Clinical Trials Using Fludarabine Phosphate

Clinical trials are research studies that involve people. The clinical trials on this list are studying Fludarabine Phosphate. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 76-100 of 119

  • Ibrutinib, Fludarabine Phosphate, Cyclophosphamide, and Obinutuzumab in Treating Patients with Chronic Lymphocytic Leukemia

    This phase II trial studies how well ibrutinib, fludarabine phosphate, cyclophosphamide, and obinutuzumab work in treating patients with chronic lymphocytic leukemia. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as obinutuzumab, may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving ibrutinib, fludarabine phosphate, cyclophosphamide, and obinutuzumab together may work better in treating chronic lymphocytic leukemia.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Myeloablative or Reduced-Intensity Conditioning Regimen in Treating Patients with High-Risk, Relapsed, or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome Undergoing Donor Stem Cell Transplant

    This phase II trial studies the side effects and how well a myeloablative or reduced-intensity conditioning regimen works in treating patients with acute myeloid leukemia or myelodysplastic syndrome that is high-risk, has come back, or does not respond to treatment. Giving chemotherapy (myeloablative or reduced-intensity conditioning regimen) before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When healthy stem cells from a donor that have been genetically modified are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving tacrolimus or cyclosporine after the transplant may stop this from happening. It is not yet known whether myeloablative or reduced-intensity conditioning regimens given before the transplant will work better in treating patients with acute myeloid leukemia or myelodysplastic syndrome.
    Location: Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania

  • Reduced Intensity Chemotherapy and Radiation Therapy before Donor Stem Cell Transplant in Treating Patients with Hematologic Malignancies

    This clinical trial studies the use of reduced intensity chemotherapy and radiation therapy before donor stem cell transplant in treating patients with hematologic malignancies. Giving low doses of chemotherapy, such as cyclophosphamide and fludarabine phosphate, before a donor stem cell transplant may help stop the growth of cancer cells. It may also stop the patient’s immune system from rejecting the donor’s stem cells. The donated stem cells may replace the patient’s immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Reducing the intensity of the chemotherapy and radiation may also reduce the side effects of the donor stem cell transplant.
    Location: Thomas Jefferson University Hospital, Philadelphia, Pennsylvania

  • Romidepsin in Conditioning and Maintenance in Patients with T-cell Leukemia or Lymphoma Undergoing Donor Stem Cell Transplant

    This phase I / II trial studies the side effects and best dose of romidepsin when given together with busulfan and fludarabine phosphate before donor stem cell transplant (SCT) (conditioning) and alone after SCT (maintenance) in treating patients with T-cell leukemia or lymphoma. Drugs used in chemotherapy, such as romidepsin, busulfan, and fludarabine phosphate, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving romidepsin together with busulfan and fludarabine phosphate may help prevent the patient's body from rejecting transplanted cells, and help kill any cancer cells that are in the body. Maintenance romidepsin may keep the cancer cells from coming back after the transplant.
    Location: Ohio State University Comprehensive Cancer Center, Columbus, Ohio

  • Genetically Modified Donor Stem Cell Transplant Followed by Zoledronic Acid in Treating Younger Patients with Relapsed / Refractory Hematologic Malignancies or High Risk Solid Tumors

    This phase I trial studies the side effects of zoledronic acid given after genetically modified donor stem cell transplant in treating younger patients with hematologic malignancies or high risk tumors that have returned after a period of improvement (relapsed) or do not respond to treatment (refractory). Giving chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When healthy stem cells from a donor that have been genetically modified are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving mycophenolate mofetil and tacrolimus after the transplant may stop this from happening. Giving zoledronic acid after the transplant may help strengthen the immune system and make the immune cells work better.
    Location: University of Wisconsin Hospital and Clinics, Madison, Wisconsin

  • Intensity Modulated Total Marrow Irradiation, Fludarabine Phosphate, and Melphalan in Treating Patients with Relapsed Hematologic Cancers Undergoing a Second or above Donor Stem Cell Transplant

