Clinical Trials Using Tacrolimus

Clinical trials are research studies that involve people. The clinical trials on this list are studying Tacrolimus. All trials on the list are supported by NCI.

NCI’s basic information about clinical trials explains the types and phases of trials and how they are carried out. Clinical trials look at new ways to prevent, detect, or treat disease. You may want to think about taking part in a clinical trial. Talk to your doctor for help in deciding if one is right for you.

Trials 1-25 of 66
1 2 3 Next >

  • Tacrolimus, Nivolumab, and Ipilimumab in Treating Kidney Transplant Recipients with Selected Unresectable or Metastatic Cancers

    This phase I trial studies how well tacrolimus, nivolumab, and ipilimumab work in treating kidney transplant recipients with cancer that cannot be removed by surgery (unresectable) or has spread to other places in the body (metastatic). Tacrolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving tacrolimus, nivolumab, and ipilimumab may work better in treating kidney transplant recipients with cancer compared to chemotherapy, surgery, radiation therapy, or targeted therapies.
    Location: 7 locations

  • Bone Marrow Transplantation vs Standard of Care in Patients With Severe Sickle Cell Disease (BMT CTN 1503)

    This is a clinical trial that will compare survival and sickle related outcomes in adolescents and young adults with severe sickle cell disease after bone marrow transplantation and standard of care. The primary outcome is 2-year overall survival.
    Location: 5 locations

  • Naive T Cell Depletion for Preventing Chronic Graft-versus-Host Disease in Children and Young Adults with Blood Cancers Undergoing Donor Stem Cell Transplant

    This phase II trial studies how well naive T-cell depletion works in preventing chronic graft-versus-host disease in children and young adults with blood cancers undergoing donor stem cell transplant. Sometimes the transplanted white blood cells from a donor attack the body’s normal tissues (called graft versus host disease). Removing a particular type of T cell (naive T cells) from the donor cells before the transplant may stop this from happening.
    Location: 8 locations

  • Optimizing Haploidentical Aplastic Anemia Transplantation (BMT CTN 1502)

    This study is a prospective, multicenter phase II study with patients receiving haploidentical transplantation for Severe Aplastic Anemia (SAA). The primary objective is to assess overall survival (OS) at 1 year post-hematopoietic stem cell transplantation (HSCT).
    Location: 3 locations

  • Treosulfan and Fludarabine Phosphate before Donor Stem Cell Transplant in Treating Patients with Nonmalignant Inherited Disorders

    This phase II clinical trial studies how well treosulfan and fludarabine phosphate with or without low dose radiation before donor stem cell transplantation works in treating patients with nonmalignant (noncancerous) diseases. Hematopoietic cell transplantation has been shown to be curative for many patients with nonmalignant (noncancerous) diseases such as primary immunodeficiency disorders, bone marrow failure syndromes, hemoglobinopathies, and inborn errors of metabolism (metabolic disorders). Powerful chemotherapy drugs and / or radiation are often used to condition the patient before infusion of the new healthy donor cells. The purpose of the conditioning therapy is to destroy the patient's abnormal bone marrow which doesn't work properly in order to make way for the new healthy donor cells which functions normally. Although effective in curing the patient's disease, many hematopoietic cell transplantation regimens use intensive chemotherapy and / or radiation which can be quite toxic, have significant side effects, and can potentially be life-threatening. Investigators are investigating whether a new conditioning regimen that uses less intensive drugs (treosulfan and fludarabine phosphate) with or without low dose radiation results in new blood-forming cells (engraftment) of the new donor cells without increased toxicities in patients with nonmalignant (noncancerous) diseases.
    Location: 3 locations

  • Graft Versus Host Disease-Reduction Strategies for Donor Blood Stem Cell Transplant Patients with Acute Leukemia

    This phase II trial investigates four strategies and how well they work for the reduction of graft versus host disease in patients with acute leukemia in remission. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient’s immune cells and help destroy any remaining cancer cells.
    Location: 3 locations

