Clinical Trials Using Vorinostat

Clinical trials are research studies that involve people. The clinical trials on this list are studying Vorinostat. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-16 of 16
  • Bortezomib, Vorinostat, and Combination Chemotherapy in Treating Infants with Newly Diagnosed Acute Lymphoblastic Leukemia

    This phase I / II trial studies the side effects and best dose of vorinostat and to see how well it works when given together with bortezomib and combination chemotherapy in treating infants (patients less than 1 year old) with newly diagnosed acute lymphoblastic leukemia. Bortezomib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as methotrexate, hydrocortisone, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) with bortezomib and vorinostat may be a better treatment for acute lymphoblastic leukemia.
    Location: 11 locations

  • SOLAR: Efficacy and Safety of Cobomarsen (MRG-106) vs. Active Comparator in Subjects With Mycosis Fungoides

    The main objective of this clinical trial is to study the efficacy and safety of cobomarsen (also known as MRG-106) for the treatment of cutaneous T-cell lymphoma (CTCL), mycosis fungoides (MF) subtype. Cobomarsen is designed to inhibit the activity of a molecule called miR-155 that may be important to the growth and survival of MF cancer cells. The study will compare the effects of cobomarsen to vorinostat, a drug that has been approved for the treatment of CTCL in the United States and several other countries. Participants in the clinical trial will be randomly assigned to receive either weekly doses of cobomarsen by injection into a vein or daily oral doses of vorinostat. Participants will continue on their assigned treatment as long as there is no evidence of progression of their cancer. The effects of treatment will be measured based on changes in skin lesion severity, disease-associated symptoms, and quality of life, as well as the length of time that the subject's disease remains stable or improved, without evidence of disease progression. The safety and tolerability of cobomarsen will be assessed based on the frequency and severity of observed side effects. Participants assigned to receive vorinostat who experience progression of their disease during their participation in this study may have the option to be treated with cobomarsen in a separate clinical trial (MRG106-11-203 or PRISM), if they meet the entry criteria for that study.
    Location: 16 locations

  • Epigenetic Reprogramming in Relapse / Refractory AML

    This is a pilot study using decitabine and vorinostat before and during chemotherapy with fludarabine, cytarabine and G-CSF (FLAG).
    Location: 15 locations

  • 131I-MIBG Alone VS. 131I-MIBG With Vincristine and Irinotecan VS131I-MIBG With Vorinistat

    This study will compare three treatment regimens containing metaiodobenzylguanidine (MIBG) and compare their effects on tumor response and associated side effects, to determine if one therapy is better than the other for people diagnosed with relapsed or persistent neuroblastoma.
    Location: 11 locations

  • Pediatric Precision Laboratory Advanced Neuroblastoma Therapy

    A prospective open label, multicenter study to evaluate the feasibility and acute toxicity of using molecularly guided therapy in combination with standard therapy followed by a Randomized Controlled Trial of standard immunotherapy with or without DFMO followed by DFMO maintenance for Subjects with Newly Diagnosed High-Risk Neuroblastoma.
    Location: 3 locations

  • Pembrolizumab, Vorinostat, Temozolomide and Radiation Therapy in Treating Patients with Newly Diagnosed Glioblastoma

    This phase I trial studies the side effects and best dose of vorinostat when given together with pembrolizumab, temozolomide and radiation therapy in treating patients with newly diagnosed glioblastoma. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving pembrolizumab, vorinostat and temozolomide with radiation therapy may kill more tumor cells and allow doctors to save the part of the body where the cancer started.
    Location: Moffitt Cancer Center, Tampa, Florida

  • Olaparib and High-Dose Chemotherapy in Treating Patients with Relapsed or Refractory Lymphomas Undergoing Stem Cell Transplant

    This phase I trial studies the side effects and best dose of olaparib when given together with high-dose chemotherapy in treating patients with lymphomas that have come back or does not treatment and are undergoing stem cell transplant. Drugs used in chemotherapy, such as olaparib, vorinostat, gemcitabine, busulfan, and melphalan, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as rituximab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving olaparib and high-dose chemotherapy together may work better in treating patients with relapsed / refractory lymphomas undergoing stem cell transplant than with chemotherapy alone.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Pembrolizumab and Vorinostat in Treating Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma, Follicular Lymphoma, or Hodgkin Lymphoma