    This phase I trial studies the side effects and the best dose of intensity modulated total marrow irradiation (IMTMI) when given together with fludarabine phosphate and melphalan in treating patients with cancers of the blood (hematologic) that have returned after a period of improvement (relapsed) undergoing a second or above donor stem cell transplant. IMTMI is a type of radiation therapy to the bone marrow that may be less toxic and may also reduce the chances of cancer to return. Giving fludarabine phosphate, melphalan, and IMTMI before a donor stem cell transplant may help stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.
    Location: University of Chicago Comprehensive Cancer Center, Chicago, Illinois

  • JAK Inhibitor before Donor Stem Cell Transplant in Treating Patients with Primary or Secondary Myelofibrosis

    This phase II trial studies how well giving a JAK inhibitor before a donor stem cell transplant works in treating patients with myelofibrosis that developed without another condition (primary) or evolved from other bone marrow disorders (secondary). JAK inhibitors are a class of drugs that may stop the growth of abnormal cells by blocking an enzyme needed for cell growth. Giving a JAK inhibitor such as ruxolitinib before a donor stem cell transplant may help reduce symptoms of myelofibrosis such as inflammation and enlargement of the spleen, improve the patient’s general physical condition, and prevent complications from occurring after the transplant. Infusing healthy stem cells from a donor into the patient may help the patient's bone marrow work normally and make stem cells, red blood cells, white blood cells, and platelets. Giving a JAK inhibitor before a donor stem cell transplant may help improve transplant outcomes in patients with myelofibrosis.
    Location: Fred Hutch / University of Washington Cancer Consortium, Seattle, Washington

  • Venetoclax and Sequential Busulfan, Cladribine, and Fludarabine Phosphate before Donor Stem Cell Transplant in Treating Patients with Acute Myelogenous Leukemia or Myelodysplastic Syndrome

    This randomized phase II trial studies how well venetoclax and sequential busulfan, cladribine, and fludarabine phosphate before donor stem cell transplant work in treating patients with acute myelogenous leukemia or myelodysplastic syndrome. Giving chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Donor Stem Cell Transplant Followed by Cyclophosphamide in Treating Patients with Hematological Diseases

    This phase II trial studies donor stem cell transplant followed by cyclophosphamide in treating patients with hematological diseases. Giving chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can attack the body's normal cells, called graft versus host disease. Giving cyclophosphamide after the transplant may stop this from happening.
    Location: Wake Forest University Health Sciences, Winston-Salem, North Carolina

  • Genetically Modified T-cell Immunotherapy in Treating Patients with Relapsed or Refractory Acute Myeloid Leukemia or Blastic Plasmacytoid Dendritic Cell Neoplasm

    This phase I trial studies the side effects and the best dose of genetically modified T-cells after lymphodepleting chemotherapy in treating patients with acute myeloid leukemia or blastic plasmacytoid dendritic cell neoplasm that has returned after a period of improvement or has not responded to previous treatment. An immune cell is a type of blood cell that can recognize and kill abnormal cells in the body. The immune cell product will be made from patient or patient's donor (related or unrelated) blood cells. The immune cells are changed by inserting additional pieces of deoxyribonucleic acid (DNA) (genetic material) into the cell to make it recognize and kill cancer cells. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.
    Location: City of Hope Comprehensive Cancer Center, Duarte, California

  • Cellular Immunotherapy following Chemotherapy in Treating Patients with Recurrent Non-Hodgkin Lymphomas, Chronic Lymphocytic Leukemia, or B-Cell Prolymphocytic Leukemia

    This phase I trial studies the side effects and best dose of cellular immunotherapy following chemotherapy in treating patients with non-Hodgkin lymphomas, chronic lymphocytic leukemia, or B-cell prolymphocytic leukemia that has come back. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.
    Location: City of Hope Comprehensive Cancer Center, Duarte, California

  • HSCT for Patients With Fanconi Anemia Using Risk-Adjusted Chemotherapy

    The purpose of this study is to determine whether the use of lower doses of busulfan and the elimination of cyclosporine will further reduce transplant-related side effects for patients with Fanconi Anemia (FA). Patients will undergo a transplant utilizing mis-matched related or matched unrelated donors following a preparative regimen of busulfan, fludarabine, anti-thymocyte globulin and cyclophosphamide.
    Location: Fred Hutch / University of Washington Cancer Consortium, Seattle, Washington

  • Partially-Matched Donor Stem Cell Transplant in Treating Younger Patients with High-Risk Hematologic Malignancies

    This pilot clinical trial studies partially-matched donor stem cell transplant in treating younger patients with high-risk hematologic malignancies. Giving chemotherapy and / or total-body irradiation before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving cyclophosphamide, tacrolimus, and mycophenolate mofetil after the transplant may stop this from happening.
    Location: Lurie Children's Hospital-Chicago, Chicago, Illinois

  • Genetically Modified T-Cells Followed by Aldesleukin in Treating Patients with Stage III-IV Melanoma

    This pilot phase I trial studies the side effects and best dose of genetically modified T-cells followed by aldesleukin in treating patients with stage III-IV melanoma. T-cells are a type of white blood cell that help the body fight infections. Genes that may help the T-cells recognize melanoma cells are placed into the T-cells in the laboratory. Adding these genes to the T cells may help them kill more tumor cells when they are put back in the body. Aldesleukin may enhance this effect by stimulating white blood cells to kill more melanoma cells.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Cytokine-Induced Memory-Like NK Cells in Patients with Acute Myeloid Leukemia or Myelodysplastic Syndrome

    This phase I / II trial studies the side effects and best dose of activated natural killer (NK) cells and to see how well it works in treating patients with acute myeloid leukemia or myelodysplastic syndrome. Giving chemotherapy before a donor natural killer cell infusion may help stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's natural killer cells. Modified natural killer cells may help the body build an immune response to kill cancer cells. Aldesleukin (interleukin-2) may stimulate the white blood cells (including natural killer cells) to kill cancer cells.
    Location: Siteman Cancer Center at Washington University, Saint Louis, Missouri

  • Allogeneic Hematopoietic Stem Cell Transplant for GATA2 Mutations

    Background: - GATA2 deficiency is a disease caused by mutations in the GATA2 gene. It can cause different types of leukemia and other diseases. Researchers want to see if a stem cell transplant can be used to treat this condition. A stem cell transplant will give stem cells from a matching donor (related or unrelated) to a recipient. It will allow the donor stem cells to produce healthy bone marrow and blood cells that will attack the recipient s cancer cells. Objectives: - To see if stem cell transplants are successful at treating GATA2 mutations and related conditions. Eligibility: - Recipients who are between 8 and 70 years of age and have GATA2 deficiency, or the clinical syndrome MonoMac. - Donors who are between 6 and 70 years of age and are matched with the recipients. - Have a 10 / 10 or 9 / 10 HLA-matched related or unrelated donor, or a haploidentical related donor. Design: - All participants will be screened with a physical exam and medical history. Blood samples will be collected. Recipients will have imaging studies and other tests. - Donor participants will provide stem cells for the treatment. In some cases, Filgrastim injections will allow these cells to be collected from the blood. Bone marrow donations will be used as stem cells source. - Recipients will have chemotherapy or radiation to prepare for the transplant. On the day of the transplant, they will receive the donated stem cells. - Recipients will stay in the hospital until their condition is stable after transplant. - Frequent blood tests and scans will be required for the first 6 months after the transplant, followed by less frequent visits over time.
    Location: National Institutes of Health Clinical Center, Bethesda, Maryland

  • Donor Natural Killer Cells in Treating Patients with Relapsed or Refractory Acute Myeloid Leukemia

    This phase I / II trial studies the side effects and best dose of donor natural kill cells and to see how well they work in treating patients with acute myeloid leukemia that does not respond to treatment (refractory) or has come back after a period of improvement (relapsed). Giving natural killer cells after high dose chemotherapy may boost the patient's immune system by helping it see the remaining cancer cells as not belonging in the patient's body and causing it to destroy them (called graft-versus-tumor effect).
    Location: M D Anderson Cancer Center, Houston, Texas

  • Reduced-Intensity Conditioning before Donor Stem Cell Transplant in Treating Patients with High-Risk Hematologic Malignancies

    This phase II trial studies reduced-intensity conditioning before donor stem cell transplant in treating patients with high-risk hematologic malignancies. Giving low-doses of chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient’s immune system from rejecting the donor’s stem cells. The donated stem cells may replace the patient’s immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor’s T cells (donor lymphocyte infusion) before the transplant may help increase this effect.
    Location: Thomas Jefferson University Hospital, Philadelphia, Pennsylvania

  • Genetically Modified Therapeutic Autologous Lymphocytes Followed by Aldesleukin in Treating Patients with Stage III or Metastatic Melanoma

    This phase I / II trial studies how well genetically modified therapeutic autologous lymphocytes (patient's own white blood cells) followed by aldesleukin work in treating patients with stage III melanoma or melanoma that has spread to other places in the body (metastatic). Placing chemokine (C-X-C motif) receptor 2 (CXCR2) and nerve growth factor receptor (NGFR) into lymphocytes (white blood cells) may help the body build an immune response to kill melanoma cells. Aldesleukin may enhance this effect by stimulating white blood cells to kill more melanoma cells. Giving genetically modified therapeutic autologous lymphocytes together with aldesleukin may be a better treatment for melanoma.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Genetically Engineered T Cells and Low-Dose Aldesleukin After Combination Chemotherapy in Treating Patients With Metastatic Melanoma

    This phase I trial studies the side effects and best dose of genetically engineered T cells when given together with low-dose aldesleukin after combination chemotherapy in treating patients with metastatic melanoma. Placing a gene that has been created in the laboratory into white blood cells may make the body build an immune response to kill tumor cells. Aldesleukin may stimulate the white blood cells to kill melanoma cells. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving genetically engineered T cells and aldesleukin after combination chemotherapy may be an effective treatment for melanoma.
    Location: Loyola University Medical Center, Maywood, Illinois

  • Reduced Intensity Donor Stem Cell Transplant in Treating Patients with Hematologic Malignancies

    This phase II trial studies how well reduced intensity donor stem cell transplant works in treating patients with hematologic malignancies. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient’s immune cells and help destroy any remaining cancer cells. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them. Giving an infusion of the donor's white blood cells (donor lymphocyte infusion) may boost this effect.
    Location: Thomas Jefferson University Hospital, Philadelphia, Pennsylvania

  • Low-Dose Donor Bone Marrow Transplant in Treating Patients with Hematologic Malignancies

    This phase I / II trial studies the side effects and the best way to give low-dose donor bone marrow transplant (BMT) and to see how well it works in treating patients with hematologic malignancies. Giving low-doses of chemotherapy, such as fludarabine phosphate and cyclophosphamide, before a donor bone marrow transplant helps stop the growth of cancer cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's bone marrow cells. When the healthy stem cells from a related or unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body’s normal cells (called graft-versus-host disease). Giving cyclophosphamide, tacrolimus, and mycophenolate mofetil (MMF) after transplant may stop this from happening.
    Location: Johns Hopkins University / Sidney Kimmel Cancer Center, Baltimore, Maryland

  • Pilot Study of Reduced-Intensity Hematopoietic Stem Cell Transplant of DOCK8 Deficiency

    Background: -DOCK8 deficiency is a genetic disorder that affects the immune system and can lead to severe recurrent infections and possible death from infections or certain types of cancers, including blood cancers. A stem cell transplant is a life-saving treatment for this condition. In this study we are evaluating the efficacy and safety of transplant from different donor sources for DOCK8 deficiency. The donors that we are using are matched siblings, matched unrelated donors, and half-matched donors, so called haploidentical related donors, such as as mothers or fathers or half-matched siblings. Objectives: -To determine whether transplant of bone marrow cells from different types of donors corrects DOCK8 deficiency. Eligibility: - Donors: Healthy individuals between 2 and 60 years of age who are matched with a recipient. - Recipient: Individuals between 5 and 40 years of age who have DOCK8 deficiency, have suffered one or more life-threatening infections, or have had certain viral related cancers of cancer and have a stem cell donor. Design: - All participants will be screened with a physical examination and medical history. - DONORS: - Donors will donate bone marrow cells or blood stem cells. If donating blood stem cells, donors will receive injections of filgrastim to release stem cells into the blood. After 5 days of filgrastim injections, donors will have apheresis to donate stem cells and white blood cells that are present in the blood. - Donors who provide the stem cells through bone marrow donation will have their bone marrow cells harvested in the operating room. - RECIPIENTS: - Recipients receiving matched related or unrelated donors will receive 4 days of chemotherapy with busulfan and fludarabine to suppress their immune system and prepare them for the transplant. Donors receiving haploidentical related donors will receive two doses of chemotherapy with cyclophosphamide, 5 days of fludarabine, 3 days of busulfan, and one dose of radiation to suppress their immune system and prepare them for the transplant. - After the initial chemotherapy and radiation, recipients will receive the donated stem cells as a single infusion. Recipients may also receive white blood cells from their stem cell donor to encourage acceptance of the stem cells. - After the stem cell transplant, recipients will receive two days of a chemotherapy called cyclophosphamide on day's + 3 and + 4 followed by two drugs tacrolimus and mycophenolate to prevent graft versus host disease where the donor cells attack the patient's body. All patients will remain in the hospital for approximately 1 month, and will be followed with regular visits for up to 3 years with periodic visits thereafter to evaluate the success of the transplant and any side effects.
    Location: National Institutes of Health Clinical Center, Bethesda, Maryland

  • Disease-Specific High-Dose Conditioning Regimens in Treating Patients Undergoing T-cell Depleted Peripheral Blood Stem Cell Transplantation for Hematologic Malignancies or Other Lethal Hematologic Disorders

    This phase II trial studies how well disease-specific high-dose conditioning regimens work in treating patients undergoing T-cell depleted peripheral blood stem cell transplant for hematologic malignancies or other lethal hematologic disorders. Giving high doses of chemotherapy and total body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin and removing the T-cells from the donor cells before transplant may stop this from happening.
    Location: Memorial Sloan Kettering Cancer Center, New York, New York

  • Donor Peripheral Blood Stem Cell Transplant in Treating Patients with Hematologic Malignancies

    This phase II trial studies how well donor peripheral blood stem cell (PBSC) transplant works in treating patients with hematologic malignancies. Cyclophosphamide when added to tacrolimus and mycophenolate mofetil is safe and effective in preventing severe graft-versus-host disease (GVHD) in most patients with hematologic malignancies undergoing transplantation of bone marrow from half-matched (haploidentical) donors. This approach has extended the transplant option to patients who do not have matched related or unrelated donors, especially for patients from ethnic minority groups. The graft contains cells of the donor's immune system which potentially can recognize and destroy the patient's cancer cells (graft-versus-tumor effect). Rejection of the donor's cells by the patient's own immune system is prevented by giving low doses of chemotherapy (fludarabine phosphate and cyclophosphamide) and total-body irradiation before transplant. Patients can experience low blood cell counts after transplant. Using stem cells and immune cells collected from the donor's circulating blood may result in quicker recovery of blood counts and may be more effective in treating the patient's disease than using bone marrow.
    Location: Fred Hutch / University of Washington Cancer Consortium, Seattle, Washington