  • Venetoclax, Busulfan, Fludarabine, and Azacitidine in Treating Patients with High Risk Acute Myeloid Leukemia, Myelodysplastic Syndrome, and Myelodysplastic / Myeloproliferative Neoplasm Overlap Syndromes Undergoing Donor Stem Cell Transplantation

    This phase I trial studies the best dose and side effects of venetoclax when given together with busulfan, fludarabine, and azacitidine in treating patients with high risk acute myeloid leukemia, myelodysplastic syndrome, chronic myelomonocytic leukemia, or myelodysplastic syndrome / myeloproliferative neoplasm undergoing donor hematopoietic stem cell transplantation. Drugs used in chemotherapy, such as venetoclax, busulfan, fludarabine, and azacitidine work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
    Location: 2 locations

  • Donor Bone Marrow Transplant in Treating Patients with High-Risk Solid Tumors

    This phase II trial studies how well a donor bone marrow transplant works in treating patients with solid tumors that are likely to recur (come back) or spread. Giving low doses of chemotherapy and total body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells when they do not exactly match the patient's blood. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving sirolimus and mycophenolate mofetil before transplant may stop this from happening.
    Location: 2 locations

  • Donor Stem Cell Transplant after Chemotherapy for the Treatment of Recurrent or Refractory High-Risk Solid Tumors in Pediatric and Adolescent-Young Adults

    This phase II trial investigates side effects and how well donor stem cell transplant after chemotherapy works in treating pediatric and adolescent-young adults with high-risk solid tumor that has come back (recurrent) or does not respond to treatment (refractory). Chemotherapy drugs, such as fludarabine, thiotepa, etoposide, melphalan, and rabbit anti-thymocyte globulin work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a donor stem cell transplant helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. When the healthy stem cells from a donor are infused into a patient, they may help the patient's bone marrow make more healthy cells and platelets and may help destroy any remaining cancer cells.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Ruxolitinib for the Treatment of Graft Versus Host Disease Following Stem Cell Transplant in Patients with Primary and Secondary Myelofibrosis

    This phase II trial studies how well administering ruxolitinib before, during, and after allogeneic hematopoietic stem cell transplantation works in preventing graft versus host disease and improving transplant outcomes in patients with primary and secondary myelofibrosis. Donor hematopoietic stem cell transplantation (HSCT) is currently the only treatment with proven curative potential for myelofibrosis, however, myelofibrosis patients have a high risk for developing graft versus host disease post-transplant. Graft versus host disease is a condition where the transplanted cells from a donor can attack the body's normal cells. Ruxolitinib, a janus-associated kinase (JAK) inhibitor, is known to decrease inflammatory signals, which may reduce spleen size and decrease symptoms such as night sweats and weight loss. Administering ruxolitinib before, during, and after transplant may decrease the incidence and severity of graft versus host disease, increase survival, and improve quality of life in patients with primary and secondary myelofibrosis.
    Location: Fred Hutch / University of Washington Cancer Consortium, Seattle, Washington

  • Reduced Intensity Haploidentical Transplantation for the Treatment of Primary or Secondary Myelofibrosis

    This phase II trial studies the outcomes of using a JAK inhibitor prior to reduced intensity haploidentical (Haplo) transplantation for the treatment of primary or secondary myelofibrosis (MF). Haplo transplant has been shown to be safe and effective in patients with leukemia and lymphoma who don’t have an available sibling donor. The primary risk of using Haplo HCT in patients with MF is graft failure as the graft failure rate has been historically higher with Haplo HCT than with other donor sources and higher with MF patients due to bone marrow fibrosis than in patients with other hematologic malignancies. JAK inhibitors when used in patients with MF may decrease the size of the spleen and decrease inflammation in the bone marrow. Therefore using a JAK inhibitor prior to Haplo transplant has the potential to decrease graft failure in patients with MF. Haplo transplants for patients with MF have been done successfully at multiple institutions in patients not on a study and are currently being covered by Medicare.
    Location: Fred Hutch / University of Washington Cancer Consortium, Seattle, Washington

  • Allogeneic Hematopoietic Stem Cell Transplant for People With Primary Immunodeficiency Diseases