    This phase I trial studies the side effects and best dose of vorinostat when given together with pembrolizumab in treating patients with diffuse large B-cell lymphoma, follicular lymphoma, or Hodgkin lymphoma that has come back after a period of improvement or that does not respond to treatment. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of cancer cells to grow and spread. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving vorinostat and pembrolizumab together may work better than pembrolizumab alone in treating patients with diffuse large B-cell lymphoma, follicular lymphoma, or Hodgkin lymphoma.
    Location: City of Hope Comprehensive Cancer Center, Duarte, California

  • Pembrolizumab and Vorinostat in Treating Patients with Stage IV Non-small Cell Lung Cancer

    This phase I / II trial studies the side effects of pembrolizumab when given together with vorinostat and how well they work in treating patients with stage IV non-small cell lung cancer. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab together with vorinostat may kill more tumor cells.
    Location: Moffitt Cancer Center, Tampa, Florida

  • Vorinostat and Temsirolimus with or without Radiation Therapy in Treating Younger Patients with Newly Diagnosed or Progressive Diffuse Intrinsic Pontine Glioma

    This phase I trial studies the side effects and best dose of temsirolimus when given together with vorinostat and with or without radiation therapy in treating younger patients with newly diagnosed or progressive diffuse intrinsic pontine glioma, a tumor that arises from the middle portion of the brain stem. Vorinostat and temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving temsirolimus and vorinostat with or without radiation therapy may be a better treatment for younger patients with diffuse intrinsic pontine glioma.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Sorafenib Tosylate, Vorinostat, Gemcitabine Hydrochloride, and Radiation Therapy in Treating Patients with Pancreatic Cancer

    This phase I trial studies the side effects and best dose of sorafenib tosylate and vorinostat when given together with gemcitabine hydrochloride and radiation therapy in treating patients with pancreatic cancer. Sorafenib tosylate and vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as gemcitabine hydrochloride work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving sorafenib tosylate, vorinostat, gemcitabine hydrochloride, and radiation therapy may be a better treatment for pancreatic cancer.
    Location: Virginia Commonwealth University / Massey Cancer Center, Richmond, Virginia

  • Vorinostat, Gemcitabine Hydrochloride, and Docetaxel in Treating Patients With Soft Tissue Sarcoma That is Metastatic or Cannot Be Removed By Surgery

    This phase I / II trial studies the side effects and best dose of vorinostat when given together with gemcitabine hydrochloride and docetaxel and to see how well it works in treating patients with soft tissue sarcoma that is metastatic or cannot be removed by surgery. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as gemcitabine hydrochloride and docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving vorinostat with combination chemotherapy may kill more tumor cells.
    Location: University of Pittsburgh Cancer Institute (UPCI), Pittsburgh, Pennsylvania

  • Vorinostat and Iobenguane I 131 in Treating Patients With Resistant or Relapsed Neuroblastoma

    This phase I trial studies the side effects and best dose of giving vorinostat together with iobenguane I 131 in treating patients with resistant or relapsed neuroblastoma. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radioactive drugs, such as iobenguane I 131, may carry radiation directly to tumor cells and not harm normal cells. Giving vorinostat together with iobenguane I 131 may kill more tumor cells.
    Location: 16 locations

  • Vorinostat for the Treatment of Class 2 High Risk Uveal Melanoma

    This early phase I trial studies how well vorinostat works in treating patients with high risk uveal (eye) melanoma. Researchers are finding that the cells in uveal melanomas are mostly divided into two types: class 1 and class 2. The class 2 cells tend to have a higher chance of moving to other organs in the body, while the class 1 cells mostly stay in the eye. Vorinostat may be able to change class 2 cells into the less aggressive class 1-type cells by "turning on" the genes in the cell that suppresses tumors.
    Location: University of Miami Miller School of Medicine-Sylvester Cancer Center, Miami, Florida

  • Vorinostat in Treating Patients with Metastatic Melanoma of the Eye

    This phase II trial studies how well vorinostat works in treating patients with melanoma of the eye that has spread to other parts of the body. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
    Location: See Clinical Trials.gov

  • Vorinostat in Preventing Graft Versus Host Disease in Children, Adolescents, and Young Adults Undergoing Blood and Bone Marrow Transplant

    This phase I / II trial studies the side effects and best dose of vorinostat in preventing graft versus host disease in children, adolescents, and young adults who are undergoing unrelated donor blood and bone marrow transplant. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells, called graft-versus-host disease. During this process, chemicals (called cytokines) are released that may damage certain body tissues, including the gut, liver and skin. Vorinostat may be an effective treatment for graft-versus-host disease caused by a bone marrow transplant.
    Location: University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan