Metastatic Solid Tumors

    The primary objective of this study is to determine the safety and tolerability of pamiparib, the maximum tolerated dose (MTD) or maximum administered dose (MAD) for pamiparib combined with TMZ, to select the recommended Phase 2 dose (RP2D) and schedule of pamiparib in combination with TMZ, and to determine the antitumor activity of pamiparib in combination with TMZ.
    Location: 3 locations

  • Ibrutinib, Temozolomide, Etoposide, Pegylated Liposomal Doxorubicin Hydrochloride, Dexamethasone, and Rituximab in Treating Patients with Primary Central Nervous System Lymphoma

    This phase I trial studies the side effects and best dose of ibrutinib when given together with temozolomide, etoposide, pegylated liposomal doxorubicin hydrochloride, dexamethasone, and rituximab in treating patients with central nervous system lymphoma. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as temozolomide, etoposide, and pegylated liposomal doxorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Anti-inflammatory drugs, such as dexamethasone, lower the body’s immune response and are used with other drugs in the treatment of some types of cancer. Rituximab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Giving ibrutinib with rituximab and combination chemotherapy may kill more cancer cells.
    Location: 3 locations

  • Temozolomide and Targeted or Standard Brain Radiation Therapy in Treating Patients with Newly Diagnosed Glioblastoma Multiforme

    This randomized phase II trial studies how well an increased dose of radiation therapy applied to a specific part of the brain works compared to standard radiation therapy when given with temozolomide in treating patients with a newly diagnosed brain tumor, such as glioblastoma multiforme. The brain contains cells called neural progenitor cells (NPC) that may be important in the brain’s response to injury but may also contribute to tumor recurrence. Subventricular zone radiation therapy targeting these cells may improve the local control and delay the brain tumor from coming back. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether subventricular zone radiation therapy and temozolomide are more effective than standard radiation therapy and temozolomide in treating patients with glioblastoma multiforme.
    Location: 3 locations


1 2 3 4 Next >