    Background: During a transplant, blood stem cells from one person are given to someone else. The cells grow into the different cells that make up the immune system. This can cure people with certain immunodeficiencies. But transplant has many risks and complications. Objective: To see if stem cell transplant can be successfully performed in people with primary immunodeficiency disease and cure them. Eligibility: People ages 4-69 for whom a primary immunodeficiency (PID) or Primary Immune Regulatory Disorder (PIRD), has caused significant health problems and either standard management has not worked or there are no standard management options, along with their donors Design: Donors will be screened under protocol 01-C-0129. They will donate blood or bone marrow. Participants will be screened with: Medical history Physical exam Blood, urine, and heart tests CT or PET scans Before transplant, participants will have dental and eye exams. They will have a bone marrow biopsy. For this, a needle will be inserted through the skin into the pelvis to remove marrow. Participants will be hospitalized before their transplant. They will have a central catheter put into a vein in their chest or neck. They will get medications through the catheter to prevent complications. Participants will get stem cells through the catheter. They will stay in the hospital for at least 4 weeks. They will give blood, urine, bone marrow, and stool samples. They may need blood transfusions. They may need more scans. They will take more medications. Participants will have visits on days 30, 60, 100, 180, and 360, and 24 months after the transplant. Then they will have visits once a year for about 5 years
    Location: National Institutes of Health Clinical Center, Bethesda, Maryland

  • Itacitinib, Tacrolimus, and Sirolimus for the Prevention of GVHD in Patients with Acute leukemia, Myelodysplastic Syndrome, or Myelofibrosis Undergoing Reduced Intensity Conditioning Donor Stem Cell Transplantation

    This phase IIa trial studies the side effects of itacitinib when given together with standard treatment (tacrolimus and sirolimus), and to see how well it works in preventing graft-versus-host-disease (GVHD) in patients with acute leukemia, myelodysplastic syndrome or myelofibrosis who are undergoing reduced intensity conditioning donor stem cell transplantation. GVHD is a common complication after donor stem cell transplantation, resulting from donor immune cells recognizing recipients' cells and attacking them. Adding itacitinib to tacrolimus and sirolimus may reduce the risk GVHD and ultimately improve overall outcome and survival after donor stem cell transplantation.
    Location: City of Hope Comprehensive Cancer Center, Duarte, California

  • US Study of UM171-Expanded CB in Patients With High Risk Leukemia / Myelodysplasia

    Cord blood (CB) transplants are an option for patients lacking an HLA identical donor but are hampered by low cell dose, prolonged aplasia and high transplant related mortality. UM171, a novel and potent agonist of hematopoietic stem cell self renewal could solve this major limitation, allowing for CB's important qualities as lower risk of chronic GVHD and relapse to prevail. In a previous trial (NCT02668315), the CB expansion protocol using the ECT-001-CB technology (UM171 molecule) has proven to be technically feasible and safe. UM171 expanded CB was associated with a median neutrophil recovery at day (D)+18 post transplant. Amongst 22 patients who received a single UM171 CB transplant with a median follow-up of 18 months, risk of TRM (5%) and grade 3-4 acute GVHD (10%) were low. There was no moderate-severe chronic GVHD. Thus, overall and progression free survival at 12 months were impressive at 90% and 74%, respectively. The UM171 expansion protocol allowed access to smaller, better HLA matched CBs as >80% of patients received a 6-7 / 8 HLA matched CB. Interestingly there were patients with high-risk hematologic malignancies and multiple comorbidities (5 patients who had already failed an allogeneic transplant and 5 patients with refractory / relapsed acute leukemia / aggressive lymphoma). Despite this high risk population, progression was 20% at 12 months. This new study seeks to test a similar strategy in a group of patients with high risk acute leukemia / myelodysplasia.
    Location: Fred Hutch / University of Washington Cancer Consortium, Seattle, Washington

  • Bendamustine with or without Cyclophosphamide in Preventing GVHD in Patients Undergoing Stem Cell Transplant

    This phase I / II trial studies the side effects and best dose of bendamustine when given with or without cyclophosphamide in preventing graft versus host disease (GVHD) in patients undergoing stem cell transplant. Drugs used in chemotherapy, such as bendamustine and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy and total body irradiation before or after a stem cell transplant helps kills cancer cells that are in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. Sometimes, the transplanted cells from a donor can attack the body's normal cells called GVHD. Giving tacrolimus, mycophenolate mofetil, and filgrastim after the transplant may stop this from happening.
    Location: M D Anderson Cancer Center, Houston, Texas

  • An Investigational Graft Processing Procedure (ApoGraft) for the Prevention of Acute Graft Versus Host Disease in Patients Undergoing Stem Cell Transplant

    This phase I trial studies the side effects of an investigational graft processing procedure (ApoGraft) in preventing acute graft versus host disease in patients undergoing a stem cell transplant. A stem cell is a type of cell found in the blood or bone marrow which helps form more blood cells. The purpose of a stem cell transplant is to use the stem cells from a healthy donor to replace the diseased bone marrow in the recipient. One of the side effects of a stem cell transplant is the development of graft versus host disease (GVHD). GVHD occurs when some of the cells from the donor attack the recipient’s tissues, resulting in mild, moderate, or even life-threatening side effects to the recipient’s skin, stomach, intestine, and liver. A haploidentical (half-matched related) stem cell transplant is a type of transplant that occurs when the person who needs a transplant can’t find a donor who exactly matches their tissue type (either among family members or through a matched unrelated donor). When no matched donor is available, haploidentical donors may be used. The purpose of this study is to see how well using ApoGraft in processing stem cells works to prevent or lessen the effects of GVHD while still effectively treating the disease in patients receiving a haploidentical stem cell transplant.
    Location: Siteman Cancer Center at Washington University, Saint Louis, Missouri

  • Inotuzumab Ozogamicin and Chemotherapy in Treating Patients with Leukemia or Lymphoma Undergoing Stem Cell Transplantation

    The goal of this phase II clinical study is to learn about the safety of inotuzumab ozogamicin when given with fludarabine, with or without bendamustine, melphalan, and rituximab before and after a stem cell transplant. Researchers also want to learn if inotuzumab ozogamicin when given after a stem cell transplant can help control leukemia and lymphoma. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a chemotherapy drug called ozogamicin. Inotuzumab attaches to CD22-positive cancer cells in a targeted way and delivers ozogamicin to kill them. Giving chemotherapy before a bone marrow or peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. Sometimes the transplanted cells from a donor attack the body's normal cells (called graft-versus-host disease). Giving tacrolimus and filgrastim before or after the transplant may stop this from happening. Fludarabine, bendamustine, melphalan, and rituximab are commonly given before stem cell transplants. Giving inotuzumab ozogamicin with chemotherapy may work better in treating patients with leukemia or lymphoma undergoing stem cell transplantation.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Vorinostat in Preventing Graft Versus Host Disease in Children, Adolescents, and Young Adults Undergoing Blood and Bone Marrow Transplant

    This phase I / II trial studies the side effects and best dose of vorinostat in preventing graft versus host disease in children, adolescents, and young adults who are undergoing unrelated donor blood and bone marrow transplant. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells, called graft-versus-host disease. During this process, chemicals (called cytokines) are released that may damage certain body tissues, including the gut, liver and skin. Vorinostat may be an effective treatment for graft-versus-host disease caused by a bone marrow transplant.
    Location: University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan

  • Itacitinib in Reducing the Incidence of Graft Versus Host Disease in Patients with Hematologic Cancers Undergoing Donor Stem Cell Transplant

    This phase I trial studies the side effects of itacitinib in reducing the incidence of graft versus host disease (GVHD) in patients with hematologic (bone marrow and blood cells) cancers undergoing donor stem cell transplant. One of the side effects of a donor stem cell transplant is the development of GVHD, which occurs when some of the cells from the donor attack the recipient’s tissues, resulting in mild, moderate, or even life-threatening side effects to the recipient’s skin, stomach, intestine, and liver. Itacitinib may prevent or lessen the effect of GVHD while still effectively treating the hematologic cancer.
    Location: Siteman Cancer Center at Washington University, Saint Louis, Missouri

  • 2-Step Approach to Stem Cell Transplant in Treating Patients with Hematological Malignancies

    This phase II trial studies how well a 2-step approach to stem cell transplant works in treating patients with blood cancers. Giving chemotherapy and total body irradiation before a lymphocyte (white blood cell) and stem cell transplant helps stop the growth of cells in the bone marrow including normal blood-forming cells (stem cells) and cancer cells. By giving the donor cells in two steps, the dose of lymphocytes given can be tightly controlled and they can be made more tolerant to the body. When the healthy lymphocytes and stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells called graft versus host disease. Giving tacrolimus and mycophenolate mofetil may stop this from happening.
    Location: Thomas Jefferson University Hospital, Philadelphia, Pennsylvania

  • Donor Stem Cell Transplant using Alpha / Beta+ T-Cell Depletion in Treating Patients with Hematologic Malignancies

    This phase II trial studies the side effects of donor stem cell transplant using allogeneic TCR alpha / beta-positive T-lymphocyte-depleted peripheral blood stem cells (alpha / beta positive [+] T-cell depletion) in treating patients with hematologic malignancies. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient’s immune cells and help destroy any remaining cancer cells. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells called graft-versus-host disease. Removing the T cells from the donor cells before the transplant may stop this from happening.
    Location: Memorial Sloan Kettering Cancer Center, New York, New York

  • T Cells (EAGD T-Cells) after Stem Cell Transplantation and Post-transplant Cyclophospamide for the Treatment of Blood Cancers

    This phase I trial studies the side effects and best dose of T cells (EAGD T-cells) after stem cell transplantation and post-transplant cyclophosphamide for the treatment of patients with blood cancer. Gamma delta T-cells are part of patient's body’s natural immune system, and they act to prevent or stop the development of a tumor. A donor, who shares similarities to patient's genes, provides blood that is processed using special equipment. This equipment, used by the laboratory, removes some cell types leaving the special cells that may have an impact on helping patients' own body’s blood cells kill their cancer cells. The processed cells are called EAGD T-cells. Giving EAGD T-cells after stem cell transplant and standard of care treatment, may reduce the risk of patient’s body rejecting or fighting off blood cells and bone marrow received from a donor (graft versus host disease) and prevent blood cancer from coming back.
    Location: University of Kansas Clinical Research Center, Fairway, Kansas

  • Cyclophosphamide, Fludarabine Phosphate, and Total Body Radiation, before Donor Stem Cell Transplant in Treating Participants with Blood Disorders and Blood Cancers

    This phase III trial studies how well cyclophosphamide, fludarabine phosphate, and total body radiation before donor stem cell transplant work in treating participants with blood disorders and blood cancers. Giving chemotherapy such as cyclophosphamide and fludarabine phosphate and total body radiation before a stem cell transplant helps stop the growth of cells in the bone marrow. When the healthy cells from a donor are infused into the participant, they may help the patient's bone marrow make stem cells, red blood cells, and platelets. The donated cells may also replace the patient's immune cells and help destroy any remaining cancer cells.
    Location: Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire

  • Sorafenib, Busulfan and Fludarabine in Treating Patients with Recurrent or Refractory Acute Myeloid Leukemia Undergoing Donor Stem Cell Transplant

    This phase I / II trial studies the best dose of sorafenib when given together with busulfan and fludarabine in treating patients with acute myeloid leukemia that has come back or does not respond to treatment and who are undergoing donor stem cell transplant. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as busulfan and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving sorafenib with busulfan and fludarabine may work better in treating patients with recurrent or refractory acute myeloid leukemia.
    Location: M D Anderson Cancer Center, Houston, Texas

  • Combination Chemotherapy, Total Body Irradiation, and Donor Blood Stem Cell Transplant in Treating Patients with Secondary Myelofibrosis

    This pilot phase I trial studies the side effects of combination chemotherapy, total body irradiation, and donor blood stem cell transplant in treating patients with secondary myelofibrosis. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving combination chemotherapy and total body irradiation before a donor blood stem cell transplant helps to stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.
    Location: City of Hope Comprehensive Cancer Center, Duarte, California


1 2 3 Next >